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GENERAL INTRODUCTION 

 

The two most common thyroid gland pathologies in the adult dog are 

acquired hypothyroidism and neoplasia.1 Acquired hypothyroidism is the 

most common endocrine disorder in the dog, but at the same time is the 

most over-diagnosed one.2-7 Reasons for the many false positive diagnoses 

are the wide variety of vague clinical symptoms, the relatively low 

accuracy of most biochemical thyroid tests, and the multitude of factors 

(e.g. systemic diseases, drugs, physiologic fluctuations) that may 

influence the results of these tests.1,2,5,8,9 Combining clinical examination 

and biochemical tests with a cross-sectional imaging modality (e.g. US, 

CT, MRI) of the diseased thyroid gland may therefore increase the 

accuracy in the diagnosis of acquired hypothyroidism in the dog. 

The second most common, but not less important, thyroid pathology in 

dogs is neoplasia. Contrary to cats, thyroid neoplasia in dogs are most 

commonly carcinomas and are usually non-secreting, meaning that they 

do not result in altered circulating hormone concentrations.1,10 Due to the 

absence of endocrine related symptoms, dogs with thyroid neoplasia are 

often presented in an advanced stage of the disease, once the tumor size 

results in a visible mass in the neck area and/or results in mechanical 

dysfunction of the upper airway and/or upper digestive tract. Such 

mechanical dysfunctions result in obvious clinical signs of gagging, 

regurgitation, coughing and dyspnea.2 Because of the large presenting size 

of these masses, grayscale US combined with FNA often yields a 

relatively quick and straightforward diagnosis.11-13 
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Ultrasound however has some restrictions for staging and planning the 

treatment of these locally very invasive tumors. Limitations are related to 

the inability to image structures covered by air and the narrow field of 

view associated with the relatively small footprint size of ultrasound 

probes. By consequence, US is unable to detect intrathoracic invasion of 

thyroid masses, to diagnose pulmonary metastases, is limited to a lateral 

approach of the neck to assess local involvement of soft tissues dorsal to 

the trachea, and has difficulties to define a thyroidal origin of large 

masses distorting the anatomy of the neck.14-16 These limitations could 

potentially be overcome by using other imaging modalities like CT or 

MRI, two imaging modalities becoming more accessible in veterinary 

medicine. 
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Of all currently available imaging modalities, only grayscale US has 

been used to describe the morphological (contrary to functional) imaging 

of the canine thyroid gland.1-4 The clinical application of US so far was 

limited to define thyroid origin of cervical masses of unknown etiology, 

and to accurately guide needle biopsies of thyroid tumors.1,2,5 Besides the 

characteristic appearance, several authors also mentioned the measured 

size of the normal thyroid gland with US. These measurements were 

deemed to play a role in the diagnosis of acquired hypothyroidism, as 

this pathology is known to be associated with a shrinking of the gland.6 

The usefulness of such measurements however still needs to be defined 

and not only size measurements, but also other US features could assist 

in the diagnosis of hypothyroidism and are currently under investigation. 

The clinical application of CT has been limited to a single case report 

suggesting its usefulness in the treatment planning of thyroid carcinomas 

and to the best of our knowledge, MRI applications have never been 

described.7 Studies describing the normal CT and MRI anatomy of the 

canine thyroid gland, which are needed as a reference to define 

pathological changes of the gland, are also lacking in the veterinary 

literature. 
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The aims of this work were: 

1) to evaluate the effectiveness of US size measurements of the  

   thyroid gland in the diagnosis of acquired hypothyroidism 

2) to define US features, other than size measurements, in acquired 

   hypothyroidism 

3) to describe the normal CT anatomy and 

4) to describe the normal MRI anatomy of the canine thyroid gland. 
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SUMMARY 

 
This review describes the advantages and disadvantages of 

radiography, ultrasonography and nuclear medicine in the two most 

frequent thyroid pathologies of the dog: acquired primary 

hypothyroidism and thyroid neoplasia. Ultrasonography and 

scintigraphy remain the two most indicated imaging modalities for 

these thyroid abnormalities. However, as in human medicine, 

computed tomography and magnetic resonance imaging also have 

potential indications. This is especially the case in the evaluation of 

the extent, local invasiveness and the presence of local or distant 

metastases of thyroid neoplasia. Based on experience with different 

imaging modalities in people, we suggest future directions in the 

imaging of the canine thyroid gland.  
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INTRODUCTION 

The two major pathologies of the thyroid gland in the adult dog are 

neoplasia and primary hypothyroidism. Clinically detectable neoplasms 

(which represent mostly carcinomas and less frequently adenomas) 

usually are non-secreting, resulting in euthyroidism throughout the 

course of the disease.1 Two-thirds of the carcinomas are located in 1 

thyroid lobe and one-third involve both lobes.1 Only 10-20% of the 

detectable carcinomas secrete excessive thyroid hormones and result in 

clinical signs of hyperthyroidism.2,3 Hyperthyroidism is even less 

frequent in the rare cases of detectable adenomas.3 When almost the 

entire gland is destroyed by a bilateral carcinoma, signs of 

hypothyroidism can also be seen. This has been reported to be present in 

up to 30% of cases of thyroid neoplasia.2 

Hypothyroidism in the adult dog is in more than 95% of the cases the 

result of a primary dysfunction of the thyroid gland, resulting from an 

immune-mediated lymphocytic thyroiditis or idiopathic atrophy of the 

gland.1,4,5,6 Acquired secondary hypothyroidism (TSH deficiency) is 

rarely reported and is related to pituitary tumors or pituitary 

malformations.2,7 Tertiary hypothyroidism (TRH deficiency) has not 

been described in dogs.2,7 In the juvenile dog, congenital primary 

hypothyroidism is only rarely diagnosed and can be the result of 

dysgenesis of the gland, dyshormonogenesis or iodine deficiency.2,7 

Congenital secondary hypothyroidism usually is a feature of  
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panhypopituitarism. An isolated TSH or TRH deficiency in young dogs 

has only been described in 2 case reports.7,8,9 

In the past, imaging of the canine thyroid gland was only applied in 

cases of cervical masses of unknown origin. More recently scintigraphy 

and ultrasonography also have been used for the diagnosis of primary 

hypothyroidism.1,7,10,11,12,13,14,15,16 The diagnosis of primary 

hypothyroidism in the adult dog is challenging due to the combination of 

vague presenting clinical signs, the relatively low accuracy of most 

biochemical tests and the potential influence of numerous drugs on 

thyroid function. Therefore, besides being one of the most common 

endocrine disorders, it is also one of the most over-diagnosed 

endocrinopathies in the dog.6 Different imaging modalities have the 

potential to improve the low clinical diagnostic accuracy of canine 

hypothyroidism.  

The purpose of this article is to present the current status and potential 

evolution, based on experience in human medicine, of the different 

imaging modalities in thyroid related pathologies of the dog. The thyroid 

imaging approach in people is based on the preliminary clinical 

evaluation. It is recommended that lesions smaller than 2 cm be 

evaluated by US, preferably in combination with US-guided fine needle 

aspirates FNA providing tissue for cytological examination. CT and 

MRI are more restricted to specific indications such as the evaluation of 

the extent of substernal goiters, characterization of large neck masses,  
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estimation of local invasiveness of thyroid carcinomas and detection of 

local and distant metastases.17 

 

RADIOGRAPHY 

Because of the absence of enlargement of the gland, conventional 

radiography is not useful for evaluation of acquired hypothyroidism. In 

cases of congenital hypothyroidism however, radiographs of the skeleton 

are indicated. In contrast to pituitary dwarfism, congenital primary 

hypothyroidism results in a disproportionate dwarfism. Abnormalities 

that can be detected in the appendicular skeleton are delayed epiphyseal 

ossification and epiphyseal dysgenesis (i.e. irregularly formed, 

fragmented or stippled epiphyseal centers), which are most commonly 

seen in the proximal tibia and in the humeral and femoral condyles 

(Fig.1).  

 

  
Fig. 1: Five-months-old dog. There is delayed epiphyseal appearance 
and retarded epiphyseal growth of the distal humerus, and proximal and 
distal radius and ulna. Retarded ossification of the carpal bones is 
evident. Skeletal age is one month. Figure reprinted with permission 
from the Vet Rad Ultrasound, Vol 32, No. 4., 1991, pp 171-177 
(courtesy of H.M. Saunders). 
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The overall length of the long bones is thus reduced. Valgus deformities 

are common and result from retarded ossification of the carpal and tarsal 

bones. Thickening of the radial and ulnar cortices with increased 

medullar opacity and bowing of these bones also can be seen.  

Degenerative joint disease may develop at a later stage. Evaluation of 

the axial skeleton may show short broad skulls with delayed closure of 

the sutures and retarded vertebral body epiphyseal growth may result in 

shortened vertebral bodies with scalloped ventral borders (Fig. 2).1,18,19 

 

 
Fig. 2: Five-months-old dog. There is retarded epiphyseal growth, and 
shortened vertebral bodies. Figure reprinted with permission from the 
Vet Rad Ultrasound, Vol 32, No. 4., 1991, pp 171-177 (courtesy of H.M. 
Saunders). 
 

In cases of thyroid neoplasia, radiographs of the neck may show a space-

occupying mass caudal to the pharynx, sometimes with presence of soft 

tissue mineralizations.20 The mass, if large enough, may cause an uneven 

width or deformed laryngeal air space and compress or displace the  
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trachea ventrally (Fig. 3).20,21 Esophageal or tracheal displacement and 

focal dilatation of the esophagus also may be indicative of tumoral 

invasion of the esophagus.20 However, neither survey nor contrast 

radiographs are consistently reliable in diagnosing esophageal 

neoplasia.20 Metastatic involvement of the retropharyngeal lymph nodes 

may cause ventral displacement of the pharynx, decreased size of the 

pharyngeal air space, and loss of the facial planes in the retropharyngeal 

area.21  

 

 
Fig. 3: Lateral radiograph of the cervical area in a skeletally mature dog. 
Cranial is left on the image. An ill-defined and homogeneous soft tissue 
mass, with loss of the normal facial planes, is visible just ventral to C3 
and C4. This mass results in a focal ventral deviation of the trachea. 
 

Distant metastasis have been estimated to be present in 27-63% of dogs 

affected with thyroid carcinoma at the time of clinical admission.2,22,23,24 
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These findings suggest that these dogs are at high risk for development 

of early pulmonary metastasis. Radiography is more sensitive than 

scintigraphy for the detection of pulmonary metastasis and should 

therefore always be performed in cases of thyroid carcinoma.3,25 Finally, 

neoplastic transformation of ectopic thyroid tissue should be included in 

the differential diagnosis of a cranial mediastinal mass visible on 

thoracic radiographs.20,21 

 

SCINTIGRAPHY 

Nuclear medicine is mainly applied in the diagnosis and treatment of 

hyperthyroid cats. A review of the literature about the imaging of the 

thyroid gland in the cat is beyond the scope of this review. As opposed 

to cats, scintigraphy of the neck area is performed much less frequently 

in dogs. The two main indications for scintigraphy of the neck area in 

dogs are cases of cervical neoplasms and canine hypothyroidism; the 

latter being even less frequently evaluated. The normal canine thyroid 

lobes after 99mTcO4
- injection appear as 2 uniformly intense, symmetric 

ovals in the mid-cervical area (Fig. 4). These ovals have smooth and 

regular margins and are slightly smaller than the parotid salivary glands, 

which also concentrate pertechnetate.10,11,12,25,26 In normal thyroid glands 

the ratio of uptake between these two glands is 1:1, although a higher 

thyroid/salivary gland ratio (T/S ratio) has been reported as well.10,13,27,28 

It also has been proven that this ratio is dependent on the timing of the 

scan and that this ratio shows a larger variability in dogs compared to 
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cats.26,28 By using the T/S ratio, a visual estimate of thyroid activity 

(“trapping”) can be established. 
 

 
Fig. 4: Ventral planar scintigraphic image of the head and neck obtained 
after injection of pertechnetate in a dog without thyroidal dysfunction. 
Rostral is on top of the image. Radionuclide uptake is similar in the 
parotid salivary glands and both lobes of the thyroid gland. Both thyroid 
lobes appear as 2 uniformly intense, symmetric ovals in the mid-cervical 
area and are smaller than the more rostrally located parotid salivary 
glands. 
 

Unlike 99mTc, 123I and 131I also are incorporated in thyroglobulin 

(“organification”) allowing for determination of “true” uptake, which 

could be more reflective of thyroid physiology.10,11,13,29 This explains the 

disparity between pertechnetate and radioiodine scans seen in some 

human patients with thyroid neoplasia.30,31,32,33 123I, a cyclotron product, 

however is much more expensive and therefore not routinely used in 

veterinary medicine.10,11,13,27,34 131I, used for radiotherapy due to its 

decay by β--transition, also emits γ-radiation. This emission enables 

scintigraphic imaging, but the high energy of the γ-rays (364 keV) is 

suboptimal for conventional gamma camera imaging and requires the  
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use of high-energy collimators. These features, combined with a 

relatively high radioactive burden to the patient and environment due to 

the β--transition and a long physical half-life of 8.06 days, make the 

tracer unfavorable for routine diagnostic imaging of thyroid 

diseases.10,11,13,27,35 The preferred radionuclide for anatomic thyroid 

evaluation is 99mTcO4
- used in combination with pinhole collimation 

because this tracer is easily obtainable from an “in-house” molybdenum 

generator and is relatively inexpensive.30 

The scintigraphic appearance of thyroid neoplasia can be unilateral or 

bilateral. The tumors are of various sizes with irregular areas of 

pertechnetate uptake and usually show heterogeneous distributions of 

radioactivity (Fig. 5.).11,25,27,36  

 
Fig. 5: Ventral planar scintigraphic image of the neck obtained after 
injection of pertechnetate in a dog with a bilateral thyroid 
adenocarcinoma. Rostral is on top of the image. Both thyroid lobes 
(arrows) are enlarged and there is a heterogeneous and irregular 
distribution of radionuclide uptake in both lobes. 
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Both diffuse increased or decreased uptake patterns also have been 

described (Fig. 6.).26  

 

 
Fig. 6: Ventral planar scintigraphic image of the neck obtained after 
injection of pertechnetate in a dog with a unilateral adenocarcinoma. 
Rostral is on top of the image. Diffuse decreased radionuclide uptake is 
visible in the enlarged right thyroid lobe (arrow). The left lobe is of 
normal size and shows a normal pattern of radionuclide uptake. 
 

If the tumor is secreting excessive amounts of thyroid hormones, 

moderate to extensive areas of increased, usually uniform, tracer uptake 

will be detected and the contralateral lobe will exhibit suppressed uptake 

because of negative feedback on the pituitary gland.2,26,37,38,39 

Unfortunately, increased uptake of radionuclide does not always 

correlate with increased production of thyroid hormones by the tumor. 

For instance, if the thyroid tumor destroys enough of the thyroid gland  
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(usually more than 75%) to cause subnormal thyroxine concentration, 

the pituitary gland will increase its TSH release and the remaining 

normal tissue will be stimulated.2,26 The non-secreting thyroid neoplasm 

then will show decreased uptake and the remaining normal tissue will 

have increased uptake.26 The pattern of uptake does not predict the 

histological type of tumor either, although it seems that tumors with 

well-delineated homogeneous uptake tend to be more easily resectable 

than tumors with heterogeneous poorly circumscribed uptake.25 Local 

and distant metastases potentially can be detected.10,26,27 However, false 

negatives occur until a total or near total thyroidectomy (including 

remaining normal thyroid tissue) has been performed because an 

unfavorable tracer competition exists between normal tissue and distant 

metastases.10,26,27,40 For this reason, thyroid scintigraphy is considered a 

relatively specific tool for identification of metastasis, but is not 

considered sensitive.2,3 Scintigraphic visualization of metastases in the 

presence of intact thyroid tissue, indicates a high trapping ability of 

iodine in the tumor tissue, and therefore may be considered as a 

predictive factor of radioiodine therapy effectiveness.3,40 Non-thyroidal 

masses, esophageal activity from swallowed saliva, breast tissue, thymus 

and skin contamination also may cause abnormal focal pertechnetate 

accumulations, resulting in false positive results.26,41 For detection of 

metastasis of thyroid carcinoma in people, radioiodine is more sensitive 

than pertechnetate.40,42 Conflicting results however also have been 

reported.40 The use of tracers such as 99mTc-sestamibi, 201Tl, and 
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99mTc-tetrofosmin or use of SPECT instead of planar imaging could 

increase the sensitivity of scintigraphy in the detection of metastases 

(Fig. 7).43  

 

 
Fig. 7: Same dog as in Fig. 5. Ventral (fig.7a) and lateral (fig.7b) planar 
scintigraphic images of the thorax obtained after injection with 
pertechnetate, showing no abnormalities. Cranial is on top of the ventral 
acquisition and on the right of the lateral acquisition. Normal uptake in 
the myocard is visible on both planes (arrows). Subsequent dorsal, 
transverse and sagittal SPECT acquisitions in the same dog (fig. 7c) 
showed a focal area of uptake (arrows) in the right cranioventral thorax 
corresponding to a nodular interstitial lesion seen on radiographs (not 
included). A focal area of radionuclide uptake (arrow) is visible at the 
same location on a lateral planar image obtained 24 hours after injection 
with 131I (fig. 7d), confirming the suspicion of a focal distant metastasis 
in this dog (cranial is right on the image). 
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Besides the evaluation of known thyroid neoplasms, scintigraphy may be 

indicated to determine whether large cervical masses arise from the 

thyroid gland or from other tissues. When the mass arises from tissues 

other than the thyroid, both thyroid lobes should be visible exhibiting a 

normal pattern. Often the normal thyroid gland will be displaced by the 

non-thyroidal mass.26,27  

Few studies describe the use of scintigraphy for evaluation of thyroid 

function in dogs.7 It has been reported that scintigrams typically show 

decreased or even absent uptake of pertechnetate in primary 

hypothyroidism and that the gland also may appear smaller than normal 

if there is some uptake by the gland (Fig. 8).1,7,10,11,12,26  

 

 
Fig. 8: Ventral planar scintigraphic image of the neck obtained after 
injection of pertechnetate in a primary hypothyroid dog. Rostral is on top 
of the image. There is normal uptake of radionuclide in the parotid 
salivary glands and absence of uptake in both thyroid lobes. The small 
area of high radioactivity in the lower left corner of the image represents 
remnants of pertechnetate in the cephalic catheter, glimmering through a 
lead shield. 
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In 1 study of hypothyroid dogs there was an absence of uptake in 9 and a 

T/S ratio of 1.08 ± 0.56 (mean ± SD) in 27 of 36 cases. The mean T/S 

ratio of 22 control dogs in this study was 2.01 ± 0.55.13 On the contrary, 

dogs with non-thyroidal illness (“euthyroid sick syndrome”) or dogs 

receiving certain medications, both resulting in decreased serum thyroid 

hormone concentrations, show normal or increased thyroidal uptake. 

This should make it possible to differentiate euthyroid sick syndrome 

from true hypothyroidism.1,10,12,27 However, increased uptake also has 

been documented in a hypothyroid dog with thyroiditis, and so false 

negatives are possible.5 Dietary iodine intake also could result in false 

positives in the diagnosis of primary hypothyroidism.44 Therefore, 

further evaluation of scintigraphic findings in canine primary 

hypothyroidism is necessary.7 This is further supported by the fact that 

thyroiditis in humans can mimic other thyroid abnormalities, and the 

pattern of uptake can be dependent on the stage of the disease.29,45,46,47,48 

Hashimoto thyroiditis, which closely resembles canine lymphocytic 

thyroiditis (with the exception of the presence of goiter), can for 

example show a heterogeneous or a uniform increase or decrease in 

uptake.46,47,48,49,50 Additionally, an extensive list of differential diagnoses 

for diffusely decreased uptake have been reported in people, including 

end-stage goiter, Hashimoto thyroiditis, amyloidosis, medications, high-

iodine diet, administration of iodinated contrast media, post partum 

thyroiditis and silent thyroiditis.29 Consequently, it was concluded that  
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scintigraphy has a low specificity and low sensitivity for detection of 

acquired primary hypothyroidism.35,46 It would therefore be advisable to 

be cautious in the scintigraphic interpretation of primary hypothyroidism 

in dogs, until additional studies on this subject have been performed. 

Thyroid scintigraphy can be used to differentiate primary from 

secondary and tertiary acquired hypothyroidism in dogs. Repeat 

scintigrams after administration of TSH for 3 consecutive days in dogs 

with secondary and tertiary hypothyroidism result in normal thyroid 

images, whereas those of dogs with primary hypothyroidism will remain 

unchanged.7,8,26,27,38 Scintigraphy also can be used to differentiate 

dysgenesis and dyshormonogenesis in congenital primary 

hypothyroidism. Iodination defects seen in dyshormonogenesis result in 

enlarged thyroid lobes with normal or increased uptake. On the other 

hand, young dogs with dysgenesis of the thyroid gland have minimal 

uptake.7,10,11,27 

 

ULTRASONOGRAPHY 

Because of its superficial location of approximately 1.5-2 cm below the 

surface of the skin, high frequency transducers of at least 10 MHz can be 

used to examine the thyroid gland. This results in a high spatial 

resolution of the image, which makes US a very well suited imaging 

modality for the examination of the morphology of the thyroid gland. 

Other advantages of US are its widespread availability, its low cost, the 

absence of ionizing radiation, the short duration of the examination and  
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the fact that sedation or anesthesia is rarely required. The advent of high-

resolution US and FNA have decreased the indications for radionuclide 

thyroid scanning in people.30 

The normal thyroid gland appears as a homogeneous, well-delineated 

structure with a hyperechoic capsule.51,52,53 Its parenchyma is most often 

hyperechoic compared to the surrounding musculature and its size is 

correlated with the size of the dog.51,52,54 Each lobe has a more or less 

triangular shape on a transverse plane and a fusiform shape, with a 

rounded cranial end and a pointed caudal end on a longitudinal plane 

(Fig. 9).51,52,53  

 

 
Fig. 9: Longitudinal (left) and transverse (right) ultrasound images of a 
normal left thyroid lobe obtained with a matrix linear transducer at 12 
MHz. Cranial is left on the longitudinal image and medial is left on the 
transverse image. The linear scale on the right side of each image is in 
centimeters. The thyroid lobe is indicated by electronic calipers. 
(C=common carotid artery; E=esophagus; Sc=sternocephalic muscle; 
Sh=sternohyoid muscle; St=sternothyroid muscle; T=trachea) 
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Landmarks used for the identification of both thyroid lobes are the 

medially located trachea, the laterally located common carotid arteries, 

the ventrally located sternothyroid muscles and the dorsally located 

esophagus for the left lobe.51,52 

Initially, the main indication for US of the canine thyroid gland was a 

cervical mass of unknown origin for which a thyroid carcinoma was in 

the list of differential diagnoses. Thyroid carcinomas appear as large 

non-homogeneous masses, sometimes containing multiple cysts, and 

with variable delineation.52,55 Particularly in poorly delineated 

neoplasms, invasion of surrounding structures such as the esophagus, 

fascial sheaths and the cervical vasculature can be detected.52 This 

information is very useful in determining whether surgical treatment is a 

plausible therapeutic option.52 The echogenicity of the carcinomatous 

gland often is reduced, without presence of distal enhancement.55 

Presence of hyperechoic foci representing calcification or dense 

connective tissue can be found.55 The masses are highly vascular on 

power or color-Doppler, and a large arterial vascular plexus often is 

distributed in and around the thyroid mass.52 Development of 

arteriovenous malformations either on initial presentation or after 

surgical intervention is reported.52 It is sometimes difficult to document 

the thyroidal origin of the mass when its size is such that the normal 

anatomy of the cervical area is disrupted.2,52,55 There is however a clear 

distinction between thyroid and parathyroid hyperplasia or neoplasia. 

The parathyroid glands are much smaller (maximum 20 mm), are  
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characterized by a round or oval shape, are well delineated and are 

anechoic to hypoechoic to the normal surrounding thyroid 

parenchyma.52 Unless concurrent regional lymphadenopathy and local 

invasiveness can be detected, differentiation between benign and 

malignant thyroid masses cannot be made.52,53 Determination of the 

vascularization and perfusion of thyroid masses by use of contrast 

enhanced US may be beneficial in this regard.56,57,58,59 The 2 most 

common sites for thyroid carcinoma metastasis are the lungs and 

retropharyngeal lymph nodes.2,3 Other less frequent sites are liver, 

kidneys, adrenals, spleen, prostate, brain, spinal cord, bone and bone 

marrow.2 Based on clinical and hematologic abnormalities, a suspicion 

of intra-abdominal metastasis may be raised. In such cases, abdominal 

US is indicated.2,3 Contrast enhanced US also may be helpful to 

differentiate benign from malignant lesions detected in abdominal 

organs. So far, its clinical intra-abdominal use in veterinary medicine is 

only reported for the liver and spleen.60,61,62 

More recently, US of the thyroid gland also has been used as a 

diagnostic aid in the diagnosis of primary hypothyroidism and in the 

differentiation between “euthyroid sick syndrome” vs. primary 

hypothyroidism. Reported US features in cases of primary 

hypothyroidism are hypoechoic parenchyma compared to the overlying 

sternothyroid muscle, non-homogeneous parenchyma, an irregular 

outline of the lobe, decreased size of the lobe and a more rounded shape 

of the lobe on transverse images (Fig. 10).14,15,16,63 One or several of  
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these changes may be present at the same time in the same lobe and the 

US characteristics also may differ between the 2 lobes.14,15,16,63  

 

 
Fig. 10: Longitudinal image of the left lobe (left side of the image) and 
transverse image of the right lobe (right side of the image) in a primary 
hypothyroid Border Collie obtained with a matrix linear transducer at 12 
MHz. Both lobes are hypoechoic compared to the overlying 
sternothyroid muscles and show an inhomogeneous parenchyma. The 
gland has an irregular capsule on the longitudinal image and has a 
rounded shape on the transverse image. The size of both lobes was 
reduced. (C=common carotid artery; E=esophagus; St=sternothyroid 
muscle; T=trachea) 
 

In dogs with “euthyroid sick syndrome” the appearance of the gland is 

normal.14,63 Similar findings are described in Hashimoto thyroiditis in 

human patients, in whom US has gained widespread use in a variety of 

thyroid diseases.64,65,66,67,68,69,70,71,72,73 An increasing number of 

abnormalities detected in the same gland results in a higher sensitivity 

for diagnosing hypothyroidism in dogs.16,63 A sensitivity of 98% for 

hypothyroidism was reported using a combination of size and  
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echogenicity of the gland.63 Care should be taken however when 

measuring the gland because a relatively high inter-observer variability 

has been demonstrated for these measurements.74 When comparing 

different dogs or when performing a follow-up of the size of the gland 

over time, it is advisable that the same observer performs the 

measurements. Using the height and volume of the gland results in the 

lowest intra- and inter-observer variability when evaluating the size of 

the gland.74 

When a cranial mediastinal mass is suspected on radiography (e.g. 

neoplastic transformation of ectopic thyroid tissue), US of the chest is 

indicated because pleural or mediastinal fluid and accumulation of 

mediastinal fat may mimic the appearance of an ill-defined mass on 

radiography.75,76 Concurrent pleural fluid also may mask a mediastinal 

mass on radiographs.75,76 An additional advantage of US is that it 

accurately can guide FNA or biopsies of the mass.76 

 

COMPUTED TOMOGRAPHY 

To the best of our knowledge, the normal appearance of the thyroid 

gland on CT has not been described in dogs. In humans and in cats, the 

thyroid gland has been described as a hyperattenuating structure 

compared to the surrounding tissues, with an attenuation value of 

approximately 80-100 HU in people and with a mean attenuation value 

of 123.2 HU in cats.46,77,78,79 The reason for the high attenuation value of 

the gland is related to its natural high iodine content, which is an element  
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with a high atomic number (53) compared to most other elements in the 

body.80,81,82,83,84 The IV injection of iodinated contrast material usually 

increases the attenuation of the gland diffusely.46,85 Injection of iodinated 

contrast media influences the results of nuclear imaging for a period of 6 

to 8 weeks.17,26,46,86 After IV contrast injection the mean attenuation 

values in cats were 132.1 HU and 168.5 HU, when scanned after a delay 

period and immediately after injection, respectively.77 If visibility of the 

normal thyroid gland is as obvious in dogs as in cats and people, CT of 

the thyroid in dogs could be helpful in differentiating a cervical mass of 

unknown origin from thyroid neoplasia (Fig 11). 

In humans, CT of the thyroid mainly is indicated in cases of neoplasia. 

This technique is helpful in the determination of local invasiveness of 

the tumor, the detection of distant metastasis to the lymph nodes and to 

the lungs, and in the assessment of ectopic thyroid tissue which can be 

found in the oral cavity, the lateral neck and mediastinum.17,30,46,78,79,86 

Metastatic lymph nodes may enhance markedly after contrast injection.17 

Other than evaluating the invasiveness of the lesion and detecting lymph 

node metastasis, CT potentially can also differentiate benign from 

malignant thyroid diseases by evaluating the change in attenuation after 

IV contrast injection and the presence and distribution of 

intraparenchymal calcifications.17,18 One report in the veterinary 

literature has described the usefulness of CT in the evaluation of a 

thyroid carcinoma invading the carotid artery in a dog.87 
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Fig. 11: Pre-contrast transverse CT image at the level of the cranial pole 
of the thyroid gland in a 2 year old euthyroid Golden Retriever. Both 
thyroid lobes are directly identified dorsolateral to the trachea and are 
hyperattenuating compared to the surrounding musculature. (T=right 
thyroid lobe; C=common carotid artery; E=esophagus; St=sternothyroid 
muscle; Sc=sternocephalic muscle; Sh=sternohyoid muscle; Lco=longus 
colli muscle; Lca=longus capitis muscle; J=external jugular vein; 
Tr=trachea and endotracheal tube; C3=cranial aspect of third cervical 
vertebra) 
 

CT of the thyroid also yields additional information in different types of 

thyroiditis and goiter in humans.46,78,79,88 Diseased human thyroid tissue 

is isoattenuating or hypoattenuating to the adjacent musculature using 

pre-contrast CT.78,79,80,82,85 An increase in follicular cells and interstitial 

tissue, in addition to decreasing iodine concentration in the thyroid 

follicles, causes decreased HU values in diseased thyroid tissue in  
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humans.80 Similar changes may be seen in hypothyroid dogs, and 

therefore it is important to know the normal attenuation value of the 

canine thyroid gland.  

Until a few years ago, CT was considered the “gold standard” in 

detection of pulmonary metastasis in human medicine.89 A recent study 

also demonstrated a significantly higher sensitivity of CT compared to 

thoracic radiography for detection of pulmonary nodules in dogs.90 

Today CT still is used as a routine imaging modality for this purpose in 

people.91,92,93 The development of spiral CT in the early 1990s resulted 

in a higher sensitivity, with an increase of approximately 20%, for meta-

analysis because of the ability to perform thin-section imaging with a 

single breath-hold and thereby preventing misregistration caused by 

respiratory motion.81,92,94,95,96,97 The pitch should be limited to no more 

than 1.5 at single-row detector CT to avoid obscurity of the nodules due 

to the effect of greater partial volume averaging.98,99 Also, overlapping 

image reconstruction improves the ability to detect nodules, especially 

when the size of the nodules is smaller than the slice thickness of the 

helical CT.100,101,102 The advantage of multi-row detector CT is that thin 

slice thicknesses can be used with a reduced scan time.103 Reduction of 

the slice thickness results in a reduced partial-volume effect.103 Another 

advantage of multi-row detector CT is that thinner sections can be 

obtained retrospectively from the same raw data, resulting in increased 

sensitivity.103,104,105,106 A major disadvantage of CT is that not all nodules 

detected are malignant. FDG-PET on the other hand has been shown to  
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be useful in the detection of malignancy in pulmonary 

nodules.91,92,107,108,109 However, the size threshold for detection of 

nodules is limited to the PET camera resolution.93 The advent of fusion-

imaging modalities (SPECT/CT, PET/CT and PET/MRI) has recently 

improved the detection of metastatic disease.91,110,111 In cases of thyroid 

carcinoma in particular, integrated 131I SPECT/CT had additional value 

in the characterization of equivocal 131I uptake seen on planar 

imaging.112 

 

MAGNETIC RESONANCE IMAGING  

To the best of our knowledge, the MRI appearance of the thyroid gland 

in the dog has not been described. Because of its high soft tissue contrast 

resolution, MRI has the potential to be useful in the investigation of the 

thyroid gland (Fig. 12). The normal thyroid gland in people has a 

slightly higher signal intensity on T1-weighted images, relative to 

muscle, and high signal intensities on T2-weighted images.46,84,113,114,115 

After gadolinium administration, the gland enhances diffusely.46 In 

people, both MRI and CT are used for the assessment of enlarged, 

nodular thyroid glands (goiter), thyroid neoplasms and differentiation of 

a thyroid mass from an adjacent neck mass.17,30,46,116 Both of these 

modalities help in the identification of cyst formation, hemorrhage, 

necrosis, calcification, vascular displacement or invasion, metastatic 

lymph nodes, marginal definition of the lesion and extra-glandular 

extension of the lesion.17,46 MRI is thought to be superior to CT scanning  
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in detecting early esophageal and tracheal invasion and a recent report 

demonstrated that MRI accurately demonstrates invasion of the recurrent 

laryngeal nerve by thyroid carcinomas.117,118,119  

 

 
Fig. 12: Transverse T2* weighted gradient echo (3D T2* GE) MRI 
image of the cranial pole of the thyroid gland in a 5 year old euthyroid 
Staffordshire Bull Terrier. Both thyroid lobes are directly identified 
dorsolateral to the trachea and are hyperintense compared to the 
surrounding musculature. The esophagus is fluid filled. (T=right thyroid 
lobe; C=common carotid artery; E=esophagus; St=sternothyroid muscle; 
Sc=sternocephalic muscle; Sh=sternohyoid muscle; Lco=longus colli 
muscle; Lca=longus capitis muscle; J=external jugular vein; Tr=trachea; 
C2=caudal aspect of second cervical vertebra) (Courtesy of R. Dennis) 
 

MRI also is especially indicated in mediastinal extension of large 

goiters.17,116 However, as with CT, MRI is not as sensitive as US in  
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detecting small intraparenchymal nodules in the gland.30,120,121 Malignant 

thyroid lesions are suggested when the margins are ill-defined and there 

is extraglandular extension, lymph node involvement, and invasion of 

the surrounding tissues.17 MRI can also help to grade the malignancy of 

a thyroid mass. Hemorrhagic necrosis for example is more prevalent in 

high-grade malignant tumors such as rapidly growing anaplastic 

carcinomas.17 Adenomas have low signal intensity on T1-weighted, high 

signal intensity on T2-weighted images, and enhance after injection of 

gadolinium.17,115 

In cases of Hashimoto thyroiditis, T2-weighted images may show 

increased signal intensity sometimes with the presence of lower intensity 

bands, thought to represent fibrosis.17,113,114 Signal intensity of these 

glands varies on T1-weighted images.114 

Superior soft tissue contrast, lack of ionizing radiation, lack of streak 

artifacts, and the ability to demonstrate vascular structures without the 

need for IV contrast agents are advantages of MRI relative to CT.114 

However, because of its relative high cost, MRI is used less frequently 

than other imaging methods.122  
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CONCLUSIONS 

Different imaging modalities currently are used in human medicine for 

the diagnosis of thyroid abnormalities with each having advantages and 

disadvantages. Reports on the clinical use of medical imaging in canine 

thyroid pathology are sparse. Most of them ar5e related to the use of US 

and scintigraphy in cases of thyroid carcinomas. Advances in other 

imaging modalities make them potentially useful as additional tests in 

the diagnosis of thyroid pathology in veterinary medicine. There still is a 

large amount of knowledge to be gained from the medical imaging of the 

canine thyroid gland. 
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SUMMARY 

 

The repeatability of ultrasonographic measurements of the canine 

thyroid gland was evaluated. The variability of 3 different 

parameters (the maximal length, width and height) within observer, 

between observer and between dogs was assessed based on 3 

different measurements made by each of 3 observers in 5 healthy 

beagle dogs. From the 3 parameters, the volume of the gland was 

estimated using a formula of a rotation ellipse. The height and the 

volume had the lowest intra- and inter-observer variability, while 

measurements of the length had the biggest intra- and inter-

observer variability. The mean values, with their 90% confidence 

interval were: height = 0.53 cm [0.33-0.73], length = 2.45 cm [2.04-

2.85], width = 0.62 cm [0.46-0.78], volume = 0.38 cm3 [0.20-0.55]. 
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INTRODUCTION 

Ultrasonography of the canine thyroid gland is mainly performed when 

a cervical mass of unknown origin is present.1 Sonography can also be 

used to evaluate the size and volume of the human and canine thyroid 

gland.2-7 It has been suggested that in Golden Retrievers measurements 

of the gland could assist in making a diagnosis of hypothyroidism since 

this is associated with a decreased size of the gland in this breed.3,4 

However, the repeatability of such measurements and their variability in 

healthy dogs has not been determined and this is needed before these 

measurements can be used clinically. 

The purpose of the present study was to assess the intra- and inter-

observer variability of sonographic measurements of the thyroid gland. 

 

MATERIALS AND METHODS 

Five neutered female beagle dogs of 3 years of age with a mean body 

weight of 12.8 kg were used. The euthyroid status of the dogs was 

confirmed by a clinical examination, hematology, serum biochemistry, 

TT4 serum concentration, TSH serum concentration and the absence of 

TgAA. Hair overlying the ventral cervical region was clipped in an area 

from the larynx to the thoracic inlet and coupling gel was applied. The 

dogs were positioned in dorsal recumbency with the neck in extension. 

No tranquilization or anesthesia was used. 
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Three observers trained in sonography of the neck, 2 ECVDI 

diplomates (JHS and MK) and 1 ECVDI resident (OT), scanned both 

thyroid lobes of each dog 3 separate times. The thyroid gland was 

scanned with a multifrequency linear array probe of 7 to 12 MHz.* The 

3 observers operated with the same machine settings, using only the 

highest probe frequency (12 MHz). An area extending from the larynx 

to the thoracic inlet was scanned with a transducer pressure only enough 

to provide sufficient contact for adequate image quality. The thyroid 

gland and its surrounding anatomy were identified according to a 

previously described technique.8 When visible the external parathyroid 

gland were not included in measurement of length, whereas the 

embedded internal parathyroid glands were not identified. 

The observers were asked to measure the maximal length, width and 

height of each lobe on a frozen image. The maximum length was 

measured in a sagittal plane and both the width and height were 

measured in a transverse plane (Fig. 1-3).  The volume of the gland was 

estimated by use of a formula of a rotation ellipse that is used in 

humans for evaluation of the thyroid gland: volume = length x width x 

height x 0.479.9  
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Fig. 1: Transverse US image of the left thyroid lobe (Th). Lateral is 
right on the image. The scale on the right side of the image is in 
centimeters. Electronic calipers indicate the maximum width of the 
thyroid lobe. T = trachea; C = common carotid artery; E = esophagus; 
Sh = m. sternohyoideus; St = m. sternothyroideus; Sc = m. 
sternocephalicus 
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Fig. 2: Transverse US image of the left thyroid lobe (Th). Lateral is 
right on the image. The scale on the right side of the image is in 
centimeters. Electronic calipers indicate the maximum height of the 
thyroid lobe. T = trachea; C = common carotid artery; E = esophagus; 
Sh = m. sternohyoideus; St = m. sternothyroideus; Sc = m. 
sternocephalicus 
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Fig. 3: Longitudinal US image of the left thyroid lobe (Th). Cranial is 
left on the image. Electronic calipers indicate the maximum length. E = 
esophagus; St = m. sternothyroideus 
 
A random effects model was fit to the data with dog, observer and 

measurement within observer as random effects.10 Within the context of 

this random effects model, the dog variability ( 2

d
! ) and inter- and intra-

observer variability ( 2

i
!  and 2

a
!  respectively) can be estimated based on  

restricted maximum likelihood techniques11 and these different sources 

of variability can be compared to each other.12 
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RESULTS  

The overall mean [90% CI] was 0.53 [0.33;0.73]cm for height, 2.45 

[2.04;2.85]cm for length, 0.62 [0.46;0.78]cm for width resulting a mean 

volume of 0.38 cm3. 

The length measurement had the highest intra- and inter-observer 

variability ( 2
ˆ
a

! =0.0306 and 2
ˆ
i

! =0.0181). Based on these variance 

component estimates, intervals were derived that contain 90% of the 

measurements of the same dog by the same observer (intra-observer), 

and 90% of the measurements of the same dog but assessed by different 

observers (inter-observer) (Fig. 4). 

The smallest intra-observer variability was found for height ( 2
ˆ
a

! = 

0.0055). However, the inter-observer variability for height 

( 2
ˆ
i

! =0.0065) had a substantial contribution to the overall variability 

(Fig 4). The variability when height measurements were made by 

different observers was 2.2 times the variability when measurements 

were done by the same observer (Fig. 4). When considering the 5 dogs, 

the variability increased further, with 2
ˆ
d

! =0.0029 (Fig. 4).  

The intra-observer variability for width ( 2
ˆ
a

! =0.0087) was higher than 

for height. There was however less variability between observers 

( 2
ˆ
i

! =0.0001), and curves for different observers were similar for height 

and width (Fig. 4).  
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Fig. 4: Intra- and inter- observer variability and dog variability for 
height, length, width and volume of the thyroid gland. The curves 
correspond to the density functions of the particular measurement for 
measurements within an observer on the same dog (first row), for 
measurements of different observers on the same dog (second row) and 
measurements of different observers on different dogs (third row), with 
90% of the measurements lying in the non-shaded area. 
 

The variability when width measurements were made by different 

observers was 1.01 times the variability when measurements were done 

by the same observer.  
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The highest intra-observer variability was for length ( 2
ˆ
a

! =0.0306). All 

3 observers experienced difficulty in identifying the caudal end of the 

gland when measuring length. The variability when length 

measurements were made by different observers was 1.59 times the 

variability when measurements were made by the same observer. The 

between dog variability ( 2
ˆ
d

! =0.0117) was much more than in the 2 

other variables.  

The volume of the thyroid gland, based on height, length and width, had 

the smallest intra-observer variability ( 2
ˆ
a

! =0.0041), and additionally 

smaller inter-observer variability ( 2
ˆ
i

! =0.0019) than the height, but its 

between dog variability ( 2
ˆ
d

! =0.0053) was higher than for height and 

width.   
 

DISCUSSION  

In humans it is accepted that the size and volume of the thyroid gland 

can be measured accurately using sonography.13-16 However, the thyroid 

volume measurements based on US are systematically smaller than 

measurements based on CT and are less reproducible than with CT and 

MRI.5 Nevertheless sonography seems to be the preferred method in 

most human centers because of its accessibility, low cost and absence of 

exposure to ionizing radiation.5,13,16 
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The reason that variability of the length was largest is a result of the 

difficulty of identifying the caudal end of the gland. This is probably 

due to the sharpness of the gland at that level and to the natural 

variation in the gland shape, with most glands not lying in a perfect 

longitudinal plane. A second reason for the variability of the length is 

that because of their small size parathyroid glands are usually not 

identified on ultrasound examination and thereby might be included in 

measurement of length.  

A possible explanation for the larger difference between intra- and 

inter-observer variability for height compared to the other variables 

(Fig. 4) is that observer B measured the height and the width on the 

same frozen image, whereas observer A and C measured the height and 

the width at two different locations. Observer B assumed that the 

maximal width and the maximal height of the gland were located in a 

same image plane. The fact that his transverse images were frozen at the 

level of the maximum width of the gland, means that the measurements 

of the height did not obtain maximal values.  

 

It has been suggested that sonography may represent an interesting tool 

in the diagnosis and follow-up of dogs with hypothyroidism.3 But 

whether the gland increases or decreases in size and whether changes in 

texture occur in hypothyroid dogs is still questionable. In a pilot-study, 

a significant decrease in size of the thyroid gland in Golden Retrievers 

with hypothyroidism versus healthy and euthyroid sick Golden  
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Retrievers was found.4 Because of these hypothyroidism related 

changes of the gland it is important that transducer pressure is kept to a 

minimum, since too much pressure could result in a distortion of the 

relational anatomy in this region. 

 

The diagnosis of hypothyroidism can be challenging because of the 

absence of specific clinical signs, reliable biochemical tests and, 

because many factors influence the results of these tests.17-22 Due to the 

difficulty of making a diagnosis of hypothyroidism based on 

biochemistry alone, it would be useful to see if additional information 

obtained by US of the gland could improve the diagnostic capabilities. 

In humans, a combination of biochemistry, scintigraphy, US and US 

guided aspirations of the gland are used to identify thyroid 

abnormalities.2 The value of US to diagnose hypothyroidism in dogs is 

unknown. Because of the relative high inter-observer variability in our 

study, the value of making a diagnosis of hypothyroidism based on US 

measurements only is questionable. Therefore, both the absolute mean 

difference in thyroid gland size between healthy and hypothyroid dogs 

and the inter-observer variability in hypothyroid dogs should be studied 

further to evaluate the overlap between normal and abnormal values.  

 

Volume measurements of the gland could be beneficial in monitoring 

response of therapy. Changes in size over time are considered  
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particularly useful as an objective means of evaluation of therapy in 

humans.13,14,23 For subsequent measurements of the gland, we suggest 

that the consequent measurements of the gland should be done by the 

same observer.  

As an overall conclusion, it can be stated that height and especially 

volume seem to be the most promising parameters in evaluating the size 

of the thyroid gland in dogs. However guidelines should be given to the 

clinician of how to measure these in a standard way. 
 

 
 

*: Logic 7, General Electric Medical Systems, Milwaukee, WI, USA. 
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SUMMARY 

 

Primary hypothyroidism is a frequent endocrine disorder in the 

adult dog. However, false-positive diagnoses are common because 

of the relatively low accuracy of most commonly used biochemical 

tests. The purpose of this study was to describe the 

ultrasonographic features of the thyroid gland in hypothyroid dogs, 

to calculate the diagnostic sensitivity of gray-scale ultrasound using 

a combination of clinical symptoms and biochemical thyroid tests as 

gold standard, and to investigate the evolution of the 

ultrasonographic features after treatment of hypothyroidism. 

Eighteen dogs were studied prospectively. All dogs underwent an 

ultrasound examination at first presentation and 13 underwent one 

or two additional ultrasound examinations over time. At first 

presentation, a sensitivity of 76.5% (95% CI [50.0%-93.0%]) for 

decreased echogenicity, 64.7% (95% CI [38.3%-85.8%]) for 

inhomogeneity, 70.6% (95% CI [44.0%-89.7%]) for irregular 

capsule delineation, 64.7% (95% CI [38.3%-85.8%]) for abnormal 

lobe shape and 47.1% (95% CI [23.0%-72.2%]) for decreased 

relative thyroid volume was obtained. Combining these five 

parameters together resulted in an overall sensitivity of 94.1% 

(95% CI [71.3%-99.9%]) for gray-scale ultrasound in the detection  



 91 

CHAPTER 3 

 

of acquired hypothyroidism at first presentation. A continuous 

decrease of thyroid volume was seen over time after treatment, 

while the other investigated parameters did not change significantly  

during the follow-up period. None of the thyroid glands were 

considered normal at the last presentation. Grayscale ultrasound is 

a sensitive and quick test for the diagnosis of primary 

hypothyroidism in dogs.  
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INTRODUCTION 

In dogs, acquired primary hypothyroidism is the result of lymphocytic 

thyroiditis or idiopathic follicular atrophy of the gland.1,2,3,4 Whether 

both conditions are separate entities or if atrophy is the end-result of 

thyroiditis is not established.3 Primary hypothyroidism is a common 

endocrinopathy in the dog, but it is also the most overdiagnosed 

endocrine disorder in this species.5,6,7,8,9 Reasons for overdiagnosis are 

the wide variety of clinical manifestations, the relatively low accuracy 

of most biochemical tests and the fact that many factors like non-

thyroidal diseases, drugs and normal physiologic fluctuations can lower 

circulating thyroid hormone concentrations.3,4,5,7,10 Measurements of 

FT4 after equilibrium dialysis and TgAA, possibly combined with a 

TSH-stimulation test, is sometimes required to confirm a suspicion of 

primary hypothyroidism based on the classic assessment of TT4 and 

TSH values. However, FT4, TgAA, and TSH quantification is 

expensive and at least two of them are not commonly available in many 

countries.5 Similar problems in diagnosing thyroid disease also exist in 

humans.11,12 A combination of several diagnostic modalities is therefore 

used in humans to improve diagnostic accuracy. Biochemistry and 

nuclear imaging define the function of the thyroid gland, whereas 

ultrasound defines its structure and volume. An important additional 

advantage of ultrasound is that it allows guidance of needle aspirates 

and biopsies.13  
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Chronic autoimmune thyroiditis in humans is characterized by a 

decrease in echogenicity and size of the gland on ultrasound.14,15,16  

Ultrasonography is valuable in the evaluation of the thyroid and 

parathyroid glands in canine patients as well.17,18,19,20,21,22,23 The 

superficial location of these glands allows modern, high frequency 

ultrasound equipment to give high resolution images of the thyroid 

gland. The normal gland in the dog has a homogeneous parenchyma, is 

most frequently hyperechoic compared to the surrounding musculature, 

is sharply delineated by a smooth hyperechoic capsule and its size is 

related to the size of the dog. Each lobe has a triangular to polygonal 

shape in the transverse plane and a fusiform shape, with a rounded 

cranial end and a pointed caudal end, in a longitudinal plane 

(Fig.1).17,20,21,23  

 
Fig. 1: Longitudinal (A) and transverse (B) US images of a normal 
thyroid lobe. Cranial is left on the longitudinal image and lateral is left 
on the transverse image. This lobe was considered homogeneous, 
hyperechoic compared to the surrounding musculature, having a smooth 
capsule and a normal triangular shape on transverse section. 
(C=common carotid artery; Sc=sternocephalic muscle; Sh=sternohyoid 
muscle; St=sternothyroid muscle; T=trachea) 
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During the last two decades, ultrasound of the canine thyroid was 

mainly restricted to the differentiation of non-thyroidal cervical masses 

from thyroid neoplasms and to define the local invasiveness and 

vascularity of those tumors.18,20,21 Very recently, ultrasound was also 

applied in the diagnosis of canine primary hypothyroidism and in the 

differentiation between “euthyroid sick syndrome” from “true” primary 

hypothyroidism.24,25  

The purpose of the present study is to report the ultrasound appearance 

of the thyroid gland in 18 dogs with confirmed hypothyroidism, to 

describe the ultrasonographic changes after treatment and to calculate 

the diagnostic sensitivity of gray-scale ultrasound in this disorder. 

 

MATERIALS AND METHODS 

Dogs 

Data were collected prospectively from January 2003 to March 2006. 

Eighteen hypothyroid dogs of eleven different breeds were studied. 

Mean age at first presentation was 79 months (range: 35 – 129) and 

mean body weight was 33.1 kg (range: 12 – 60 kg). There were 10 

females (6 intact, 4 neutered) and 8 males (4 intact, 4 castrated). The 

dogs had various clinical symptoms suggestive of acquired 

hypothyroidism and were examined by the same board-certified 

internist (S.D.). Criteria to diagnose acquired hypothyroidism were 

clinical manifestations, and results from biochemical and hematological 

blood analyses. The positive biochemical tests consisted of either  
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abnormal TT4 (< 15nmol/L) and TSH serum concentrations (> 0.6 

ng/mL) or a positive dynamic function test using rhTSH with TT4 

serum concentrations 4 hours after intravenous administration of 90 µg 

rhTSH, being lower than 40 nmol/L.26,27 Further, dogs had to have a 

positive response to treatment with levothyroxine to be included. 

Resolution of the clinical signs, together with a normalization of TT4 

values, was considered a positive response. 

 

Ultrasound examination 

Hair was clipped from the ventral aspect of the neck, in a region from 

the larynx to 10-15cm more caudally. Dogs were in dorsal recumbency 

without the use of tranquilization or anesthesia and were restrained 

manually.  

Both thyroid lobes were scanned with a GE Logic 7* machine 

connected to a multifrequency (7-14 MHz) linear matrix transducer 

with the frequency set at 12 MHz. The image presets (image depth, 

number and location of the focal points, focal width, output power and 

dynamic range) were identical for all patients. The overall gain and the 

time gain compensation were adjusted for each patient. No standoff pad 

was used. Each lobe was first observed in a transverse plane. Scanning 

was started in the midline, just caudal to the larynx, followed by a slow 

gliding motion of the probe caudally. Minimal transducer pressure was 

applied to the skin. Landmarks used for the localization of each lobe 

were the laterally located common carotid arteries, the medially located  
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trachea, and the ventrally located sternothyroid muscles. An additional 

landmark for the left lobe was the dorsally located esophagus. The 

maximum height and the maximum width of each lobe, which were not 

necessarily located in the same plane, were measured on transverse 

images by use of electronic calipers with a precision of one tenth of a 

millimeter. Following this, a longitudinal image of each lobe was 

obtained either by slowly rotating the probe 90° or by using a 

longitudinal image of the common carotid artery and the trachea as 

landmarks, according to a previously described approach.17 The 

maximum length of each separate lobe, excluding the cranially located 

external parathyroid gland if visible, was obtained in this plane. The 

homogeneity of the gland, its relative overall echogenicity compared to 

the overlying sternothyroid muscle, and the capsule delineation of the 

gland were assessed on both the transverse and longitudinal images. A 

visual interpretation of an equal echogenicity throughout the 

parenchyma of the lobes was recorded as a homogeneous parenchyma. 

Any difference in echogenicity throughout the parenchyma resulted in 

the interpretation of a heterogeneous lobe. To record the relative overall 

echogenicity of each lobe, scores of 0, 1 and 2 were attributed to 

hyperechogenicity, isoechogenicity and hypoechogenicity, compared to 

the overlying sternothyroid muscle respectively. The delineation of each 

lobe was recorded as being smooth or irregular. The shape of the lobes 

was assessed only on transverse images, and this at the level of the 

maximum height of the lobe. Each lobe was recorded as normal in  
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shape if it had a triangular to polygonal shape. Any variation to this 

shape, being rounded, ovoid or amorphous in shape, was considered 

abnormal and recorded as such. All ultrasound examinations were 

performed by the same board-certified radiologist (O.T.)22  

 

Data analysis 

The maximum width, the maximum height and the maximum length of 

each lobe were used to calculate the volume of each lobe according to a 

formula of a rotation ellipse [volume (cm3) = length (cm) x width (cm) 

x height (cm) x π/6]. Some lobe measurements were lacking in one dog, 

preventing volume calculation. This dog was excluded from further 

analysis. Total thyroid volume was given by the sum of right and left 

thyroid lobe volumes. Thyroid volume was divided by the BW0.75 of the 

dog to obtain a relative volume of the thyroid gland, as described 

previously.25 Relative thyroid gland volume was considered small when 

less than a relative volume of 0.05 mL/kg0.75, a value being advocated 

as a useful cut-off.25 As a control, we applied this cut-off value onto the 

measurements performed by the same observer (O.T.) on five healthy 

Beagles from a previous study.22 

Thirteen out of the 18 dogs had one or two additional ultrasound 

examinations after the initial diagnosis and thus after treatment. Ten had 

one revisit and 3 dogs underwent a third ultrasound examination of their 

thyroid gland. This resulted in 34 ultrasound examinations, including 

the 18 initial studies. The number of days between each follow-up  
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examination and the initial ultrasound examination were calculated 

using a free downloadable software program†.  

 

Statistical analysis 

Sensitivity was calculated as the percentage of the 18 hypothyroid dogs 

outside the published reference limits. The derivation of the 95 % 

confidence interval was based on the binomial distribution assumption. 

Combining all parameters to calculate the overall sensitivity of 

ultrasonography in the detection of acquired hypothyroidism, dogs were 

considered abnormal when only one parameter was outside the 

reference limits. The evolution of the individual lobe relative volume 

over time was analyzed by a mixed model with dog as random effect 

using as covariate, either a binary covariate (before or after treatment) 

or a continuous covariate (time since start of the treatment). For the 

other four parameters, the first (before treatment) and the last 

assessment were compared by the Wilcoxon signed rank test with dog 

as block factor. Finally, the Spearman rank correlation coefficient 

between the five considered parameters was calculated. All analyses 

were performed in SAS (Version 9.1) at a significance level of 5%.  
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RESULTS 

All relative thyroid gland volume measurements from the healthy 

Beagles were above the suggested cut-off value of 0.05 mL/kg0.75, with 

a mean relative thyroid volume of 0.149 mL/kg0.75. In the hypothyroid 

dogs, all thyroid lobes were visible and all measurements, with the 

exception of 2 length measurements and 1 width measurement, could be 

obtained. The impossibility to obtain these 3 measurements occurred in 

the same dog, a heavily agitated Riesenschnauzer. It was decided to 

exclude this dog from further analyses because of these missing data. 

The 17 other dogs were very- to relatively well compliant and sedation 

was not required in any of these dogs. Sedation was not required in any 

of the revisits either. Figures 2 and 3 show examples of the thyroid 

gland on gray-scale ultrasound in two different hypothyroid dogs.  
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Fig. 2: Longitudinal (A) and transverse (B) US images of a thyroid lobe 
in a hypothyroid dog at first presentation. The thyroid lobe is indicated 
by electronic calipers. This lobe was considered heterogeneous, 
hypoechoic compared to the surrounding musculature, having an 
irregular capsule and being abnormal in shape on transverse section. The 
calculated relative thyroid gland volume in this dog was 0.054 mL/kg0.75.  
 

Fig. 3: US images of both thyroid lobes of a hypothyroid dog at first 
presentation. Fig. 3A is a longitudinal image of the right lobe. Fig. 3B is 
a transverse image of the left lobe. The thyroid lobes are indicated by 
electronic calipers. Both lobes in this dog were considered 
heterogeneous, being isoechoic compared to the surrounding 
musculature, having a smooth capsule and being normal in shape on 
transverse section. The calculated relative thyroid gland volume was 
0.061 mL/kg0.75.  
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Results of homogeneity of the lobes, relative echogenicity, capsule 

delineation and shape of the lobes on transverse sections are summarized 

in figure 4 for all hypothyroid dogs at first presentation. 

Fig. 4: Graphical representations of homogeneity, relative echogenicity, 
capsule delineation and shape of both thyroid lobes at the time of first 
presentation in each dog. A cross represents the right lobe, a circle 
represents the left lobe. The evaluated parameters are usually the same 
for both lobes. (hypo=hypoechoic; iso=isoechoic; hyper=hyperechoic) 
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Findings for each separate parameter, at the exception of the relative 

volume, for the left and right thyroid lobes were usually the same. For 

homogeneity, findings for both lobes were identical in all dogs. The 

capsule delineation was different between the left and right lobe in only 

one dog. A difference in shape between both lobes was seen in two 

dogs and a difference in echogenicity between both lobes was equally 

seen in two dogs. The findings were similar between both thyroid lobes 

in 63/68 (93%) parameters.  

Regarding the individual lobes at first presentation, 22/34 (65%) lobes 

were heterogeneous, 22/34 (65%) had an irregular capsule, 20/34 (59%) 

were abnormal in shape and 26/34 (76%) were hypoechoic or isoechoic 

compared to the sternothyroid muscles. When considering that only one 

of the two lobes has to be outside the normal limits for the four 

parameters other than volume, the calculated sensitivity for detecting 

acquired hypothyroidism at first presentation was 64.7% (95% CI 

[38.3%-85.8%]) for homogeneity, 70.6% (95% CI [44.0%-89.7%]) for 

capsule delineation and 64.7% (95% CI [38.3%-85.8%]) for shape. 

Considering isoechogenicity compared to the surrounding musculature 

as being abnormal, the sensitivity for echogenicity was 76.5% (95% CI 

[50.0%-93.0%]). Allowing isoechogenicity as being a normal finding, 

as was suggested by others23, the sensitivity for echogenicity decreased 

to 52.9% (95% CI [27.8%-77.0%]). Results for relative thyroid gland 

volume at first presentation are graphically represented in figure 5. 
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Fig. 5: Graphical representation of the relative thyroid gland volume and 
the relative thyroid lobe volumes at the time of first presentation in each 
dog. The height of each bar represents the relative thyroid gland volume, 
which is the sum of the right (shaded area) and left (blank area) relative 
thyroid lobe volumes. The horizontal dashed line represents the cut-off 
value of 0.05 mL/kg0.75 for the relative thyroid gland volume. 
 

 



 104 

CHAPTER 3 

 

The sensitivity for relative thyroid gland volume was 47.1% (95% CI 

[23.0-72.2]). When looking at the 5 parameters together, the sensitivity 

for B-mode ultrasonography in the detection of acquired 

hypothyroidism before treatment was 94.1% (95% CI [71.3%-99.9%]), 

as only one dog was normal for all assessed characteristics. 

The highest correlation was seen between the shape and the capsule 

delineation of the thyroid lobes. A high correlation was also found 

between the relative volume and the shape of the lobe, where 

abnormally small lobes had a more rounded shape (Table 1). 
 

 rvolume homogen echogen capsule shape 

rvolume 1.000 -0.370 0.141 -0.221 -0.439 
  0.031 0.426 0.209 0.010 

homogen -0.370 1.000 0.339 0.279 0.257 
 0.031  0.050 0.111 0.142 

echogen 0.141 0.339 1.000 0.436 0.237 
 0.426 0.050  0.010 0.178 

capsule -0.221 0.279 0.436 1.000 0.699 
 0.209 0.111 0.010  <0.0001 

shape -0.439 0.257 0.237 0.699 1.000 
 0.010 0.142 0.178 <0.0001  

 
Table 1: Spearman rank correlation coefficients between 5 parameters 
(N=34) with P-value for coefficient being equal to zero given below the 
correlation coefficient. rvolume=relative thyroid lobe volume; 
homogen=homogeneity of the lobe;  echogen=relative echogenicity of 
the lobe compared to the sternothyroid muscle; capsule=capsule 
delineation of the lobe; shape=shape of the lobe on transverse section 
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From the 10 dogs that had only one follow-up examination, one came at 

29 days, five came between 51 and 65 days, one at 94 days, one at 193 

days, one at 244 days, and one at 414 days after the initial ultrasound. 

The 3 dogs that underwent a second follow-up examination came 

between 27 and 41 days for their first follow-up and one at 288 days, 

one at 342 days and one at 358 days for their second follow-up. When 

looking at the effect over time, with before or after treatment as 

covariate, we found a significant difference in relative volume of the 

individual lobes at first presentation compared to a later presentation 

(P=0.0368). The relative lobe volume decreased significantly from an 

average of 0.02078 mL/kg0.75 to an average of 0.01473 mL/kg0.75 (Fig 6).  

 
Fig. 6: Same dog as in figure 2, 288 days after treatment. Both lobes 
decreased further in size (relative thyroid gland volume of 0.039 
mL/kg0.75) and became more echoic. The heterogenicity of both lobes 
and the abnormal shape on transverse section remained. (C=common 
carotid artery; Sc=sternocephalic muscle; Sh=sternohyoid muscle; 
St=sternothyroid muscle; T=trachea) 
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When using time since start of the treatment as covariate, the relative 

individual lobe volume decreased significantly over time (P=0.0349) 

with a daily decrease of 0.00003 mL/kg0.75. Finally, the relative thyroid 

gland volume at the last presentation was above 0.05 mL/kg0.75 in only 

two dogs.  

The echogenicity score at the first presentation was compared with the 

echogenicity score at the last presentation. The median difference in 

echogenicity score was equal to 0 and the mean difference was 0.38, but 

this decrease in score, or increase in echogenicity, over time was not 

significant (P=0.28). Neither the homogeneity, the shape nor the capsule 

delineation of the lobes were characterized by any significant change 

over time. In addition, when looking at the sum of the 4 subjective 

parameters scores (echogenicity, homogeneity, shape and capsule 

delineation), there was no significant difference between the score at 

first presentation and the last score measured (P=0.63). One dog 

developed a cystic lesion in one lobe, 2 months after treatment (Figure 

7). For statistical analysis, this lobe was considered hypoechoic and 

heterogeneous. 

Considering all parameters together, no single initially abnormal lobe at 

first presentation became normal at any time during the follow-up 

period and all thyroid glands were considered abnormal at the time of 

the last presentation. Therefore, the observed sensitivity at the last 

presentation was 100% (95% CI [75.3-100.0]) for all parameters 

combined. 
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Fig. 7: Longitudinal (Fig. 6A) and transverse (Fig. 6B) ultrasound 
images of the right thyroid lobe of a hypothyroid dog 59 days after 
initial diagnosis. A 15x6x5 (LxWxH) mm, well-delineated, cystic lesion 
with dorsally located distal enhancement (*) and edge shadowing 
(arrowheads), is seen in this lobe. (C=common carotid artery; 
Sc=sternocephalic muscle; St=sternothyroid muscle; T=trachea) 
 

DISCUSSION 

The measurement of the length was the most difficult of the 3 

measurements to obtain because of the difficulty in identifying the sharp 

caudal endpoint of the gland, as mentioned previously.22 Also, as the 

edge of the pathologic glands was ill-defined at some places, defining 

the shape and the capsule delineation of the gland was based on a more 

subjective interpretation than the determination of the relative 

echogenicity and homogeneity of the gland parenchyma. 

The previously suggested lower limit of 0.05 mL/kg0.75 for the relative 

volume of the thyroid gland in euthyroid dogs was successfully applied 

to the healthy control dogs, as the mean relative gland volume for these  
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dogs was 3 times higher than the suggested lower limit.25 This means 

that the cut-off value could be applied by different observers, and that it 

was chosen low enough to keep different healthy dogs, other than those 

from the original study, above the lower limit. That only 8 of our 17 

hypothyroid dogs had a relative thyroid volume below the limit of 0.05 

mL/kg0.75 could mean that this value is too low for use by other 

examiners who might measure in a different way, as it was previously 

demonstrated that there is significant inter-observer variability in 

ultrasound measurement of the canine thyroid.22 This idea is reinforced 

by the fact that the volume measurements in our control dogs were well 

above the lower limit (3 times higher), suggesting the observer in this 

study systematically obtained larger measurements. The use of a higher 

cut-off value in our study would have resulted in a higher sensitivity for 

thyroid volume measurements. Our study however was limited to 18 

dogs of 11 different breeds, making it irrelevant to suggest a new cut-off 

value. 

The calculated overall sensitivity of 94.1% for detection of acquired 

hypothyroidism with B-mode ultrasound in our dogs, is somewhat 

lower than the recently published 98%.25 This is mainly due to the 

difference in sensitivity for relative thyroid gland volume, being 47.1% 

in our study versus 81% in the other study.25 As in our previous study, 

the larger inter-observer variability of ultrasound measurements 

between different observers is likely the reason for this difference.22 

The observer of the current study might have taken systematically larger  
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measurements and used a different protocol with different measure 

points than the author of the suggested cut-off value. 

Our obtained sensitivity of 76.5% for decreased echogenicity of the 

thyroid gland in hypothyroidism was comparable to previously reported 

values of 75% and 72%.24,25 Heterogeneous glands were seen in 64.7% 

of dogs compared to 45%, and a round to oval shape was seen in 64.7% 

versus 68% of the dogs in a previous study.24 Finally, the capsule 

delineation was abnormal in 70.6% of our dogs and this was seen in 

only 27.2% of the dogs in a previous study.24 A possible explanation for 

this last discrepancy may be the subjective nature of this parameter.  

Results for the parameters other than the volume measurements of the 

left and the right thyroid lobes, were identical in 93% of the dogs. The 

echogenicity of both lobes was equal in 88% of our dogs. Others 

however described a similar echogenicity for both left and right lobes in 

45% of hypothyroid dogs.24 Similar findings comparing both thyroid 

lobes for parameters other than echogenicity are lacking in the other 

studies. 

All dogs in our study were supplemented with levothyroxine shortly 

after the diagnosis of hypothyroidism. From these, 13 were followed 

over time. Ten had one revisit and 3 dogs underwent two subsequent 

sonographic assessments of their thyroid gland. The longest follow-up 

period was 414 days and the average follow-up period was 173 days. A 

significant continuous decrease in size of the thyroid lobes was seen 

during this period, with a decrease of 71% of the original value. The  
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only dog with normal parameters at first presentation was also 

considered abnormal at the time of the last follow-up because of a 

decrease of its relative thyroid volume below the cut-off value. A 

possible explanation for the further decrease in thyroid gland size 

observed in our dogs could be the negative feed back mechanism on the 

TSH secretion of the pituitary gland, being triggered by the 

supplementation of levothyroxine. Another reason could be the 

progression of lymphocytic thyroiditis into thyroid atrophy, supporting 

the hypothesis that idiopathic follicular atrophy may be the end-result of 

a lymphocytic thyroiditis. Although not statistically significant, an 

increase in relative echogenicity was also observed during the follow-up 

period.  A possible cause for this phenomenon may be the gradual 

decrease of inflammatory reactions in these glands and the gradual 

replacement of destroyed gland parenchyma by fibrous connective 

tissue.1,3 However as our dogs were not sedated, cytologic or histologic 

samples confirming or negating the presence of fibrous connective 

tissue have not been obtained. The other parameters did not change 

significantly over time; so abnormal glands at first presentation 

remained abnormal during the follow-up period. This was an expected 

finding as supplementation of levothyroxine is symptomatic and not 

curative therapy for acquired hypothyroidism. The development of a 

cystic lesion in a lobe of one of the dogs has to our knowledge not been 

described in association with primary hypothyroidism. In contrast, 

cystic nodules are relatively common in people and are described in a  
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variety of thyroid diseases like Hashimoto’s thyroiditis and 

multinodular goiter. They can represent colloid accumulation, necrosis, 

hemorrhage or neoplasia.28 

A limitation of our study is the lack of information on the correlation 

between ultrasound findings and cytology or histology. The reason for 

not having performed needle aspirates or biopsies is that the dogs used in 

this study were unsedated client owned dogs. Although needle aspirates 

of abdominal organs can safely be performed in many unsedated 

patients, it is our strong opinion that they cannot in the neck region. 

Because of the small size of the thyroid lobes, the slightest movement of 

the patient would result in perforation of vital neck organs. Another 

limitation was that no attempt was made to look at the differences in 

ultrasonographic features between TgAA positive and negative dogs, as 

TgAA levels were lacking in six dogs. 

In conclusion, in our study the thyroid lobes in hypothyroid dogs were 

sonographically smaller, hypoechoic, heterogeneous, misshapen or ill-

delineated in 94% of the dogs. An enhancement of some of the 

ultrasonographic characteristics was seen after treatment. Diagnostic 

ultrasound of the canine thyroid gland is relatively easy to perform, 

usually does not require sedation of the patient, gives a quick result 

compared to biochemical blood tests, and has been proven to be a 

sensitive test in the diagnosis of acquired canine hypothyroidism. It can 

therefore be considered as an effective additional test for the diagnosis 

of this disorder. 
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*: Logic 7, General Electric Medical Systems, Milwaukee, WI, USA. 

†: Date Calculator, Leithauser Research, FL, USA. 

http://leithauserresearch.com/date_calculator.html 
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SUMMARY 

 

The CT features of the normal thyroid gland were compiled from 

images acquired in 25 client-owned dogs without thyroid gland 

disease. The mean pre- and post-contrast attenuation values were 

107.5 HU and 169.0 HU, respectively. After injection of intravenous 

contrast medium (600 mg iodine / kg), the apparent thyroid gland 

volume (both lobes combined) increased from a mean value of 

1148.0 mm3 to a mean value of 1188.9 mm3. All thyroid lobes were 

homogeneous on pre- and post-contrast images. In a craniocaudal 

direction, the gland spanned a region from the 1st to the 8th tracheal 

ring and the right lobe was often more cranial than the left. On 

transverse images the lobe shape was ovoid in 72%, and its location 

was dorsolateral to the trachea in 90% of dogs. Parathyroid glands 

could not be identified and an isthmus connecting both thyroid lobes 

was only seen in one dog. Considering the excellent visibility of the 

normal canine thyroid gland, CT can be beneficial in the 

differentiation of thyroidal versus non-thyroidal neck masses. CT 

also yields potential in the staging of thyroid carcinomas. 
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INTRODUCTION 

The canine thyroid gland consists of two elongated lobes located on both 

dorsolateral aspects of the cranial portion of the trachea, medial to the 

common carotid arteries. Both lobes span a region from the cricoid 

cartilage to the 5th-8th tracheal rings and the right lobe is located more 

cranial than the left.1-3 A thin isthmus, spanning the trachea ventrally and 

connecting the caudal aspects of both lobes, is inconsistently and 

infrequently present in dogs, being more often present in large 

breeds.1,2,4 On CT, both human and feline thyroid glands have been 

described as hyperattenuating structures relative to the surrounding soft 

tissues. The pre-contrast attenuation value ranges from approximately 70 

to 120 HU in humans and has a mean of 123 HU in cats.5-10  

Tumor staging is the major indication for CT of the thyroid gland in 

people. CT is able to define the local invasiveness of the tumor and can 

be used for detection of metastasis to lymph nodes and lungs.5,7,9,11-15 CT 

is also used to detect intrathoracic ectopic thyroid tissue and can provide 

diagnostic information regarding the different types of human 

thyroiditis, as CT attenuation values permit estimation of the functional 

status of the gland.5,7,8,10,11,13,14,16 Similar information regarding tumor 

staging and diagnosis of acquired hypothyroidism may be found in dogs 

and, thus, it is important to know the normal CT features of the thyroid 

gland in this species. The purpose of this study was to characterize the 

normal baseline CT appearance of the canine thyroid gland. 
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MATERIALS AND METHODS 

The study was performed prospectively to obtain data on pre- and post-

contrast features of the normal thyroid gland in dogs of different breeds 

and ages. It was conducted from January to June 2006. Twenty-five 

client-owned dogs undergoing a CT examination for orthopedic 

problems were evaluated. Inclusion criteria were: 1) free of concurrent 

systemic disease, 2) did not receive any drug for at least one week prior 

the CT examination and 3) normal TT4 and TSH serum concentrations. 

To measure the serum thyroid hormone levels, venous blood was 

collected via a transdermal puncture of the jugular vein prior to 

induction of anesthesia. The blood samples were centrifuged at 3500 

rpm and plasma was kept in plastic tubes at -20°C as previously 

described.17,18 After completion of all CT scans, all blood samples were 

sent simultaneously to the same laboratory as to avoid daily fluctuations 

in laboratory results. The whole procedure was done with owner consent 

in accordance with university regulations for the use of client owned 

animals. Represented breeds were: Labrador Retriever (10), Bernese 

Mountain Dog (3), Golden Retriever (2), Chien Anglo-Français (2), 

Beagle (2), Bordeaux Dog (1), Foxhound (1), mongrel (1), Boerboel (1), 

German Shepherd (1), Novia Scotia Duck Tolling Retriever (1). Their 

mean body weight was 31.1 kg (range: 13 – 52 kg) and mean age was 39 

months (range 5 – 121 months).  

Data were obtained with a 3rd generation helical CT scanner*. Dogs 

were under general anesthesia using a mixture of oxygen and isoflurane  
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and were in dorsal recumbency with the front legs retracted caudally to 

avoid superimposition with the neck. A foam block was placed under the 

neck to obtain a perpendicular position of the thyroid gland relative to 

the X-axis of the gantry. Transverse contiguous slices of the thyroid 

gland were obtained, scanning an area from the caudal aspect of the 

cricoid cartilage to a distance of 8 cm more caudally. Technical settings 

were 120 kV, 160 mA, 1 s tube rotation time, 3 mm slice thickness, 3 

mm slice interval, detail algorithm, 35 cm scan field of view, and a 

display field of view around 8 cm, depending on the size of the dog. For 

the post-contrast series, non-ionic iodinated contrast medium‡ at a 

dosage of 600 mg iodine/kg bodyweight was injected manually into the 

cephalic vein. Scanning of the gland was performed within 1 minute 

after injection. Machine settings for the post-contrast CT series were 

identical to the pre-contrast series and the dogs were not moved between 

both scans. Images for both the pre- and post-contrast series were 

displayed on a dedicated workstation at the following window settings: 

WW = 220, WL = 120. ROI were manually drawn around each cross 

section of both thyroid lobes on both pre- and post-contrast series, this 

on every transverse CT slice including thyroid tissue. Images were 

magnified to allow proper ROI placement. The computer automatically 

calculated the lowest, highest, and mean HU values, the standard 

deviation of the mean, and the surface area of each ROI. As the thyroid 

glands could potentially be tilted in any of the three dimensions of the 

gantry, creating false width, height, or length measurements, the volume  
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of the lobes was calculated using the sum of areas method, (slice 

thickness) x (sum of the cross sectional areas), instead of the rotational 

ellipse method (max. height x max. width x max length x π/6), also 

known as the transverse ellipse method.19 The volume of the thyroid 

gland was given by the sum of the volume of both lobes. The relative 

gland volume was subsequently obtained by dividing the gland volume 

by BW0.75 of the dog. The attenuation value of the gland was given by 

the mean of the mean attenuation value of each transverse section of 

both lobes. The first and last slice of each lobe were excluded from this 

calculation to avoid partial volume artifacts. A subjective visual 

assessment of the homogeneity of the lobes was made on both pre- and 

post-contrast series. Location relative to the trachea, visibility of the 

parathyroid glands and shape of the lobes were recorded on transverse 

sections. The craniocaudal location of the lobes in relation to the tracheal 

rings was noted on 3D MIP images using dedicated software§. The 

presence of an isthmus was searched for on both transverse sections and 

reformatted 3D images using a surface-rendering algorithm§. Post-

contrast images were used to identify the vasculature of the gland.  

 

To investigate how relative thyroid size and mean attenuation value 

related to age and weight, Spearman rank correlation coefficient was 

obtained, and it was tested whether it differed from zero. The effect of 

contrast (pre- vs. post-contrast) on absolute gland volume, relative gland 

volume and mean attenuation value was assessed by a mixed model with  
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dog as random effect. Left and right lobes were compared for both the 

absolute gland size and mean gland attenuation value by a mixed model 

with dog as random effect. Statistical analyses were performed at the 5% 

significance level using a commercial statistic software¥ for all 

calculations.  

 

RESULTS 

The thyroid lobes could easily be identified on both pre- and post-

contrast images in all dogs as a consequence of their high attenuation 

value relative to the surrounding soft tissues (Figures 1 & 2).  

 
Fig. 1: Transverse pre- (A) and post-contrast (B) CT images of a normal 
adult dog neck. WL = 120; WW = 220. Slice location is at the mid-
aspect of the thyroid gland, ventral to the third cervical vertebrae (C3). 
White arrowheads (>) indicate both thyroid lobes. Lco = longus colli 
muscle; Lca = longus capitis muscle; Sc = sternocephalic muscle; St = 
sternothyroid muscle; Sh = sternohyoid muscle; C = left common carotid 
artery; J = left external jugular vein; T = trachea with endotracheal tube. 
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Fig. 2: Pre- (A) and post-contrast (B) sagittal reconstructed CT images 
of a normal adult dog neck. Slice location is at the level of the right 
thyroid lobe. Pre- (C) and post-contrast (D) dorsal reconstructed CT 
images of the same dog. Slice location is at the dorsal aspect of the 
trachea. WL = 120; WW = 220 for all images. White arrowheads (>) 
indicate both thyroid lobes. C2 = second cervical vertebra; C3 = third 
cervical vertebra; C = common carotid artery; J = external jugular vein; 
T = trachea. 
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Densitometric data and volume measurements of the thyroid gland for 

both groups are represented in Table 1. 

  
Series Gland volume 

(mm3) 
Rel. gland volume 

(mm3/kg0.75) 
Attenuation value 

(HU) 
 

precontrast 
 

postcontrast 

 
1148.04 ± (957.02 

– 1339.14) 
1188.88 ± (986.32 

– 1391.43) 

 
87.83 ± (74.23 – 

101.43) 
91.01 ± (76.69 – 

105.34) 

 
107.50 ± (104.73 – 

110.27) 
169.02 ± (163.16 – 

174.88) 
 
Table 1: Mean ± (90% CI) gland volume, relative (rel.) gland volume 
and attenuation value of the thyroid glands. 
 
The attenuation value ranges for both pre- and post-contrast series were: 

87.4 – 137.0 HU and 124.8 – 230.4 HU, respectively. All thyroid lobes 

were homogeneous. Parathyroid glands could not be detected in any dog. 

On transverse sections, the most common location of the thyroid lobes 

was dorsolateral to the trachea in 45/50 lobes. Five lobes were located 

lateral and none were found ventrolateral to the trachea. An ovoid shape 

was assigned to 36/50 lobes, while 1/50 lobes had a triangular shape on 

transverse CT images. The remaining 13 lobes had a shape in between 

ovoid and triangular. Using 3D MIP reconstructed images, the 

craniocaudal location of both thyroid lobes was evident in 24/25 dogs. 

The right thyroid lobe was more cranial than the left in 14/24 dogs (1 

ring more cranial in 13, and 2 rings more cranial in 1 dog), while the left 

was located one ring more cranial than the right in only 2 dogs. In 8/24 

dogs, both lobes were located at the same craniocaudal level. The  
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average cranial and caudal location relative to the tracheal rings for both 

thyroid lobes are shown in Table 2. An isthmus spanning the ventral 

aspect of the trachea and connecting the caudal part of both lobes was 

seen in only one dog, a two-year-old Golden Retriever (Figure 3). 

 
Fig. 3: 3D surface rendering reformatted CT image of the neck area. 
Note the isthmus connecting the caudal poles of both thyroid lobes, from 
a right ventrocaudal approach. I = isthmus; Th = right thyroid lobe; T = 
endotracheal tube; L = larynx; C = right common carotid artery; J = right 
external jugular vein; S = cervical spine. 
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 Right lobe Left lobe 
Cranial location 2.6 (1-5) 3.1 (1-4) 
Caudal location 6.0 (4-8) 6.3 (4-8) 

Table 2: Average (range) location of both thyroid lobes relative to 
tracheal rings. 
 
After contrast medium injection, the cranial thyroid artery was seen in 

all dogs as a U-shaped structure originating from the ventral aspect of 

the common carotid artery cranial to the thyroid lobes, running in a 

caudomedial direction and joining the dorsal aspect of the cranial pole of 

the thyroid lobes (Figure 4).  

Fig. 4: Slice location is at the cranial aspect of the thyroid gland, ventral 
to the second cervical vertebra (C2). The right cranial thyroid artery (<) 
is seen exiting the ventral aspect of the right common carotid artery (C), 
making a U turn towards the location of the right thyroid lobe. The right 
thyroid lobe is not yet visible on this slice. A white arrowhead indicates 
the cranial aspect of the left thyroid lobe. A white arrow is pointing at 
the left internal jugular vein.  
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The caudal thyroid artery, which most commonly arises from the 

brachiocephalic artery and runs along the left lateral side of the trachea 

to join with the cranial thyroid artery, could not be identified in any 

dog.2 The cranial thyroid vein, paralleling the course of the cranial 

thyroid artery, could be followed at the cranial aspect of only 17/50 

lobes (Figure 5).  

 

  
 
Fig. 5: Transverse post-contrast CT image of the same dog as in fig. 4. 
Slice location is 3 mm more cranial than in fig. 4. WL = 120; WW = 
220. The dog’s right (R) is to the viewer’s left in the image. The left 
cranial thyroid vein (<) is seen entering the ventral aspect of the left 
internal jugular vein (arrow). The right thyroid lobe is not visible on this 
slice. A white stealth arrowhead indicates the cranial aspect of the left 
thyroid lobe. A white closed arrowhead is pointing at the right cranial 
thyroid artery. E = esophagus; T = trachea and endotracheal tube; J = left 
external jugular vein. 
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The caudal thyroid vein was frequently seen exiting the caudal pole of 

the thyroid lobe, running in a caudolateral direction to join the internal 

jugular vein (Figure 6). The internal jugular vein was in close proximity 

to the common carotid artery and had a diameter of approximately 20% 

of the common carotid artery.  

 

 
 
Fig. 6: Transverse post-contrast CT image of a normal adult dog neck. 
Slice location is at the caudal aspect of the thyroid gland, ventral to the 
third cervical vertebra (C3). WL = 120; WW = 220. The dog’s right (R) 
is to the viewer’s left in the image. The right caudal thyroid vein (<) is 
seen exiting the dorsal aspect of the right thyroid lobe. White 
arrowheads are indicating the caudal aspects of both thyroid lobes. A 
white arrow is pointing at the right internal jugular vein. E = esophagus; 
T = trachea and endotracheal tube; J = right external jugular vein. 
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The correlation between relative size and age was -0.27 and just failed to 

differ significantly from zero (P=0.062). This suggests that younger dogs 

may have a higher relative thyroid gland size. No correlation was 

observed between relative thyroid size and body weight (P=0.62), 

between mean attenuation value and age (P=0.503) and between mean 

attenuation value and body weight (P=0.803). When calculating the 

mean thyroid gland size before and after contrast medium injection, a 

significantly larger (P=0.0037) mean gland volume was obtained for the 

post-contrast images (1189 mm3) compared to the pre-contrast series 

(1148 mm3). No significant differences (P=0.8002) and (P=0.3764) were 

detected when comparing right and left thyroid lobes for size and 

attenuation value, respectively. 

 

DISCUSSION 

Pre-contrast cervical CT provides excellent visualization of the normal 

canine thyroid gland due to its higher attenuation compared to the 

surrounding soft tissues. The pre-contrast attenuation value of 107.5 HU 

is slightly lower than the reported value in cats (123.2 HU) and is within 

the reported range in people (70-120 HU).5-10 In people the thyroid 

attenuation value relates linearly to the iodine content of the thyroid 

follicles.5,7-9,20-22 An identical explanation can be assumed in dogs.  The 

reference values reported here and elsewhere should however not be 

interpreted strictly, as alimentary iodine intake differences due to 

different food composition, tap water iodine concentration and 



 133 

CHAPTER 4 

 

geographic differences alter the attenuation values significantly.8,23 No 

correlation was found between attenuation value and age, or between 

attenuation value and weight. The post-contrast thyroid attenuation value 

in our dogs (mean 169.0 HU) was almost identical to reported immediate 

post-contrast values in cats (168.5 HU).6 However these results should 

be interpreted cautiously since the time window for post-contrast image 

acquisition in our study was relatively wide (< 1 minute post start 

injection) albeit smaller than in the feline study. Dynamic contrast 

enhanced CT studies of the thyroid gland would be necessary to obtain 

reliable reference values. The significant increase in apparent thyroid 

size that we observed after contrast medium injection is likely related to 

the blooming artifact. The blooming artifact occurs at the margin of 

highly attenuating objects in a low attenuation environment, resulting in 

interface blurring, and is caused by averaging effects due to insufficient 

spatial resolution of the imaging system.24-26  

The location and shape of the thyroid lobes reported here concur with 

published references, including the slightly more cranial position of the 

right lobe.1,2,4 These features are readily recognizable on CT images and 

help to identify the gland. As in cats, normal parathyroid glands were not 

observed.6 The variable location and number of the parathyroid glands, 

combined with technical factors like the presence of streaking artifacts, 

blooming artifacts and partial volume effects, hampered identification of 

these small structures. Only the cranial thyroid artery and the caudal 

thyroid vein were consistently identified and this is probably related to  
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the standard imaging protocol that was used. Angiographic CT protocols 

with exact vascular phase timing as used for other canine organs should 

allow identification of small vessels consistently.27 Due to the tortuosity 

of the vessels, reformatted images in the two other planes were not 

useful and the limited size of the vessels hampered the use of 3D 

reconstructed images, as these were lost in the noise of structures with 

similar predefined pixel values.  

Although scintigraphy provides functional information of the gland, CT 

provides important adjunctive anatomic information superior to that of 

nuclear imaging.5,7,28 Should both modalities be performed subsequently 

in a same patient, scintigraphy needs to be performed first as intravenous 

injection of iodinated contrast medium alters the uptake of radioactive 

iodine for a period of 6 to 8 weeks.5,8,14 In addition, since both iodinated 

contrast media and anesthetic drugs influence thyroid function in 

humans, it is important to collect blood for evaluation of thyroid 

hormone prior to administration of these drugs.8,29-31 In dogs, various 

anesthetic agents have an influence on thyroid function.32-35 Limited data 

are also available on the influence of intravenous iodinated contrast 

medium in dogs on thyroid function.36 As a precaution we obtained all 

blood samples prior to induction of anesthesia and administration of 

iomeprol. Corticosteroids and non-steroidal anti-inflammatory drugs, as 

well as many non-thyroidal diseases like hyperadrenocorticism, diabetes 

mellitus, renal- or heart failure and liver disease are known to influence 

thyroid function in dogs.31-33,37-40 Dogs receiving any of these drugs or  
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having a systemic disease were therefore excluded from the study. 

However, our population was suffering from osteoarthritis, but it was 

recently proven that this disorder does not need to be considered a factor 

influencing thyroid function in dogs.41 

Computed tomography of the thyroid gland yields interesting 

complementary information in different types of human thyroiditis and 

goiter.5,7-9,11,28 Diseased human thyroid tissues are isoattenuating or 

hypoattenuating to the adjacent musculature in pre-contrast CT 

images.7,8,20,21,42 An increase in follicular cells and interstitial tissue, 

besides a decrease of iodine concentration in the thyroid follicles, cause 

decreased attenuation values in diseased human thyroid tissue.21 Similar 

changes, together with a decrease in thyroid gland volume, may be seen 

in hypothyroid dogs and could be subject of future investigations. The 

detection of ectopic thyroid tissue and pharyngeal, cervical or 

mediastinal thyroglossal duct cysts are additional indications of CT in 

people and are of potential interest in dogs as well.5,7,8,13,14,28 One of the 

main indications for thyroid CT in people is the differentiation of thyroid 

masses from other neck masses and the evaluation of mediastinal or 

retrotracheal extension of thyroid masses, particularly in thyroid 

carcinoma, as the prognosis is related to local invasiveness and lymph 

node metastases.5,7-9,12-14,28,43 Invasiveness of the primary tumor, location 

of the tumor and presence of metastases equally influence treatment of 

dogs with thyroid carcinoma.44 Canine thyroid tumors are very vascular 

and require careful surgical planning for which CT is an excellent  
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diagnostic tool.45 Arterial invasion of thyroid carcinoma with rapid onset 

of cervical and mediastinal hemorrhage has been reported in the dog 

where the identification of the contrast enhancing thyroid mass and non-

enhancing hemorrhage with CT was crucial in the further work up of the 

patient.45  

In conclusion we describe several imaging features of the normal canine 

thyroid gland that allow its identification on cervical CT scans. These 

landmarks can be used to determine thyroid involvement in masses of 

the neck, staging of thyroid carcinomas and have potential applications 

for other thyroidal diseases such as lymphocytic thyroiditis and 

idiopathic thyroid atrophy. 
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SUMMARY 

 

The MRI features of the normal canine thyroid gland were 

retrospectively compiled from images acquired in 44 dogs of 

different breeds presented for a variety of diseases unrelated to the 

thyroid gland. The appearance of the thyroid gland on different 

sequences, including pre- and post-contrast T1W, T2W, 2D GE, 3D 

T2* GE and PD weighted images, were described in different image 

planes. The characteristic shape, location and intensity of thyroid 

lobes compared to surrounding structures made them easily 

detectable in all dogs. By far the most common location of the 

thyroid lobes was dorsolateral to the trachea with the maximal 

cross-sectional area of the lobes located ventral to C2/3 or C3 in 

more than 85% of the cases. The majority of the lobes were ovoid on 

transverse images. An isthmus was seen in 1 large breed dog and 

parathyroid glands could not be seen. The mean maximal thyroid 

lobe diameter measured on transverse images was 8.1 mm, being 

twice the mean average diameter of the common carotid artery. 

Considering the excellent conspicuity and characteristic appearance 

of the canine thyroid gland, MRI can be beneficial in the diagnosis 

of diffuse thyroid diseases, in differentiating thyroidal versus non-

thyroidal neck masses and, in staging and treatment planning of 

thyroid tumors in this species. 
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INTRODUCTION 

The canine thyroid gland consists of two elongated lobes located on both 

dorsolateral aspects of the cranial portion of the trachea, medial to the 

common carotid arteries. Both lobes span a region from the cricoid 

cartilage to the 5th-8th tracheal rings and the right lobe is located more 

cranial than the left.1-3 A thin isthmus, spanning the trachea ventrally and 

connecting the caudal aspects of both lobes, is inconsistently and 

infrequently present in dogs, being more often present in large 

breeds.1,2,4 For the diagnosis of thyroid masses in people and dogs, US 

and/or radionuclide scintigraphy, both combined with percutaneous 

needle biopsy are usually performed.5-17 Invasion of surrounding tissues 

(strap muscles, carotid vein and artery, internal jugular vein, recurrent 

laryngeal nerve, esophagus and trachea) by thyroid masses may 

significantly affect the outcome of surgical resection and the long-term 

survival of those patients.18-21 Scintigraphy however lacks spatial 

resolution to assess local invasiveness of the mass.6,22-24 Opposed to that, 

US has an excellent spatial resolution, making it very suitable for 

evaluating the integrity of tumor margin.6,14,15,25 Limitations of US 

include limited lateral approach of the soft tissues dorsal to the trachea, 

limited field of view, limited access to intrathoracic structures, and 

difficulty in confirming the thyroid origin of large neck masses that 

distort the anatomy.6,23,26,27 Cross-sectional imaging modalities, such as 

CT and MRI, overcome these limitations by having a large field of view 

and by eliminating areas of limited accessibility,  
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therefore having great potentials as supplementary preoperative 

diagnostic tools.5,6,8,9,11,24,26 Before using MRI for assessing thyroid 

disease, it is important to know the normal features of the thyroid gland 

with this imaging modality. The purposes of this retrospective study 

were to 1) determine the signal characteristics of the normal thyroid 

gland on commonly used sequences; 2) evaluate the signal intensity of 

thyroid tissue relative to adjacent tissues; 3) describe the shape, location, 

and homogeneity of the thyroid lobes. 

 
MATERIAL AND METHODS 

For this retrospective study, the clinical database of the Animal Health 

Trust, Newmarket, United Kingdom, was searched for cervical MRI 

scans performed in client-owned dogs presented for a variety of 

diseases. Dogs with cervical masses were excluded from the search. One 

hundred and two cervical MRI studies performed between November 

2000 and July 2007 that included thyroid tissue on at least one image 

plane on at least one sequence were reviewed. Inclusion criteria were: 1) 

complete patient signalment (breed, gender, age, body weight, and 

clinical history), 2) normal serum thyroid hormone levels, 3) known 

final diagnosis, 4) diagnostic quality images and 5) inclusion of the 

thyroid gland on at least two different image planes on at least one 

image sequence. Forty-four dogs from 24 different breeds were 
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identified. Most common breeds were: Cavalier King Charles Spaniel 

(6), Springer Spaniel (5), cross breed (4), Rottweiler (3), Labrador 

Retriever (3), Staffordshire Bull Terrier (3), Bull Terrier (2) and German 

Shepherd (2). Only one subject was included from the remaining 

represented breeds. There were 29 males (18 intact, 11 neutered), and 15 

females (7 intact, 8 neutered). The mean age was: 6 years 1 month (9 

months – 17 years 2 months) and mean body weight was: 15.9 kg (4.6 – 

63.0 kg). 

All scans were performed using a 1.5T MRI scanner*, using different 

types of receiver coils (quadrature head, extremity, torso phased array 

and spine coils), depending on the dog’s size. Dogs were unde6 

r general anesthesia using a mixture of isoflurane and oxygen, and 

positioned in dorsal recumbency. A variety of sequences, slice 

orientation, slice thickness, interslice gap and image matrix size were 

used. Performed sequences were: TS FSE T1 and SAG FSE T1, TS FSE 

T1+C and SAG FSE T1+C using 0.1 mmol/kg of gadobenate 

dimeglumine†, TS FSE T2, SAG FSE T2 and DORS FSE T2), TS 2D 

GE and SAG 2D GE, 3D T2* GE, and TS PD weighted images (Table 

1). The ranges of used relaxation time (TR), time to echo (TE), flip angle 

(FA), slice thickness (ST), slice interspace (SI) and image matrix size 

used for the different sequences are shown in Table 2.  
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Table 1: Used sequences in each dog. 
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Sequence TR TE FA ST SI Matrix 

 
TS FSE T1 (+C) 
SAG FSE T1 (+C) 
DORS FSE T1 (+C) 
TS FSE T2 
SAG FSE T2 
DORS FSE T2 
TS GE 
SAG GE 
3D T2* GE 
TS PD 
 

 
320-620 
460-620 
600-620 

2800-6000 
2740-5420 
2800-5420 

160-660 
200-660 
7.7-15.6 

2500-4000 

 
7.9-14.7 
9.5-22.0 

12.5-17.0 
79.9-105.2 
81.9-105.8 
82.3-90.2 
14.0-15.0 
15.0-20.0 

3.3-4.4 
11.9-35.9 

 
90 
90 
90 
90 
90 
90 
20 
20 
30 
90 

 
2.5-5.0 
2.0-3.5 
3.0-4.0 
2.0-5.0 
2.0-3.0 
3.0-4.0 
2.5-5.0 
2.0-3.0 

3.0 
2.5-4.0 

 
0.0-1.5 
0.1-0.5 
0.3-1.5 
0.0-1.5 
0.1-0.5 
0.1-0.5 
0.0-0.5 
0.1-0.5 

-1.5 
0.1-0.5 

 
256x256 / 512x512 
256x256 / 512x512 
256x256 / 512x512 
256x256 / 512x512 
256x256 / 512x512 
256x256 / 512x512 

256x256 
256x256 / 512x512 

512x512 
256x256 

 

 
Table 2: Parameters used for the different sequences. TR = repetition 
time, TE = echo time, FA = flip anlge, ST = slice thickness, SI = slice 
interspace. 

  

All images including thyroid tissue were analyzed in DICOM format, 

using dedicated software§. Using a combination of different sequences 

the following parameters were recorded: location of the thyroid lobes 

relative to the trachea (dorsal, ventral, lateral, ventrolateral or 

dorsolateral), location of the maximum cross-sectional area of the lobes 

relative to the vertebrae, shape of the thyroid lobes in cross-section 

(ovoid, triangular, or in between both), visibility of parathyroid glands 

and presence of an isthmus connecting the caudal aspect of both thyroid 

lobes. Relative thyroid tissue intensity compared to surrounding 

structures and homogeneity of the lobes were recorded for all sequences. 

When considered inhomogeneous, it was noted whether this resulted 

from the presence of hypointense zones, hyperintense zones or a 

combination of both. For pre- and post-contrast T1W, T2W and PD-

weighted images relative intensity of the lobes was recorded as  
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isointense to surrounding muscles, in between muscle and fat, isointense 

to fat or hyperintense to fat. For gradient echo sequences, intensity was 

recorded as isointense to surrounding muscles, in between muscle and 

CSF, isointense to CSF or hyperintense to CSF.  

Maximum thyroid lobe diameter, measured at the level of maximum 

thyroid lobe cross-sectional area, and diameter of the adjacent common 

carotid artery, measured at the same image level, were both obtained on 

transverse images. A ratio of maximum lobe diameter over common 

carotid artery diameter was then obtained for each lobe. Correlation 

between dogs’ weight and diameter of common carotid artery, and 

between dogs’ weight and thyroid lobe diameter were searched for using 

Pearson rank correlation test. Mean and 95% CI of the mean for ratio of 

largest thyroid lobe diameter over common carotid artery diameter was 

calculated for the population and normal distribution of this ratio was 

tested using Shapiro-Wilk test of normality.  

 

RESULTS 

All thyroid lobes could easily be detected on all available sequences in 

each dog. The location of the thyroid lobes was dorsal to the trachea in 4 

(4.5%), lateral in 14 (15.9%) and dorsolateral in 70 (79.5%) of 88 lobes. 

The location of the maximum cross-sectional area of the lobes was at the 

level of the second cervical vertebra (C2) in 4 (4.5%), the intervertebral 

disc space between C2 and C3 (C2/3) in 30 (34.1%), C3 in 48 (54.5%), 

C3/4 in 5 (5.7%) and C4 in 1 (1.1%) lobes. The cross-sectional shape of  
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the lobes was ovoid in 49 (55.7%), triangular in 5 (5.7%) and having a 

shape between both in 34 (38.6%) lobes. An isthmus, connecting the 

caudal aspect of both lobes ventral to the trachea, was seen in only one 

dog. It was only visible on transverse image planes, but was visible on 

all image weightings. The best visibility of the isthmus was obtained on 

substraction images (post-contrsast T1W – pre-contrast T1W images) 

(Figure 1).  

 

 
Fig. 1: Transverse substraction (post-contrast T1W minus pre-contrast 
T1W) image obtained at the caudal part of the thyroid gland. Two open 
white arrowheads indicate the presence of an isthmus, spanning the 
ventral aspect of the trachea and connecting the caudoventral aspect of 
both thyroid lobes. C3=third cervical vertebra; E=esophagus; T=trachea, 
J=external jugular vein. 
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Parathyroid glands could not be detected in any sequence in any dog. 

The homogeneity of the lobes on pre-contrast T1-weighted images was 

assessed on 45 lobes in 23 dogs. Of these, 14 (31.1%) had a 

homogeneous parenchyma, and 31 (68.9%) had a heterogeneous 

parenchyma. The inhomogeneity resulted from hypointense areas in 20 

(64.5%), hyperintense areas in 2 (6.5%), and from a combination of 

hypointense and hyperintense areas in 9 (29.0%) lobes. A difference in 

homogeneity between both left and right lobes was seen in 4 of 22 

thyroid glands. On post-contrast T1-weighted images, 34 lobes in 18 

dogs were evaluated. Of these, 28 (82.4%) were homogeneous, and 6 

(17.6%) were inhomogeneous. The inhomogeneity resulted from 

hypointense areas in 4 (66.7%), and hyperintense areas in 2 (33.3%) 

lobes. None of these contained a combination of both hypointense and 

hyperintense areas. A difference in homogeneity between both lobes was 

only seen in 1 thyroid gland. Sixty-two lobes were assessed on T2-

weighted images. Of these, 3 (4.8%) were homogeneous, and 59 

(95.2%) were inhomogeneous. The inhomogeneity resulted from 

hypointense areas in 13 (22.0%), hyperintense areas in 14 (23.7%), and 

from a combination of hypointense and hyperintense areas in 32 

(54.2%). A difference in homogeneity between both lobes was seen in 1 

thyroid gland. Thirty-seven lobes in 19 dogs were assessed on transverse 

and sagittal 2D T2* GE sequences. Of these, 24 (64.9%) were 

homogeneous, and 13 (35.1%) inhomogeneous. The inhomogeneity 

resulted from hypointense areas in 11 (84.6%), hyperintense areas in  
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none, and a combination of hypointense and hyperintense areas in 2 

(15.4%) lobes. A difference in homogeneity between both lobes was 

seen in 1 thyroid gland. On 3D T2* GE sequences, 16 lobes were 

evaluated. Two (12.5%) lobes were homogeneous, and 14 (87.5%) were 

inhomogeneous. The inhomogeneity resulted from hypointense areas in 

12 (85.7%), hyperintense areas in 1 (7.1%), and a combination of 

hypointense and hyperintense areas in 1 (7.1%) lobes. A difference in 

homogeneity between both lobes was seen in 2 thyroid glands. Sixteen 

lobes were evaluated on PD-weighted sequences. Ten (62.5%) lobes 

were homogeneous, and 6 (37.5%) were inhomogeneous. The 

inhomogeneity resulted from hypointense areas in none, hyperintense 

areas in 2 (33.3%) and a combination of hypointense and hyperintense 

areas in 4 (66.7%) lobes. A difference in homogeneity between both 

lobes was not found in any thyroid gland. The homogeneity of thyroid 

gland parenchyma on the different sequences is graphically represented 

in (Figure 2). 
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Fig. 2: Column chart representing different patterns of homogeneity in 
the different sequences used. T1=pre-contrast T1-weighted images; 
T1+C=post-contrast T1-weighted images; T2=T2-weighted images, 
GE=2D T2* gradient echo; 3DT2*GE=three-dimensional T2* gradient 
echo; PD=proton density weighted images. 
 

The intensity of the lobes on pre-contrast T1-weighted images was 

evaluated on 47 lobes in 24 dogs. Of these, 24 (51.1%) were isointense 

to the surrounding muscles, and 23 (48.9%) had an intensity between 

muscle and fat (Figure 3A). No lobe was iso- or hyperintense to fat. On 

post-contrast T1-weighted images, 36 lobes were assessed in 19 dogs.  
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Fig. 3: Pre (A)- and post (B)- contrast transverse T1-weighted images 
obtained at the maximum cross-sectional diameter of the thyroid lobes. 
White arrowheads indicate both thyroid lobes. C2/3=intervertebral disc 
space between the second and third cervical vertebrae; E=esophagus; 
T=trachea; Lco=musculus longus colli; Lca=musculus longus capitis; 
St=musculus sternothyroideus; Sc=musculus sternocephalicus; 
C=common carotid artery; J=external jugular vein. 
 

None were isointense to muscles, 25 (69.4%) had an intensity between 

muscle and fat, 9 (25.0%) were isointense to fat, and 2 (5.6%) were 

hyperintense to fat (Figure 3B). The intensity of the lobes on T2-

weighted images was evaluated on 62 lobes. None were isointense to 

muscles, 60 (96.8%) had an intensity between muscle and fat, 2 (3.2%) 

lobes were isointense to fat, and none were hyperintense to fat (Fig. 4). 
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Fig. 4: Transverse (A), dorsal (B) and sagittal (C) T2-weighted images 
showing the thyroid gland (arrowheads). Right side is left on the 
transverse and dorsal images and cranial is left on the sagittal image. 
C1=transverse process of the atlas; C2=dens axis; C3=vertebral body of 
the third cervical vertebra; E=esophagus; T=trachea; Lco=musculus 
longus colli; Lca=musculus longus capitis; C=common carotid artery. 
 

The intensity of the lobes on transverse and sagittal 2D T2* GE 

sequences was evaluated on 38 lobes in 20 dogs. Two (5.3%) lobes were 

isointense to muscle, 10 (26.3%) lobes had an intensity between muscle  
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and CSF, 22 (57.9%) were isointense to CSF and 4 (10.5%) were 

hyperintense to CSF (Figure 5A). The intensity of the lobes on 3D T2* 

GE sequences was assessed on 16 lobes. All of them had an intensity 

equal to that of CSF (Figure 5B).  

 
Fig. 5: Transverse GE (A) and 3D T2* GE (B) images showing both 
thyroid lobes at their maximum cross-sectional diameter (arrowheads).  
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The intensity of the lobes on PD-weighted images was assessed on 16 

lobes. None were isointense to muscles, 14 (87.5%) had an intensity 

between muscle and fat, 2 (12.5%) were isointense to fat and none were 

hyperintense to fat (Figure 6).  

 

 
Fig. 6: Transverse proton density weighted image obtained at the 
maximum cross-sectional diameter of the thyroid lobes (arrowheads). 
C3=third cervical vertebra; E=esophagus; T=trachea; C=common 
carotid artery; J=external jugular vein. 
 

The relative intensity of thyroid gland parenchyma on different 

sequences is graphically represented in (Figure 7). 
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Fig. 7: Column chart representing relative thyroid tissue intensity on the 
different sequences used. T1=pre-contrast T1-weighted images; 
T1+C=post-contrast T1-weighted images; T2=T2-weighted images, 
GE=2D T2* gradient echo; 3DT2*GE=three-dimensional T2* gradient 
echo; PD=proton density weighted images. 
 

On transverse sections, the mean common carotid diameter was 4.0 mm 

(95% CI [3.8 – 4.2]), the mean maximal thyroid lobe diameter was 8.1 

mm (95% CI [7.6 – 8.5]) and the mean ratio of maximal thyroid 

diameter over common carotid diameter was 2.04 (95% CI [1.96 – 

2.13]). There was a strong correlation between body weight and  
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common carotid size (rs=0.814) and a moderate correlation between 

body weight and thyroid size (rs=0.690). As expected, no correlation was 

found between body weight and ratio of thyroid lobe size over common 

carotid size. This ratio was also normally distributed, as the null 

hypothesis of normality was not rejected (P=0.071). 

 
DISCUSSION 

The characteristic shape, location and different intensity of thyroid lobes 

compared to surrounding structures made them easily detectable in all 

dogs. By far the most common location of the thyroid lobes was 

dorsolateral to the trachea, having a maximal cross-sectional area located 

ventral to C2/3 or C3 in 85% of the cases, and with the majority of the 

lobes being ovoid shaped on transverse section. Similar observations 

regarding the location and shape of the lobes were made in a previous 

study describing the CT appearance of the normal thyroid gland in a 

different population of dogs.28 An isthmus was seen in 1 out of 44 dogs 

in this study, and in 1 out 25 dogs in the CT study, both being present in 

large breed dogs.28 The uncommon presence of an isthmus, which is 

predominantly seen in large breed dogs agrees with the literature.4 

Similar to CT, normal parathyroid glands could not be seen on MRI and 

results from the limited spatial resolution of this technique.6,28-30 

On pre-contrast T1W images, the relative intensity of the gland was 

isointense to muscle or slightly higher. The parenchyma was considered 

inhomogeneous with hypointense areas in the majority of the cases.  
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After gadolinium administration, the intensity of the gland diffusely 

increased to an intensity in between muscle and fat or equal to fat. 

Additionally, the parenchyma became homogeneous in more than 80% 

of the subjects. On T2W images, the gland nearly always had a 

heterogeneous parenchyma with a relatively higher intensity compared 

to pre-contrast T1W images, having an intensity in between muscle and 

fat. The most common pattern of heterogeneity was due to a mixture of 

hypo- and hyperintense areas in this sequence. On 2D T2* GE images, 

the intensity was generally high, often being equal or higher than CSF. 

The parenchyma appeared homogeneous in 65% and heterogenous in 

35%. When heterogeneous, it was most often due to focal hypointense 

areas. On 3D T2* GE, a sequence with different TR, TE, FA and with 

higher spatial resolution than previous sequence, the parenchyma was 

much more frequently heterogeneous with presence of hypointense 

areas. The intensity of the gland was always isointense to CSF in this 

sequence. Finally, on PD-weighted images, the intensity of thyroid tissue 

was at least always higher than surrounding muscles, sometimes being 

isointense to fat. Contrary to T2W images, thyroid parenchyma was 

most often homogeneous in this sequence.  In all sequences, a difference 

in homogeneity in between both left and right lobes was only rarely 

seen, while a difference in intensity was never observed. The thyroid 

lobes were on average almost exactly twice the size of the common 

carotid artery. This ratio is an easy method for estimating the thyroid 

gland size as it is easy to measure, easy to remember and most  
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importantly, is not dependent on the dog’s body weight, avoiding the 

necessity of using reference tables for thyroid size in different breeds.  

The limitation of our study is its retrospective nature, resulting in 

different parameter settings used for different sequences, making exact 

descriptions for specific sequences impossible, but rather gives a 

summary of MRI features on commonly used image weightings. 

Due to the excellent visibility, characteristic signal intensity and 

homogeneity of normal thyroid tissue, MRI can be used in the diagnosis 

of both diffuse and focal thyroid disease. Various reports in human 

medicine have attested to the usefulness of MR imaging in evaluating 

congenital thyroid disorders and diffuse diseases of the thyroid such as 

adenomatous multinodular goiter, amyloidosis, hemochromatosis, 

Hashimoto thyroiditis, Riedel’s thyroiditis, granulomatous thyroiditis, 

infectious thyroiditis, and lymphoma.5,6,11,23,24,26,27 Although an overlap 

in intensity and homogeneity changes was described in the different 

types of diffuse thyroid disease in people, similar indications may be 

found in dogs helping in the diagnosis of lymphocytic thyroiditis and 

thyroid atrophy. More important, we expect in analogy to human 

literature this modality to have great benefits in thyroid tumor treatment 

planning in dogs. Indications for cross-sectional imaging are the 

assessment of local tumor invasion, detecting regional 

lymphadenopathy, differentiating thyroid neoplasia from other large 

neck masses and evaluating the intrathoracic extent of such 

masses.5,19,23,27 At this stage however, it seems unlikely that MRI will  



 165 

CHAPTER 5 

 

accurately permit definition of the histological type of tumor.6,7,23,29 

Advantages of MRI over CT are the excellent contrast resolution 

resulting in better tissue characterization and better anatomical detail, the 

absence of streak artifacts caused by x-ray beam hardening, the absence 

of need to administer contrast medium to delineate blood vessels, the 

absence of ionizing radiation and the direct multiplanar imaging 

capabilities.6,7,27,29,30 Another advantage is that gadolinium, contrary to 

iodinated contrast media, does not interfere with thyroid function and 

subsequent nuclear imaging.6,10,11,24 Finally, accuracy in tumor invasion 

detection in trachea, esophagus, blood vessels, muscle and nerves, 

detection of cervical lymphadenopathy and detection of recurrent thyroid 

carcinoma after treatment is thought to be higher with MRI.6,8,23,26,31,32 

This technique therefore potentially combines the advantages of CT and 

US.7,23,29  

 

*  GE Signa 1.5 Tesla Echospeed; General Electric Medical Systems, 

Milwaukee, WI, USA. 

† Multihance, Bracco, Milan, Italy. 

§ OsiriX v.2.7.5. Advanced open source PACS workstation. DICOM 

viewer. 
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Acquired primary hypothyroidism and neoplasia are the two most 

common thyroid pathologies in the adult dog.1-4 Acquired primary 

hypothyroidism has a prevalence of 0.2-0.8% in the canine population and 

is the consequence of an immune-mediated lymphocytic thyroiditis or an 

idiopathic follicular atrophy. Both conditions result in a decreased 

secretion and a subsequent shrinking of the gland.1-6 Hypothyroidism is 

the most common endocrine disorder in the dog, but is at the same time 

the most over-diagnosed one.7-11 The frequent false-positive diagnoses 

result from the non-specific presenting clinical signs (e.g. obesitas, 

alopecia, lethargy), the suboptimal accuracy of available biochemical 

tests, and the fact that many factors may lower the serum thyroid hormone 

concentrations. These last mentioned complicating factors may be 

physiologic influences (breed, age, daily fluctuations,…), pharmaceuticals 

(corticoids, NSAID’s, anesthetics,…), and systemic diseases (Cushing’s 

disease, chronic renal failure, diabetes mellitus,…).1,3,8-10,12-15 The fact that 

acquired hypothyroidism is a relatively common disorder and not always 

straightforward to diagnose, led to the necessity for additional diagnostic 

tests increasing the accuracy in this disorder.  

 

Scintigraphy is capable of evaluating the function, but not the 

morphology of the gland as a consequence of its extremely poor inherent 

spatial resolution.16-19  
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Tumor treatment planning is therefore made impossible using this 

technique, and its usefulness in the diagnosis of acquired 

hypothyroidism is still under investigation by other research teams.20-24 

It has therefore been decided that nuclear medicine of the canine thyroid 

gland would fall beyond the scope of this work and that we would focus 

on the “non-functional” or “morphological” imaging modalities, 

including RX, US, CT, and MRI. 

 

The first hypothesis of our study was that grayscale ultrasound 

measurements, using electronic calipers, would accurately pick up the 

shrinking of the gland and would therefore result in a quick and efficient 

complementary diagnostic tool in the diagnosis of hypothyroidism. Before 

being able of using US measurements as a diagnostic tool, we needed to 

test the precision or repeatability of such measurements. This was 

obtained by calculating the intra- and interobserver variability of US 

measurements on healthy thyroid glands.  

From this first study (Chapter 2) it appeared that US measurements 

performed by different observers had a low repeatability, or in other 

words, that the measurements showed a large variability. However, the 

variability decreased significantly when a single observer performed the 

measurements. It was also shown that the lowest variability was obtained 

when measuring the maximal height of the gland, or when calculating the 

volume of the gland by using a formula for a rotational ellipse (height x 

width x length x 0,479).  



 173 

GENERAL DISCUSSION 

 

On the contrary, maximal width and maximal length measurements 

resulted in the largest variability.25 The reason for the large variability of 

length measurements was 1) thyroid lobes anatomically have a pointed 

caudal end, thereby rendering the most caudal point of the gland difficult 

to identify on longitudinal images and 2) thyroid lobes have a curving 

shape in a dorsal plane, making it unlikely to include the entire lobe on 

thin ultrasound images when scanning them in a sagittal plane. The reason 

that width measurements also resulted in a large variation was less clear. 

The fact that one observer used a different scanning protocol was 

hypothesized to be the reason for this finding. This observer measured 

height and width of the gland on the same transverse images, while the 

two others did not identify the maximal height and maximal width at the 

same craniocaudal level in the gland. We therefore presumed that the first 

observer did not always correctly identify the maximal width of the gland. 

A first conclusion from this study was that performing thyroid gland 

measurements should be based on a well-defined protocol. The second 

conclusion was that as a result of the high inter-observer variability, and 

because we are probably looking for small size differences between 

healthy and hypothyroid thyroid glands, we could question the value of 

performing such measurements in an attempt to differentiate both 

groups. For confirming this, similar studies should be performed on 

hypothyroid dogs to determine if the inter-observer variability would be 

higher than the difference observed between hypothyroid versus normal 

dogs. 
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A last conclusion was that when measurements are to be performed (e.g. 

in follow-up studies), they should be done by a single observer that should 

measure the maximal height or calculate the volume of the gland for 

estimating the size of the gland. 

 

Because results from the first study demonstrated that US measurements 

alone would be insufficient to diagnose hypothyroidism with grayscale 

US, we looked for additional US features in hypothyroid dogs in the 

subsequent study (Chapter 3). 

The formulated hypothesis was that several other US characteristics 

would be recognizable in hypothyroid dogs. Recorded parameters beside 

thyroid gland size were lobe shape, thyroid capsule demarcation, relative 

echogenicity of the gland parenchyma compared to the surrounding 

musculature, and homogeneity of the gland parenchyma. 

The highest sensitivity was obtained for relative echogenicity. It was seen 

that 77% of the diseased thyroid lobes were hypoechoic compared to 

surrounding muscles, instead of being hyperechoic as previously 

described.26 An abnormal capsule demarcation, represented by an 

undulating thyroid capsule, was seen in 71%, and an abnormal lobe shape 

and abnormal parenchyma homogeneity were both seen in 65% of the 

lobes. As expected from the previous study, the lowest sensitivity was 

obtained for thyroid size (47%). Combining the five parameters in the 

same dog, grayscale US was able to detect 94% of abnormal thyroid 

glands. 
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Because of this excellent test result, we suggested that US could be used 

as an easy and quick additional test in the diagnosis of acquired primary 

hypothyroidism.27-29  

During the follow-up period, after initiation of treatment against 

acquired hypothyroidism, a significant continuous decrease of the 

thyroid volume was noted. A slight, but not significant, increase in 

echogenicity of the gland was also noted. A possible explanation for the 

further decrease in thyroid gland size observed in our dogs could be the 

negative feedback mechanism on the TSH secretion of the pituitary 

gland, being triggered by the supplementation of levothyroxine. Another 

reason could be the progression of lymphocytic thyroiditis into thyroid 

atrophy, supporting a hypothesis that idiopathic follicular atrophy may 

be the end-result of a lymphocytic thyroiditis. The possible cause for the 

slight increase in echogenicity of the gland may be the gradual decrease 

of inflammatory reactions in these glands and the gradual replacement of 

destroyed gland parenchyma by fibrous connective tissue.  

In a future study we would need to define the accuracy of grayscale 

ultrasound in a blinded study, using both healthy and hypothyroid dogs. 

It would further be interesting to investigate whether the two different 

causes of acquired primary hypothyroidism, lymphocytic thyroiditis and 

idiopathic thyroid gland atrophy, would result in different US features. 

For doing so, thyroid gland biopsies should be obtained under accurate 

US guidance during the same US investigation. 
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Unfortunately this was not performed in the current study, as our dogs 

were simultaneously involved in another study, making the use of 

anesthetic drugs needed to safely perform biopsies impossible.  

 

The other important but less frequent thyroid gland pathology in the 

adult dog is neoplasia. Thyroid neoplasia account for 1-4% of all canine 

neoplasia and for 10-15% of all head and neck neoplasms in the dog.4 In 

contrast to most feline thyroid tumors, neoplasia in dogs are carcinomas 

in up to 90% of all clinically detectable masses. These carcinomas are 

large, rapidly growing, locally invasive and usually non-secreting 

tumors.2,4,30,31 Only 10-20% secrete excessive thyroid hormones, 

resulting in clinical signs of hyperthyroidism. On the other hand, when 

almost the entire gland is destroyed by a bilateral carcinoma, signs of 

hypothyroidism can be seen. This has been reported to be present in up 

to 30% of thyroid neoplasia.2,4  

Confirmation of thyroid carcinoma is usually obtained by performing an 

US examination, combined with cytology/histopathology from FNAs or 

tissue core biopsies under accurate US guidance.26,31-34 Because of its 

superficial location, high frequency transducers can be used to examine 

the morphology of the thyroid gland. This results in high spatial-

resolution images, making US a very well suited imaging modality for 

this purpose. Other advantages of US are its widespread availability, the 

relative low cost compared to other imaging modalities, the absence of 

ionizing radiation, and a short examination time.19,30,32-39 
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On US, thyroid carcinomas appear as large, hypoechoic, non-

homogeneous masses, sometimes containing multiple cysts, and with 

variable delineation. Particularly in poorly delineated neoplasia, invasion 

of surrounding structures such as the esophagus, fascial sheaths and the 

cervical vasculature can be detected with US. This information is helpful 

in determining whether surgical treatment is a plausible therapeutic 

option.26,31 

 

Another hypothesis in this thesis was that CEUS, by looking at the 

vascularization and perfusion of thyroid neoplasia, could add substantial 

information to grayscale US in grading the malignancy of these 

tumors.30,40-44 We however, in several unpublished attempts, failed to 

accurately demonstrate the vascularization and perfusion of the gland in 

healthy experimental dogs. This failure resulted from massive contrast 

enhancement of the adjacent common carotid artery, obscuring much 

lower signal intensities from the thyroid gland parenchyma. Further 

attempts, using different imaging protocols (e.g. lower contrast dosages, 

lower beam intensity), will hopefully lead to successful description of 

the normal vascularization and perfusion of the gland, both potentially 

useful in the diagnosis of thyroid neoplasia and acquired primary 

hypothyroidism. 
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The prognosis of thyroid carcinoma, besides the presence of distant 

metastasis, has been reported to be dependent on the location, local 

invasiveness and size of the mass.45-48 Limitations of US in this regard 

however are 1) the low confidence in identifying thyroidal origin of 

large neck masses distorting the anatomy of the neck, 2) the limited field 

of view related to the small size of US probes and 3) the inability of US 

beams to penetrate soft tissue - gas interfaces, thereby making it 

impossible to detect tumor invasion in the thoracic cavity and limiting 

the assessment of soft tissues dorsal to the trachea to a lateral approach 

of the neck.16,18,36,49 

A next hypothesis therefore was that cross-sectional imaging modalities, 

like CT and MRI, would overcome the aforementioned limitations of 

US.16,19,32,38-40,50,51 However, before being able to use these imaging 

modalities in staging and planning the treatment of thyroid neoplasia and 

also potentially use them as an additional diagnostic test in acquired 

hypothyroidism, normal CT and MRI characteristics need to be 

described first. The formulated hypothesis for the subsequent study 

(Chapter 4) was that canine thyroid tissue would easily be recognizable 

and would have a characteristic appearance on CT.  

Even in the absence of intravenous contrast medium injection, normal 

thyroid lobes demonstrated a high HU value compared to surrounding 

tissues, confirming the hypothesis that thyroid tissue is readily 

distinguishable on CT.52  
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The natural high iodine concentration present in thyroid follicles is the 

reason for the high HU values, as iodine is an effective X-ray absorber 

as a consequence of its atomic number of 53.19,53-58 

The mean pre-contrast attenuation value of 107 HU for normal canine 

thyroid tissue reported here, should however not be interpreted strictly, 

as geographic differences and alimentary iodine intake differences due 

to different food compositions and tap water iodine concentrations have 

been reported to alter the HU values significantly in people.54,59 After 

intravenous contrast injection, thyroid attenuation values increased 

homogeneously to a mean value of 169 HU. It was also noted that 

measured volume of the gland significantly increased after contrast 

medium injection. This apparent increase in size is likely related to false 

size measurements related to blooming artifacts, rather than true volume 

augmentations. This artifact, appearing at the edges of highly attenuating 

structures on post-contrast CT images, is for instance known to falsely 

increase size measurements of vascular stents in human angiographic 

studies.60-62 The size, location, shape and vascularization of the thyroid 

gland were also described in this study. Although not statistically 

significant, younger dogs had relatively larger glands than older dogs, 

potentially underlying the importance of the thyroid gland during 

growth. Normal parathyroid glands could not be detected, which is 

related to the relatively low spatial resolution of CT compared to 

US.52,63,64 
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In conclusion, this study demonstrated several imaging features of the 

normal canine thyroid gland allowing its identification on cervical CT 

scans. These characteristic features could be used to determine a 

thyroidal origin of large neck masses, staging and planning the treatment 

of thyroid carcinomas and have potential applications in acquired 

primary hypothyroidism. The last mentioned relates, besides a 

measurable shrinking of the gland, to decreased number of thyroid 

follicles, subsequent lowered iodine concentrations, and resulting 

decreased HU values.19,35,53-55,65 

 

The same hypothesis as for the previous study was formulated for the 

MRI study (Chapter 5). The appearance of the thyroid gland on different 

MRI sequences was described using different image planes. The 

characteristic shape, location and intensity of thyroid lobes compared to 

surrounding structures made the thyroid gland readily discernible in all 

dogs.66 The maximal thyroid lobe diameter measured on transverse 

section was on average twice the average diameter of the common 

carotid artery. This newly introduced measurement could facilitate the 

size evaluation of thyroid glands, obviating the need of using time 

consuming formulas in the correction of thyroid volume for body weight 

(since reference values for thyroid size in different dog breeds are not 

available in the literature).27,29,52 
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Considering the excellent conspicuity and characteristic appearance of 

the canine thyroid gland, we concluded that MRI could be beneficial in 

the diagnosis of diffuse thyroid diseases like acquired hypothyroidism, 

in differentiating thyroidal versus non-thyroidal neck masses and, in 

staging and surgery planning of thyroid neoplasia in this 

species.16,18,19,36,38,40,46,47,49-51,67-71 
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SUMMARY 

 
For the diagnosis of thyroid abnormalities in people, all currently 

available medical imaging modalities are used, each of them having 

advantages and disadvantages. Reports on the use of medical imaging in 

canine thyroid pathology are sparse. Those available relate to the use of 

US and planar scintigraphy in cases of thyroid carcinomas. The 

increased availability of other imaging modalities in veterinary 

medicine, like CT and MRI, makes them potentially useful as 

complementary tests in the sometimes-difficult diagnosis and treatment 

planning of thyroid pathology in the dog. 

 
The first chapter gives a review of the current literature regarding 

thyroid imaging in the dog. It describes the advantages and 

disadvantages of RX, US and scintigraphy in the two most frequent 

thyroid pathologies of the dog: acquired hypothyroidism and thyroid 

neoplasia. US and scintigraphy remain the two most indicated imaging 

modalities for these thyroid abnormalities. However, as in human 

medicine, CT and MRI also have potential indications. 

 

The second chapter complements the literature on the normal US 

anatomy of the thyroid gland. The repeatability of US measurements 

was evaluated by calculating the variability of four different parameters 

(maximal length, maximal width, maximal height and volume) within 

observer, between observer and between dogs. 
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SUMMARY 

 
The height and the volume had the lowest intra- and inter-observer 

variability, while measurements of the length had the biggest intra- and 

inter-observer variability. The intra-observer variability was smaller than 

the inter-observer variability. These conclusions were important to 

conduct the study from the third chapter. 
 
The third chapter described the US features of the thyroid gland in a 

population of dogs suffering from acquired hypothyroidism. A 

combination of the following features could be observed: hypoechoic 

gland parenchyma, inhomogeneous gland parenchyma, irregular 

glandular capsule demarcation, rounded lobe shape on transverse section 

and decreased thyroid gland size. Subsequently, the sensitivity of US 

was described for this population. Combining the five aforementioned 

US features resulted in a sensitivity of 94% for the detection of acquired 

hypothyroidism. Finally the evolution of those US features after 

initiation of treatment was described. A continuous decrease of thyroid 

gland volume was seen after treatment; while other investigated 

parameters did not change significantly during the follow-up period. It 

was concluded from this study that US is a sensitive and quick test for 

the diagnosis of acquired hypothyroidism in dogs. 
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SUMMARY 

 
The fourth chapter described the CT features of the normal canine 

thyroid gland. The mean pre- and post-contrast attenuation values were 

very high for soft tissues being 107.5 HU and 169.0 HU, respectively. 

After injection of IV contrast medium, the thyroid gland volume 

increased in size. All thyroid lobes were homogeneous on pre- and post-

contrast images. In a craniocaudal direction, the gland spanned a region 

from the 1st to the 8th tracheal ring and the right lobe was more cranially 

positioned than the left in 58% of the cases. On transverse images the 

lobe was ovoid in 72%, and its location was dorsolateral to the trachea in 

90%. Parathyroid glands could not be identified, and an isthmus was 

only seen in 1 out of 25 dogs. Considering the excellent visibility and 

characteristic appearance of the normal canine thyroid gland, we 

concluded that CT could be beneficial in the differentiation of thyroidal 

versus non-thyroidal neck masses. CT also yields potential in the staging 

of thyroid carcinomas. 
 
Finally, the fifth chapter described the normal MRI features of the 

thyroid gland on a population of forty-four dogs. The appearance of the 

gland was described on commonly used MRI sequences. The 

characteristic shape, location and intensity of thyroid lobes compared to 

surrounding structures made the thyroid gland easily detectable in all 

dogs. 
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SUMMARY 

 
The far most common location of the thyroid lobes was dorsolateral to 

the trachea in 80% of the dogs, with the maximal cross-sectional area of 

the lobes located ventral to C2/3 or C3 in more than 85% of the cases. 

Fifty-six percent of the lobes had an ovoid shape on transverse section. 

An isthmus was seen in 1 large breed dog and parathyroid glands could 

not be seen. The maximal thyroid lobe diameter measured on transverse 

section was on average twice the average diameter of the common 

carotid artery. Considering the excellent conspicuity and characteristic 

appearance of the canine thyroid gland, it was concluded that MRI could 

be beneficial in the diagnosis of diffuse thyroid diseases, in 

differentiating thyroidal versus non-thyroidal neck masses and, in 

staging and surgery planning of thyroid neoplasia. 
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SAMENVATTING 

 
Alle huidig beschikbare beeldvormingstechnieken worden tegenwoordig 

aangewend bij de diagnosestelling van schildklieraandoeningen bij de 

mens. Elke beeldvormingsmodaliteit heeft hierbij zijn voor- en nadelen. 

In de diergeneeskunde daarentegen, is het aantal publicaties over het 

gebruik van medische beeldvorming van schildklieraandoeningen bij de 

hond beperkt. Beschikbare studies rapporteren het gebruik van 

echografie en planaire scintigrafie in gevallen van schildklier 

carcinomen. De toegenomen beschikbaarheid van andere 

beeldvormingstechnieken in de diergeneeskunde, zoals bijvoorbeeld CT 

en MRI, maakt deze potentieel waardevol als bijkomstige testen in de 

soms moeilijke diagnose en het opstellen van een geschikt 

behandelingsprotocol voor schildklieraandoeningen. 

 

Het eerste hoofdstuk is een literatuurstudie over bestaande medische 

beeldvorming van de schildklier bij de hond. Hierbij worden de voor- en 

nadelen van RX, echografie en scintigrafie besproken in het licht van de 

twee meest voorkomende schildklieraandoeningen, namelijk verworven 

hypothyroidie en schildkliertumoren. Echografie en scintigrafie blijven 

hiervoor de twee meest aangewezen beeldvormingstechnieken. Maar, in 

analogie met de mens, hebben CT en MRI evenzeer potentiële 

toepassingen. 
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Het tweede hoofdstuk is een aanvulling op de huidige literatuur over 

echografie van de normale schildklier. De herhaalbaarheid van 

echografische metingen werd hierbij  nagegaan door de variatie van drie 

verschillende parameters (maximale lengte, maximale breedte, maximale 

hoogte en volume) na te gaan binnen dezelfde onderzoeker, tussen 

verschillende onderzoekers en tussen verschillende honden. De hoogte- 

en volumemetingen hadden de kleinste variatie binnen dezelfde 

onderzoekers en tussen verschillende onderzoekers. De variatie binnen 

de verschillende onderzoekers was kleiner dan tussen de onderzoekers. 

Deze bevindingen waren belangrijk voor de uitvoering van de studie uit 

volgend hoofdstuk. 
 

Het derde hoofdstuk beschrijft de echografische veranderingen van de 

schildklier in een populatie van honden met verworven hypothyroidie. 

De volgende kenmerken werden waargenomen: hypoechogeen 

parenchym,  heterogeen parenchym, onregelmatige aflijning van het 

kapsel, ronde vorm van de schildklierlob op dwarsdoorsnede en 

verkleinde schildklier grootte. Vervolgens werd de sensitiviteit van 

echografie berekend voor deze populatie. Door de vijf voorgenoemde 

parameters te combineren, bereikten we met echografie een sensitiviteit 

van 94% in de detectie van verworven hypothyroidie. Tot slot werd, na 

het opstarten van de behandeling, de evolutie van deze kenmerken in de 

tijd beschreven. Een continue afname in volume van de schilkier werd 

opgemerkt na het opstarten van de behandeling. 
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De andere beoordeelde parameters bleven ongewijzigd tijdens de 

opvolgingsperiode. We besloten dat echografie een gevoelige en snelle 

test was voor het opsporen van verworven hypothyroidie bij de hond. 
 

Het vierde hoofdstuk handelt over de CT kenmerken van de normale 

schildklier bij de hond. De gemiddelde pre- en post-contrast attenuatie 

waarden waren respectievelijk 107,5 en 169,0 HU, hetgeen zeer hoog is 

voor weke delen. Na injectie van intraveneus contrast nam het 

schildklier volume eveneens toe. Alle schildklierlobben zagen er 

homogeen uit op zowel pre- als post-contrast beelden. In een 

craniocaudale richting besloeg de schildklier een regio van de 1ste tot en 

met de 8ste trachearing, waarbij de rechter lob meer craniaal lag dan de 

linker lob in 58% van de gevallen. Op dwarse doorsneden waren de 

schildklierlobben ovaalvormig in 72%, en waren ze dorsolateraal van de 

trachea gelegen in 90% van de gevallen. Bijschildklieren werden niet 

gezien en een isthmus werd slechts bij 1 op de 25 honden aangetroffen. 

Gezien de uitstekende zichtbaarheid en kenmerkende eigenschappen van 

de normale schildklier bij de hond besloten we dat het gebruik van CT 

voordelig zou kunnen zijn om het onderscheid te maken tussen 

nekmassa’s afkomstig van schildklierweefsel en nekmassa’s van andere 

oorsprong. CT heeft eveneens een potentiële rol bij het stageren van 

schildkliercarcinomen. 
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Tot slot werden de normale MRI kenmerken van de schildklier op een 

populatie van 44 honden in het vijfde hoofdstuk beschreven. Het uitzicht 

van de klier werd hierbij beschreven gebruik makende van frequent 

gebruikte sequenties. De kenmerkende vorm, ligging en intensiteit 

vergeleken met de omliggende structuren maakten de schildklier 

duidelijk herkenbaar bij alle honden. Veruit de meest frequente ligging 

van de schildklierlobben was dorsolateraal van de trachea in 80% van de 

honden. De maximale diameter van de lobben was ventraal van C2/3 of 

C3 in 85% van de gevallen gelegen. Zesenvijftig procent van de lobben 

had een ovale vorm op dwarse doorsnede. Een isthmus werd bij slechts 

één hond van een groot rastype aangetroffen en bijschildklieren werden 

niet gezien. De diameter van de schildklierlobben op dwarsdoorsnede 

was gemiddeld gelijk aan twee maal de diameter van de a. carotis 

communis. Gezien de uitstekende zichtbaarheid en kenmerkende 

eigenschappen van de schildklier op MRI werd er besloten dat MRI kon 

bijdragen tot de diagnose van diffuse schildklieraandoeningen, bij het 

onderscheiden van nekmassa’s van schildklieroorsprong en andere 

nekmassa’s, en bij de stagering en pre-operatieve planning van 

schildkliertumoren. 
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