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SUMMARY 
This Ph.D. study constitutes part of an extensive project dealing with the 

synthesis of biologically relevant sphingoid and ceramide analogues.  In this context, 

we effected the synthesis of two different classes of sphingolipid analogues.  

In a first part, we aimed at the synthesis of hybrid PDMP analogues, based 

both on PDMP and styryl analogues of natural ceramide.  Since preliminary synthetic 

approaches based on a mono-protective strategy resulted in undesired cyclisation 

products, a double-protective strategy was devised in which the secondary alcohol 

and the tert-Boc protected amine were locked in an oxazolidine ring.  Hence, the 

desired E-styryl PDMP analogues have been synthesised in 16 steps starting from D-

serine.  The synthetic route was developed such that future introduction of different 

aryl groups is straightforward.  Throughout the synthetic coarse, we gained access to 

a number of structural analogues, which provided more insight into the structure-

activity relationship of this class of compounds.  Biological evaluation, both in vitro on 

rat liver Golgi extracts as in vivo on HEK-293 and COS-7 cells revealed two lead 

compounds with comparable inhibitory potency as PDMP, which could be elaborated 

to more potent inhibitors. 

In a second part, we aimed at the synthesis of a new class of homoceramides, 

named N-homoceramides, which contain an extra methylene-spacer between the N-

acyl chain and C2 of the sphingoid backbone.  To this aim, we evaluated the 

introduction of branching by use of a cyano group, both in a sugar approach as in 

regioselective epoxide opening.  Since these experiments failed to provide a reliable 

means for introduction of branching, we opted to introduce an extra methylene 

spacer by use of 1,3-dithiane.  Hence, the desired N-homo(dihydro)ceramides have 

been synthesized in 20 steps starting from D-ascorbic acid, a common food 

preservative.  Key reaction in this synthetic approach was a fully regioselective 

epoxide opening with lithium 1,3-dithiane.  In addition, a fully stereoselective Grignard 

reaction gave access to D-ribo-N-homophytoceramide. 
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 ix

SAMENVATTING 
Dit doctoraatswerk maakt deel uit van een omstandig project over de synthese 

van biologisch relevante sfingoïd- en ceramide-analogen.  In dit opzicht werden twee 

verschillende klassen van verbindingen gesynthetiseerd. 

In een eerste deel werd er geopteerd om hybride PDMP analogen the 

synthetiseren, die zowel op PDMP als op E-styreen analogen van natuurlijk ceramide 

gebaseerd zijn.  Aangezien preliminaire synthetische routes die gebaseerd waren op 

enkelvoudige bescherming van de sfingoïd stikstof resulteerden in ongewenste 

cyclisatie reakties, werd er geopteerd om een dubbel bescherming in te voeren 

waarbij de tert-Boc beschermde amine functie en het secundare alcohol van de 

sfingoïd keten in een oxazolidine ring werden vastgelegd.  Bijgevolg werden de 

gewenste E-styreen analogen uitgaande van D-serine gesynthetiseerd in 16 stappen.  

De synthetische route werd zodanig opgevat dat verschillende aromaten op 

eenvoudige wijze zullen ingevoerd kunnen worden bij verdere synthetische 

modificaties.  Er werd eveneens toegang verkregen tot een aantal structuuranalogen 

die meer inzicht konden verschaffen in de sructuur-aktiviteitsrelatie van deze klasse 

van verbindingen.  In vitro biologische evaluatie op Golgi extracten en in vivo 

evaluatie op HEK-293 en COS-7 cellen bracht twee gelijkwaardige verbindingen 

verbindingen in vergelijking met PDMP aan het licht, die verder kunnen uitgewerkt 

worden tot meer potente inhibitoren. 

In een tweede luik werd de synthese van een nieuwe klasse van 

homoceramiden, N-homoceramiden genaamd, uitgewerkt.  Deze verbindingen 

bevatten een extra koolstof atoom tussen de N-acyl keten en C2 van de sfingoïd 

keten.  Om dit te bewerkstelligen werd zowel vanuit een suiker als door middel van 

regioselectieve epoxide opening getracht om een cyanide in te voeren.  Aangezien 

deze benaderingswijze niet voldeed voor de synthese van de gewenste 

verbindingen, werd geopteerd om de vertakking in te voeren door middel van 1,3-

dithiaan.  Bijgevolg werden de gewenste N-homo(dihydro)ceramiden in 20 stappen 

gesynthetiseerd, uitgaande van D-isoascorbinezuur, een veel gebruikt bewaarmiddel 

in de voedingsindustrie.  De sleutelreaktie in deze benaderingswijze was de volledig 

regioselectieve epoxide opening met lithium 1,3-dithiaan.  Daarenboven stelde een 

volledig regioselective Grignard reaktie ons in staat om D-ribo-homophytoceramide te 

synthetiseren.  
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2.39a morpholinyl -C16H33 

2.39b pyrrolidinyl -C16H33 
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NHC15H31

O

R2

 
Compound R1 R2 
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2.38d -N3 phenyl 
2.38e -NH2 phenyl 
2.43 pyrrolidinyl H 
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1 SPHINGOLIPIDS 

1.1. HISTORICAL BACKGROUND 

Sphingolipids (SLs), a class of natural products, have been described for the 

first time in 1884 by a German physician, J. L. W. Tudichum.1  He named the three 

related lipids, isolated from human brain by fractional crystallisation, sphingomyelin, 

cerebroside and cerebrosulfatide.  Hydrolysis led to a long carbon-chain aliphatic 

amine, called sphingosine, a name derived from Greek mythology (sphinx) and 

referring to the enigmatic behaviour of this compound.  The structure of sphingosine 

(Figure 1.1) was elucidated by Carter in 1947.2    

 

HO

NH2

OH

C13H27

 
Figure 1.1: Structure of D-erythro-sphingosine. 

 

The structural identification of SLs and the investigation of their metabolism 

were facilitated by autopsy material from patients who had suffered from rare 

metabolic defects.  These sphingolipidoses are characterized by storage of specific 

SLs as a consequence of mutations that lead to deficiency of proteins involved in 

their lysosomal degradation.3   

Sphingolipids (SL) have gained much attention over the last decade since it 

became clear that they not only act as structural elements of cell membranes, but 

also participate in a myriad of biological processes.  An exponentially growing 

research interest in the role of SLs in signal transduction pathways and as mediators 

of cell growth, senescence, differentiation, adhesion and apoptosis,4  was triggered 

by the discovery of sphingosine as an inhibitor of protein kinase C.5 

 

1.2. STRUCTURE AND CLASSIFICATION OF SPHINGOLIPIDS 

At least 300 different SLs are biosynthesized in various mammalian cell types.  

Although structurally diverse, SLs share a hydrophobic component, generally referred 

to as ceramide.  Ceramide is comprised of a sphingosine ((2S,3R,4E)-2-amino-1,3-
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dihydroxy-4-octadecene) backbone and a fatty acid, joined in an amide bond.  The 

important features for biological activity are located at carbons 1-5 of the sphingosine 

backbone and include a primary and secondary hydroxyl group at positions C1 and 

C3 (Table 1.1). 

 
Table 1.1: Structural composition of SLs. 

YO

NHR

OH

C13H27

5

4
3

2
1

 
 Head group (Y) R 

Sphingosine H H 

Neutral Sphingolipids   

Ceramides H C(O)(CH2)nCH3 (n = 14-22) 

1-O-Acyl ceramides C(O)(CH2)nCH3 (n = 14-22) C(O)(CH2)nCH3 (n = 14-22) 

Phosphosphingolipids   

Spingomyelins Phosphocholinyl C(O)(CH2)nCH3 (n = 14-22) 

Sphingosine-1-phosphate PO3
2- H 

Ceramide-1-phosphate PO3
2- C(O)(CH2)nCH3 (n = 14-22) 

Sphingosylphosphorylcholine Phosphocholinyl H 

Glycosphingolipids   

Neutral glycosphingolipids Glucosyl, galactosyl, lactosyl C(O)(CH2)nCH3 (n = 14-22) 

Sulfatides Complex sugar with sulphate 

moieties 
C(O)(CH2)nCH3 (n = 14-22) 

Gangliosides Complex sugar with sialic acid 

residues 
C(O)(CH2)nCH3 (n = 14-22) 

Lysosphingolipids Any group mentioned above H 

 

Sphingoids or sphingoid base refers to sphinganine (dihydrosphingosine; 

Figure 1.2), its homologues and stereomers, as well as hydroxylated and unsaturated 

analogues.6  The chain length of natural sphingoids varies from 14 to 22 carbon 

atoms.  These carbon chains may contain methyl or hydroxyl groups as branches, as 

well as double bonds, in particular between C4 and C5.   
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HO

NH2

OH

C13H27

1
2

3 HO

NH2

OH

C13H27

OH

1
42

3

 
Sphinganine D-ribo-4-hydroxysphinganine 

Figure 1.2:  Structures of sphinganine and phytosphingosine. 

 

Sphingosine bearing two chiral centers prevails in four stereomeric forms 

(Figure 1.3).  The diastereomeric pairs are named D- and L-erythro- and threo-

sphingosine. Naturally occurring SLs possess a D-erythro configuration.  When both 

the secondary hydroxyl and amino groups are on the same side as depicted in the 

Fisher projection, the diastereomers are erythro, in analogy to erythrose.  In contrast, 

when these groups are on opposite sides, the isomers are referred to as threo in 

analogy to threose.  The D- and L-descriptors are determined by the position of the 

C3-hydroxyl group.  A hydroxyl group to the right refers to D whereas the hydroxyl 

group is oriented to the left in the L-configuration. 

 
CH2OH

H NH2

OHH

R  

CH2OH

H2N H

HHO

R  

CHO

H OH

OHH

CH2OH  
D-erythro-sphingosine 

(2S, 3R) 

L-erythro-sphingosine 

(2R, 3S) 
D-erythrose 

CH2OH

H2N H

OHH

R  

CH2OH

H NH2

HHO

R  

CHO

HO H

OHH

CH2OH  
D-threo-sphingosine 

(2R, 3R) 

L-threo-sphingosine 

(2S, 3S) 
D-threose 

R = trans-CH=CH-C13H27 

Figure 1.3: Fischer projections of sphingosine stereomers. 

 

D-ribo-4-Hydroxysphinganine (phytosphingosine; Figure 1.2) occurs mainly in 

yeasts and other lower eukaryotes,7 but is also the characteristic sphingoid base of 

SLs in keratinocytes.8  The function of the additional free hydroxyl group is presumed 

to be to increase rigidity of intercellular lipid aggregates through formation of a large 

number of hydrogen bonds and hence reduce transepidermal water loss.9  The 
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structure of the derived ceramides differs in a characteristic manner from other 

mammalian ceramides by the presence of unusually long fatty acid residues up to 34 

carbon atoms and sphingoid bases that are hydroxylated at various positions.10 

Sphingomyelin (SM) is made up of a sphingoid-base, an amide-linked acyl 

chain and a phosphorylcholine headgroup.  The acyl chain composition may vary 

among tissues, for example, brain gray matter sphingomyelin contains predominantly 

stearic acid.11  In contrast, non-neuronal tissue seems to be comprised of a mixed 

population of sphingomyelins.12  In mammalian cells, SM accounts for 5 -10% of 

membrane phospholipids. 

Glycosphingolipids (GSLs) have a sugar residue β-glycosidically attached to 

the primary hydroxyl group of a ceramide.  Classification is based on the 

carbohydrate composition.  Neutral GSLs contain sugars such as glucose, galactose, 

N-acetylglucosamine, N-acetylgalactosamine and fucose.   

Gangliosides are a subclass of GSLs, predominantly localized in the central 

nervous system.  The carbohydrate contains one or more acid sugar residues, 

derived from sialic acid (N-acetylneuraminic acid; Figure 1.4), which is α-

glycosidically linked to other sugars.  GSLs with one or more sulphate groups in the 

carbohydrate moiety are called sulfatides and are highly abundant in myelin sheaths.  

Both gangliosides and sulfatides may contain up to 20 monosaccharide units.  

 Lysosphingolipids are glyco- or phosphosphingolipids without N-acyl chain.  
 

O

COOH

OH

HO
AcHN

OH

HOOC

HO

 
 

Figure 1.4:  Structure of N-acetyl-neuraminic acid. 

 

Another, less known, class comprises the sulfonosphingolipids, which contain 

a C1 sulfonate group.  The first known example of this class was isolated from 

Nitzschia alba13 and has a 1-deoxyceramide-1-sulfonic acid structure.  Other 

representatives of this class have emerged and the best-known examples (Figure 

1.5) are the sulfobacins (Chryseobacterium sp.)14 and capnine,15 which has been 

isolated from cell envelopes of bacteria (Capnocytophaga).   
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-O3S

NH3

OH

11
-O3S

NHR

OH

11
 

Capnine Suflobacins 

R = acyl or hydroxylated acyl

Figure 1.5: General structure of capnines and sulfobacins. 

 

1.3. METABOLISM OF SPHINGOLIPIDS 

1.3.1 BIOSYNTHESIS OF SPHINGOLIPIDS 

Biosynthesis of SLs takes place in the endoplasmatic reticulum and the Golgi 

apparatus.16  De novo biosynthesis (Figure 1.6) starts with the condensation of L-

serine and a coenzyme A activated fatty acid residue, usually palmitoyl coenzyme A, 

affording 3-ketosphinganine.  This rate-limiting step for SL biosynthesis is catalysed 

by serine palmitoyl transferase (SPT), a pyridoxal phosphate-dependent 

heterodimeric enzyme.17  Since SPT determines the rate of SL biosynthesis, its 

function might be a major point of regulation.  However, regulatory mechanisms 

remain largely unknown to date.   

In a subsequent reaction 3-ketosphinganine is reduced to D-erythro-

sphinganine by 3-ketosphinganine reductase in a NADPH-dependent reaction.18 

Sphinganine is subsequently acylated by ceramide synthase (sphinganine N-

acyltransferase) yielding dihydroceramide.  The enzyme shows a preference for the 

coenzyme A esters of stearic and palmitic acid.19  The ensuing desaturation of 

dihydroceramide to ceramide follows, which is mediated by dihydroceramide 

desaturase.  It is noteworthy that sphingosine is not involved in the biosynthesis of 

SLs but is formed during degradation of SLs. 

All enzymes for the initial steps in the biosynthesis of SLs are located on the 

cytosolic leaflet of the ER membrane.20  Further modifications take place at the Golgi 

membranes. 
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a) serine palmitoyl transferase; b) 3-ketosphinganine reductase; c) sphinganine N-acyltransferase; d) 

dihydroceramide desaturase; e) sphingomyelin synthase; f) glucosylceramide synthase. 

Figure 1.6: Biosynthesis of SLs.   

 

Sphingomyelin is formed on the luminal part of the Golgi membranes,21 but 

other sites have also been suggested.22  This reaction, which is catalyzed by 

sphingomyelin synthase (SMase), involves the transfer of a phosphorylcholine 

headgroup from phosphatidylcholine to ceramide yielding sphingomyelin and 1,2-

diacylglycerol (DAG) as a by-product.     

Biosynthesis of GSLs requires the stepwise addition of carbohydrate moieties 

to the SL which serves as a membrane anchor.23  The first step in this sequence is 

the formation of glucosylceramide (GlcCer), which is catalyzed by glucosyl ceramide 

synthase (GlcCer synthase).  Hence, glucose is β-glycosidically linked to ceramide in 

an UDP-glucose dependent reaction.  The human enzyme has been cloned24 and is 

located on the cytosolic leaflet of the Golgi apparatus.25  From this point, GlcCer can 

go directly to the plasma membrane26 or it can be modified by further glycosylation 

on the luminal side of the Golgi apparatus.  Transport of GlcCer to the Golgi 

apparatus occurs both by vesicular and protein mediated transport mechanisms.27  

 Recently, a new ceramide trafficking protein, CERT, has been identified28 

which demonstrated the ability to extract ceramides from membranes of the ER and 
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traffic them specifically to the Golgi apparatus.  However, the role of CERT in 

regulation of cellular ceramide levels remains unknown.  

Introduction of the next sugar residue, galactose, is mediated by galactosyl 

transferase I29 and gives rise to lactosylceramide (LacCer), the common precursor of 

the major GSLs in vertebrates.  The sequential addition of nucleotide-activated sugar 

residues to LacCer requires the action of membrane-bound glycosyltransferases in 

the lumen of the Golgi apparatus. 

 

1.3.2 INHIBITORS OF SPHINGOLIPID BIOSYNTHESIS 

Most inhibitors of SL biosynthesis act at an early stage and have a lipid-like 

structure.  Specific and potent inhibitors play a crucial role in the investigation of SL 

metabolic pathways.  Moreover, membrane-permeating inhibitors are interesting 

therapeutic agents.30 

 

1.3.2.1. INHIBITORS OF SERINE PALMITOYLTRANSFERASE 

L-Cycloserine, β-chloro- and β-fluoro alanine (Figure 1.7) are non-specific 

suicide inhibitors of SPT.  Indeed, inhibition of other pyridoxal phosphate-dependent 

enzymes has been observed which makes them unsuitable biochemical tools to 

study effects of reduced SL metabolism.   

Sphingofungins, which have structural similarity to SL, have been isolated 

from yeasts (Aspergillus fumigatus31 and Paecilimyces variotii32) and inhibit SPT 

competitively with respect to serine.  Their action can be reversed by 

phytosphingosine, but not sphingosine, which is not unexpected since 

phytosphingosine is the main sphingoid base in yeast.   

Myriocin, a further structural analog of the sphingoid backbone, is an 

extremely potent immunosuppressant (Ki = 0.28 nM).33  Inhibition of SPT is 

accompanied by suppression of IL-2 mediated T cell growth, which explains the 

immunosuppressive effect. 

Lipoxamycin, a secondary metabolite from actinomycetes, has also been 

reported as a potent inhibitor of SPT (IC50 = 21 nM)34 and exhibits strong antifungal 

activity. 
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Figure 1.7: Known inhibitors of serine palmitoyltransferase. 

 

1.3.2.2. INHIBITORS OF CERAMIDE SYNTHASE 

Corn and cereals are frequently infected by Fusarium verticillioides, a fungus 

that produces fumonisins (Figure 1.8).35  Consumption of contaminated food results 

in various, often neurological, diseases in animals and has been associated with 

esophageal cancer in humans.36  Fumonisins have been identified as inhibitors of 

ceramide synthase (IC50 = 0.1 μM) and have shown to be valuable compounds in the 

elucidation of SL metabolism.  They show structural similarity with sphinganine, but 

have increased metabolic stability due to the absence of the primary alcohol.  

Analogues have been synthesised as substrates and inhibitors of ceramide synthase, 

though all exhibiting decreased activity.37  Inhibition of ceramide synthase leads to 

accumulation of sphinganine, which explains the toxic and mitogen effects of 

fumonisins.  

Alternaria toxin (IC50 = 1 μM), a phytotoxin, has a sphingoid backbone similar 

to fumonisin B1.  Since it exhibits lower biological activity relative to fumonisin B1, it 

is of limited use in metabolism studies.38 

Australifungin, a potent antifungal, has been identified as an in-vitro inhibitor of 

ceramide synthase with an IC50 comparable to fumonisin B1.39   
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Figure 1.8: Structure of known inhibitors of ceramide synthase 

 

1.3.2.3. INHIBITORS OF GLUCOSYLCERAMIDE SYNTHASE 

Potent inhibitors of GlcCer synthase are suitable for functional analysis and 

have therapeutic potential.  Two different classes of GlcCer synthase inhibitors have 

been described to date (Figure 1.9 and Figure 1.10).  The more studied class 

comprises D-threo-PDMP (D-threo-(1R,2R)-1-phenyl-2-decanoylamino-3-morpholino-

1-propanol; IC50 = 2.5 – 10 μM)40 and structural analogues.  N-butyldeoxynojirimycin 

(NBDNJ; IC50 = 20 μM)41 is the representative of the second class of GlcCer 

synthase inhibitors.   

a. PDMP and analogues 

Since the discovery of PDMP,42 a relatively small number of analogues has been 

described.  The core structure of these compounds is based on that of GlcCer, 

although only D-threo isomers exhibit inhibitory activity.43  PDMP consists of three 

parts including a phenyl group, an acylamino group and a morpholino group.  

Structural analogy to GlcCer is illustrated in Figure 1.9.  Both compounds have an 

acylaminogroup, whereas the phenyl group mimics the 4,5-E double bond in GlcCer.  

The cyclic amine is proposed to mimic the sugar transition state during glycosylation.  



 12

 

OHC9H19OCHN

NO

OHC15H31OCHN

N

PDMP R1 = R2 = H: P4
R2

R1

R1 = H,  R2 = OH: p-OH-P4
R1, R2 =-OCH2CH2O-: 3',4'-ethylenedioxy-P4

OHC17H35OCHN

O

O
HO

HO
OH

OH

C13H27
glucosylceramide  

Figure 1.9: Structures of GlcCer, PDMP and PDMP analogues. 

 

Early attempts to diversify the structure of PDMP addressed the acylamino group.  

It was shown that chain elongation from decanoyl to myristoyl or palmitoyl 

significantly increased inhibitory activity.44  Replacement of the morpholino group by 

other cyclic amines resulted in the discovery of P4 (D-threo-1-phenyl-2-

aminopalmitoyl-3-pyrrolidino-1-propanol; IC50 = 0.5 μM) which shows a tenfold 

increase in activity compared to PDMP.  Modification of the phenyl group of P4 

resulted in a number of very potent inhibitors.  From preliminary experiments,45 it was 

shown that there exists a linear relationship between the log (IC50) and the sum of the 

hydrophobic (σ) and electronic (π) properties of a substituent on the phenyl ring.  

These results indicated that a more negative value for σ + π would result in more 

potent inhibitors.46  A series of new compounds was designed to test this hypothesis.  

The compounds p-OH-P4 (IC50 = 90 nM) and 3’,4’-ethylenedioxy-P4 (IC50 = 100 nM) 

exhibit excellent inhibitory activities thereby supporting the proposed linear 

relationship.  Replacement of the N-acyl chain of P4 by a benzyloxycarbonyl moiety 

also resulted in an increase in inhibitory potency (IC50 = 0.3 μM).47  

Cytotoxic effects of PDMP have been associated with an increase in intracellular 

ceramide levels, although the underlying reasons have not yet been elucidated.  A 

major advantage of these newer inhibitors is the dissociation of inhibition of GlcCer 

synthesis from intracellular ceramide accumulation.  Aliphatic analogues in which the 

phenyl substituent is replaced by a usual ceramide E-alkenyl chain also lack 

ceramide accumulation, but proved to be less potent that the aromatic counterparts.45   
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It is noteworthy that ceramide accumulation also might exhibit beneficial effects.  

Indeed, it has been demonstrated that in vivo administration of PDMP and P4 did not 

result in remarkable toxicity in rats, mice and fish.48  However, these compounds 

killed over 80 kinds of human cancer cell lines at 5 μM.  Therefore, PDMP and its 

analogues might represent usefull agents in the treatment of cancer.  Moreover, 

evidence has arisen that PDMP and related compounds are able to reverse multi-

drug resistance (MDR) in cancer cells, although the underlying mechanism remains 

controversial.49 

 

b. Deoxynojirimycin and analogues 

NBDNJ (IC50 = 20 μM) and analogues (Figure 1.10) are iminosugars in which a 

nitrogen atom replaces the ring oxygen of natural monosaccharides.  Surprisingly, 

modelling experiments (Figure 1.11) suggest that these compounds are structural 

mimics of ceramide and not of the glucose transition state.50  IC50 values seem to 

depend on the length of the N-alkyl chain since lower inhibitory activity is found for N-

nonyl derivatives compared to N-butyl derivatives.  This phenomenon could be 

explained by the presence of two distinct binding sites on GlcCer synthase as 

suggested by Butters et al.51     
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Figure 1.10:  Structures of known inhibitors of glucosylceramide synthase 

 

Structural analogues of NBDNJ have been synthesised, the most potent being 

NGDGJ (N-butyl-deoxygalactonojirimycin; IC50 = 41 μM)52 and AMPDNJ (N-(5-

adamantane-1-yl-methoxypentyl)-DNJ; IC50 = 25 nM).53  A significant advantage of 

these new compounds is their specificity towards GlcCer synthase inhibition.  Indeed, 

NBDNJ shows low specificity and contradictorily even inhibits β-glucocerebrosidase, 

the enzyme that catabolizes GlcCer, at higher concentrations (IC50 = 0.52 mM). 
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Figure 1.11:  Modelled structures of ceramide (left), NBDNJ (center) and overlay of ceramide and 

NBDNJ.  Reprint from reference 50. 

 

1.3.3 CATABOLISM OF SPHINGOLIPIDS 

Degradation of SLs occurs in the late endosomes or lysosomes.4,16  Apart from 

lysosomal degradation, SM can also be degraded in extralysosomal membranes in 

response to extra- and intracellular stimuli.  Consequently, lipid messengers are 

formed on demand allowing the cell to transmit stress signals.3,4   

 

1.3.3.1. LYSOSOMAL DEGRADATION 

Degradation of GSLs (Figure 1.12) takes place in the lysosomal compartments 

of the cell.  Hence, membrane structures are digested by lysosolic hydrolases, which 

cleave individual sugar residues from the non-reducing end of GSLs.  

 Digestion starts with the formation of endosomes which traffic through the 

endosomal compartments to reach the lysosome.  The final degradation product in 

this pathway is ceramide, which is in turn deacylated by an acid ceramidase to form 

sphingosine.  The cleaved fragments (sugar residues, fatty acids and sphingoid 

bases) are then able to leave the lysosome and can be degraded further or re-enter 

the biosynthetic pathway.  If degradation fails due to a defect in the proteins involved, 

nondegradable GSLs accumulate in the lysosome resulting in lysosomal sphingolipid 

storage diseases (Section 2, p 27).  Interestingly, all known defects in GSLs 

metabolism affect the degradation pathway.   
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It is necessary to note that the lysosomal degradation products are not 

available for signalling processes within and outside of the cell. 

 

 
Figure 1.12:  Lysosomal sphingolipid degradation.  Eponyms of known metabolic diseases are 

indicated.  Heterogeneity in the lipid part is not indicated.  Reprint from reference 16. 



 16

1.3.3.2. NONLYSOSOMAL DEGRADATION.  

In contrast to constitutive SL degradation, which takes place in the lysosomes, 

sphingomyelin degradation (Figure 1.13) is highly regulated.54  
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Figure 1.13: Nonlysosomal SL degradation. 

 

Sphingomyelin can be cleaved by sphingomyelinases (SMases)55 of various 

subcellular localisations thereby releasing ceramide, which is a metabolic 

intermediate, as well as a signalling substance.  Phosphorylation of ceramide has 

been observed,56 though the biological relevance remains unclear.  The primary 

alcohol of sphingosine can also be phosphorylated by a cytosolic sphingosine 

kinase57 thereby yielding sphingosine-1-phosphate (S1P).  Additionally, the reverse 

mechanism has also been observed in which sphingosine-1-phosphate is 

dephosphorylated by phosphatidic acid phosphorylase.58  In a final step, 

sphingosine-1-phosphate is cleaved by sphingosine-1-phosphate lyase in a 

pyridoxalphosphate-dependent reaction59 producing ethanolamine phosphate and 

hexadec-2-enal.  

 

1.3.4 INHIBITORS OF SPHINGOLIPID DEGRADATION 

Inhibition of SL degradation could provide a useful means of interfering with 

signalling processes.  Moreover, covalent inhibitors can serve as independent tools 

for analysis of the active site of SL degrading enzymes. 
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1.3.4.1. INHIBITORS OF SPHINGOMYELINASES 

Inhibition of sphingomyelinase could be useful in the treatment of inflammatory 

or infectious diseases.  Indeed, it has been demonstrated that acid sphingomyelinase 

(aSMase) activity is necessary for infection of non-phagocytizing cells by Neisseria 

gonnorhoea.60  The most studied SMase inhibitor is scyphostatin, a constituent of 

Dasyscyphus mollissimus.  Scyphostatin shows moderate selectvitiy towards neutral 

sphingomyelinase (nSMase; IC50  = 1 μM) compared to aSMase (IC50  = 49 μM).  It 

served as a lead for the elaboration of more simplified analogues with comparable 

potency.61  
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Figure 1.14: Structure of scyphostatin. 

 

1.3.4.2. INHIBITORS OF CERAMIDASE 

Ceramidase inhibitors are useful tools in the investigation of SL mediated 

signal transduction processes.  N-oleoylethanolamine62 and (1S,2R)-D-erythro-2-(N-

myristoylamino)1-phenyl-1-propanol (MAPP)63 are the only representatives of this 

class (Figure 1.15). 
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1.3.4.3. INHIBITORS OF SPHINGOSINE KINASE 

The best known inhibitor of sphingosine kinase is N,N-dimethylsphingosine 

(IC50 = 5 μM).64  Although of limited use for functional analysis since they are easily 

metabolised,65 short-chain sphingoid bases have also shown to be moderate 

inhibitors of sphingosine kinase.66  

 

1.3.5 THE SPHINGOMYELIN CYCLE: ENZYMES INVOLVED IN GENERATION AND 

INACTIVATION OF CYTOSOLIC CERAMIDE  

The observation that extracellular agents can induce SM hydrolysis paved the 

way to the discovery of the SM cycle (Figure 1.16).  To date a variety of agents are 

known to interfere with SM hydrolysis (Table 1.3, p.23).  The cellular and molecular 

effects of these extracellular agents can be mimicked by addition of exogenous 

ceramide, while exogenous dihydroceramide lacks this effect.67  This result suggests 

the specific interaction between ceramide and a binding protein.  Few downstream 

effectors of ceramide have been discovered to date.   

  SM hydrolysis is considered to produce the main source of ceramide for signal 

transduction.68  The reaction is mediated by a group of sphingomyelinases (SMase), 

thereby producing ceramide and phosphorylcholine.  Currently, seven distinct 

mammalian enzymes have been identified based upon their pH optima, cellular 

localisation and cation dependence.69  Despite many studies, the role of individual 

SMases in cell signalling remains ambiguous.  

The first identified member of this class was acid sphingomyelinase (aSMase) 

which is located in the lysosomes.70  Deficiency of this enzyme results in type A or 

type B Nieman-Pick disease.71  Cells from Nieman-Pick patients have proven to be 

invaluable in ascertaining a signalling role for aSMase.  Indeed, it has been shown 

that they are resistant to both γ-irradiation and chemotherapeutic agents72 thereby 

providing proof for the necessary role of aSMase in stress response to various 

stimuli.  Additionally, a Zn2+-dependent aSMase that is secreted by diverse cell types 

has been found in serum73 (hence being designated secreted SMase or sSMase). 

 Neutral membrane-bound, Mg2+-independent SMase (nSMase) is the most 

intensively studied member of this class, and biochemical and cellular control 

mechanisms are on the verge of being elucidated.74 
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 Additionally, an alkaline SMase with a pH optimum of 9 has been identified in 

the gastrointestinal tract of rats.75  
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Figure 1.16: Sphingomyelin cycle (R = acyl group). 

 

 Ceramide can be recycled to SM by transfer of a phosphocholine head group 

from phosphatidyl choline.  This reaction is catalyzed by SM synthase, which is 

predominantly localized in the Golgi apparatus,76 although a plasma-membrane 

bound fraction has been identified.77  It is noteworthy from this reaction that a by-

product, diacylglycerol (DAG), can activate protein kinase C and thus initiates a 

separate signal transduction cascade.78  

In addition to SM hydrolysis, ceramide can directly be formed by acylation of 

sphingosine by ceramide synthase, which is predominantly located on the cytosolic 

leaflet of the ER membrane.79  Evidence has emerged that the enzyme plays a 

crucial role in cell cycle progression80 and apoptosis.81 

Introduction of a 4,5-double bond in dihydroceramide by dihydroceramide 

dehydrogenase20,82 is an alternative means for generation of cytosolic ceramide.  The 

enzyme shows a preference for C18-sphingoid bases and is located on the cytosolic 

leaflet of the ER. 
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Ceramidases or N-acylsphingosine deacylases are the most important 

catabolic enzymes.  Their interplay with SMases regulates the availability of ceramide 

for signalling processes.  Different forms of ceramidases have been identified.  Acid 

ceramidase (AC) is activated by saposins A, C and D (SAP-A, SAP-C and SAP-D) 

and requires the presence of anionic lysosomal lipids for activity.83  Saposins are 

essential cofactors for lysosomal degradation of membrane associated SL and are 

ubiquitously expressed in different tissues of the body.84  The in vivo regulatory role 

of saposins on ceramide levels remains unclear.  Because free sphingosine, a known 

inhibitor of protein kinase C, is available anly through the action of ceramidases, 

these enzymes might play a crucial role in the regulation of cell growth and 

differentiation.5,85  A non-lysosomal neutral ceramidase has been described in a 

variety of cells and tissues86 and an alkaline ceramidase has been isolated from 

guinea pig skin.87  Currently, the relationship of acid, neutral and alkaline ceramidase 

is not entirely clear. 

Ceramide kinase phosphorylates ceramide88 thereby producing ceramide-1-

phosphate and is predominantly located in the plasma membrane.89  It has been 

suggested that ceramide kinase might play a critical role in phagocytosis, but the 

mechanistic background remains enigmatic.89 

Phosphorylation of sphingosine is mediated by sphingosine kinase, a 

ubiquitously expressed cytosolic enzyme.  An increase in activity was observed in 

response to several growth promoting agents.90        
 

1.4. BIOLOGICAL ACTIVITY OF SPHINGOLIPIDS 

1.4.1 BIOLOGICAL FUNCTIONS OF CERAMIDE 

1.4.1.1. APOPTOSIS 

Ceramide-mediated cell death was observed in early attempts to examine the 

cellular effects of ceramide.  Careful observation of this phenomenon revealed that 

this cell death was accompanied by DNA fragmentation, a hallmark of apoptosis.91   

Eukaryotic cells are able to commit suicide by activation of this self-destruction 

program in case of infection or damage.  Failure of apoptosis may thus result in 

cancer or autoimmune diseases.  Overactivation of apoptosis may in contrast 

attribute to aggravation of certain neurodegenerative processes or HIV infection. 
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The exact physiological function of ceramide in apoptosis remains 

controversial.  A major regulation role in this event has been attributed to caspases,92 

a class of cysteine proteases, which serve to enhance both ceramide generation and 

ceramide downstream targets (death receptor pathway for apoptosis).  Another class 

of important apoptosis regulators is the Bcl-2 family which is mediated by PI-3 kinase, 

a direct effector enzyme of ceramide.  Bcl-2 family is a large group of proteins which 

regulates mitochondrial membrane permeability (mitochondrial pathway for 

apoptosis) thereby directly influencing the release of important pro-apoptotic 

substances from mitochondria.93 

 

1.4.1.2. GROWTH ARREST 

An increase in ceramide levels has been observed during the G1-phase of cell 

division, presumably mediated by SMase activity.94  Addition of short chain 

ceramides to cells resulted in dephosphorylation of the retinoblastoma protein Rb, 

which normally induces expression of genes required for cell proliferation.95  

Additional evidence was provided by the observation that ceramide only poorly 

affects growth arrest in cells that lack the Rb gene.  Since protein kinase C activators, 

which are able to inhibit ceramide induced apoptosis, had no affect on ceramide-

mediated growth arrest, ceramide seems to affect apoptosis and growth arrest 

independently.94 

 

1.4.1.3. DIFFERENTIATION 

Early studies on HL-60 cell lines demonstrated that vitamin D3, which had 

been reported to induce differentiation of HL-60 cells to monocytic/macrophage-like 

cells,96 increased ceramide formation.  Additionaly, it was shown that exogenous 

ceramide could mimic the effect of vitamin D3, which suggests that ceramides have a 

crucial role in differentiation of HL-60 cells. 

 

1.4.2 BIOLOGICAL FUNCTIONS OF SPHINGOSINE  

Inhibition of protein kinase C was the first biological role attributed to 

sphingosine (IC50 = 100 μM).5,85  However, considering the high IC50, the in vivo 
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relevance might be questioned.97  This breakthrough was, nevertheless, the onset of 

the discovery of other sphingosine-mediated kinases (Table 1.2).  The most 

important effector proteins are the sphingosine-dependent protein kinases (SDKs).  

These protein kinases have been shown to phosphorylate a variety of cellular 

proteins,98,106 thus tempting one to speculate that sphingosine might regulate signal 

transduction events. 

Despite major research efforts, much remains to be uncovered of the 

biological functions of sphingosine since controversial reports continue to emerge.  

Numerous studies concerning the mitogen effect99 of sphingosine were shown to be 

PKC-independent.  Contradictorily, other reports put sphingosine in the frontline of 

apoptosis100 and growth arrest.101  These controversial effects might arise from 

sphingosine metabolic instability (phosphorylcholination, phosphorylation or 

acylation) which can result in the observation of mixed effects.  

 
Table 1.2: Effector enzymes of sphingosine. 

Target Effect 

Insulin receptor tyrosine kinase102 Inhibition 

Calmodulin dependent kinase103 Inhibition 

Diacylglycerol kinase104 Enhance 

Casein kinase II105 Enhance 

Sphingosine-dependent protein kinases (SDKs)106 Activator 

 

1.4.3 BIOLOGICAL FUNCTIONS OF SPHINGOMYELIN 

Sphingomyelin primarily acts as a reservoir of important signalling molecules 

and is regulated through the action of SMases.  SMase activity is triggered by a 

myriad of stimuli (Table 1.3), although underlying control mechanisms have not yet 

fully been elucidated.107 

Sphingomyelin preferentially concentrates in the outer leaflet of the plasma 

membrane of mammalian cells in association with cholesterol, by a heterogenous 

lateral distribution called lipid rafts or sphingolipid-based microdomains.  These rafts 

showed to be less fluid than the bulk liquid-disordered phospholipids based on 

diacylglycerol.  However, rafts should not be considered as static entities, but rather 

as dynamic microdomains that can cluster or disintegrate upon specific stimuli.  
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Clustering is associated with enhanced recruitment of propagator proteins108 

resulting in the creation of a signalling centre109 that informs the cell about the 

contact to which it has been engaged.  Rafts have also been associated with 

pathogen entries in cells.  For example, HIV-1 enters the cell by binding to CD4, a 

protein that is associated with rafts.110   

 
Table 1.3:  Stimuli triggering sphingomyelin hydrolysis. 

Inflammatory cytokines Damaging agents Inducers of differentiation Inducers of apoptosis 

IL-1α and IL-1β Heat shock TNFα TNFα 

IFγ Ionizing radiation NGF Fas ligand 

LPS Daunorubicin Vitamin D3 Dexamethasone 

TNFα Vincristine Retinoic acid Nitric oxide 

 Oxidative stress Progesterone Staurosporine 

 UV light Serum deprivation  

 

 

1.4.4 BIOLOGICAL FUNCTIONS OF SPHINGOSINE-1-PHOSPHATE 

1.4.4.1. INTRACELLULAR SIGNALLING  

Intracellular S1P mobilizes Ca2+ from internal sources and affects many 

signalling pathways leading to proliferation and suppression of apoptosis.111  

Sphingosine kinase, the enzyme that forms S1P from sphingosine, is activated by 

many stimuli including platelet-derived growth factor (PDGF), nerve growth factor 

(NGF), muscarinic acetylcholine agonists and TNF-α.112  Hence, S1P and 

ceramide/sphingosine elicit opposing cellular signalling cascades thereby 

determining cell fate.  This sphingolipid rheostat concept111 has important clinical 

consequences.  For example, the balance between S1P and sphingosine has been 

suggested to determine allergic responsiveness of mast cells.113  Additionally, HDL 

(high density lipoprotein) mediated protection against arteriosclerosis has been 

associated with resetting of the SL rheostat.114 

 Inhibitors of sphingosine kinase that could selectively block intracellular Ca2+ 

mobilization, cellular proliferation and survival all induced by various stimuli, provided 

evidence for the involvement of S1P in these processes.  Inversely, ceramide- 
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induced apoptosis could be reversed by S1P.  These findings support the second 

messenger function of S1P rather than the involvement of S1P G-protein-coupled 

receptors (S1P GPCRs or EDG receptors; see section 1.4.4.2).  Moreover, this 

assumption is supported by the fact that sphinganine-1-phosphate can also bind to 

EDG receptors without influencing cell survival.115  

 Recent findings question the involvement of S1P in mitosis.116  Disruption of 

the S1P lyase gene in mice provoked accumulation of S1P in the cells.  However, no 

distinct effect on DNA synthesis could be observed thereby implying that not S1P, but 

rather products from S1P lyase are responsible for cell proliferation.   

 

1.4.4.2. EXTRACELLULAR SIGNALLING 

Interest in S1P has accelerated remarkably since it proved to mediate cellular 

signalling processes through the action of the G-protein-coupled receptor EDG1 

(S1P1).115,117  To date, five distinct members, EDG1 (S1P1), EDG5 (S1P2), EDG3 

(S1P3), EDG6 (S1P4) and EDG8 (S1P5), have been identified118 and are commonly 

referred to as S1PRs (sphingosine-1-phosphate receptors).  These S1PRs are 

ubiquitously expressed and coupled to a variety of G-proteins.  Moreover, they are 

involved in multiple cellular processes as summarized in Table 1.4.  

 
Table 1.4:  Overview of S1PRs: functions and major expression sites. 

S1PR Function Cell types 

S1P1 Cell migration (chemotaxis): vascular 

maturation/angiogenesis 

Cardiovascular, nervous, reproductive and 

immune systems  

S1P2 Inhibition of cell migration during 

embryogenesis 

Cardiovascular system, brain 

S1P3 Cell migration Fibroblasts, brain, cardiovascular system 

S1P4 Cytokine receptor? Lymphocytes and hematopoietic tissue 

S1P5 Antiproliferative Oligodendrocytes – astrocytes 

 

 Extracellular S1P is generated from SM through the action of plasma 

membrane-bound sphingomyelinase (nSMase), ceramidase and sphingosine kinase, 

and subsequently bound to albumin and other plasma proteins where they provide 

stable reservoirs and ensure efficient delivery to cell-surface receptors.119 
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Pathological implications of these findings are numerous, and research effort 

directed towards the development of S1PR agonists and antagonists has resulted in 

the discovery of FTY720 (Figure 1.17; EC50 (S1P1) = 1.3 nM; EC50 (S1P3) = 2 nM),120 

a non-specific agonist of four of the five S1PRs.  Currently, FTY720 is in phase II 

clinical trials for the prevention of allograft rejection,121 which probably manifests itself 

through stimulation of the S1P1 receptor.  However, unselective agonism resulted in 

undesired cardiovascular side-effects, including mild bradycardia, presumably 

through interaction with the S1P3 receptor.  Therefore, current research efforts mainly 

focus on the uncoupling of S1P1 and S1P3 agonism.122 

 

NH3 OH

OH
C8H17

 
Figure 1.17: Structure of FTY720. 

 

1.4.5 BIOLOGICAL FUNCTIONS OF GLYCOSPHINGOLIPIDS. 

Evidence has accumulated that GSLs might exhibit signalling functions.  For 

example, lactosylceramide has shown to be a potent mitogen for aortic smooth 

muscle cells123 and epithelial cells.124  Moreover, it might be involved in the 

pathogenesis of arteriosclerosis.   

Gangliosides were shown to be involved in embryogenesis,125 as well as in 

pathological conditions including tumour onset and progression.126  Moreover, 

evidence is accumulating that they are key players in the induction of invasion and 

metastasis.  For example, melanoma cells contain and secrete high amounts of GD3, 

whereas it is almost absent in normal melanocytes.127  Metastatic melanoma cells 

exhibited have higher GD3 content than cells that are poorly metastatic.128 

Studies on the physiological role of GlcCer have revealed its involvement in 

mitosis.129  Therefore, inhibitors of GlcCer synthase might present useful agents in 

the treatment of proliferative disorders like tumour development and lysosomal 

sphingolipid storage diseases.  GSLs are highly abundant in rafts in association with 

various functional membrane proteins involved in cell adhesion and cell signalling.  

The extruding carbohydrate moieties of plasma membrane GSLs also act as 

receptors for attachment of viruses, bacteria, yeast and parasites.130 
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2   LYSOSOMAL SPHINGOLIPID STORAGE DISEASES 

2.1. INTRODUCTION 

Degradation of SLs is associated with the occurrence of inherited diseases.131  

Catabolism involves about 40 hydrolases, including glycosidases, lipases, nucleases, 

phosphatases, phospholipases, proteases and sulfatases.  Lysosomal sphingolipid 

storage diseases originate from catabolic enzymatic deficiency thereby causing the 

blockage and storage of undegradable substrate.  Lysosomal sphingolipid storage 

diseases have a collective frequency of 1 in 18,000 births and are the most common 

cause of paediatric neurodegenerative diseases.   

With the exception of Fabry’s disease, which is an X-linked recessive disorder, 

lysosomal sphingolipid storage diseases are autosomal recessive disorders.  The 

majority of underlying deficiencies has been elucidated to date, and detection of 

heterozygotes and prenatal diagnosis132 have become common practice in medicine 

in countries with high prevalence.  However, deficiencies are not restricted to 

enzymatic degradation since defects in transport and activator proteins have been 

described.133   

Clinical consequences of lysosomal sphingolipid storage diseases primarily 

depend upon the cell type that is predominantly affected.  Accumulation of ceramide 

and glucosylceramide affects mainly visceral organs and skin, whereas gangliosides 

accumulation results in neurological complications.  Severity is typically determined 

by residual enzyme activity.  Infantile manifestation of a disease usually indicates 

complete absence of enzymatic activity.  A schematic overview of biochemical 

pathways involved in lysosomal sphingolipid storage diseases is depicted in Figure 

2.1 (in analogy to Figure 1.12, p.15). 

 

2.2. OVERVIEW 

2.2.1 GANGLIOSIDOSES 

Gangliosidoses are caused by defective ganglioside degradation, mainly in the 

central nervous system and to some extent in the viscera.  Two subtypes have been 

identified: GM1 and GM2 gangliosidoses.  
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Figure 2.1: Schematic overview of lysosomal sphingolipid storage diseases. 

 

2.2.1.1. GM1 GANGLIOSIDOSES  

GM1 gangliosidosis was reported for the first time in 1959 by Norman and co-

workers134 whereas the underlying enzymatic deficiency was identified in 1967.135  

Deficiency of lysosomal GM1 β-galactosidase expresses in two separate diseases, 

GM1 gangliosidosis and Morquio Type B syndrome.   

GM1 gangliosidosis affects mainly the central nervous system.  Three distinct 

clinical forms have been identified depending on the age of onset.  In type 1 or the 

infantile form, neurological symptoms appear within the first 6 months of life leading 

to death within two years.  This form is characterized by brain GM1 accumulation up 

to 3-5 times normal values.  Cherry-red spots on the patient’s ocular fundi, 

hepatosplenomegaly, facial dysmorphism and skeletal deformations are typical 

symptoms. 
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Type 2 or the juvenile form usually presents symptoms at 6 - 12 months after birth 

and shows an identical, though less pronounced, pathological profile with a life 

expectancy around 10 years.       

Type 3 or the adult (chronic) form is characterised by mild, slow progressive 

neurological disorders without involvement of skeleton deformations.136   

Morquio Type B syndrome presents a mild form of GM1 β-galactosidase 

deficiency with mainly skeletal deformation without neurological involvement. 

 

2.2.1.2. GM2 GANGLIOSIDOSES 

GM2 gangliosidoses result from deficiency in β-hexosaminidases, the enzymes 

that degrade GM2 ganglioside.  Three subtypes (β-hexosaminidases A, B and S) 

have been identified and cause distinct types of GM2 gangliosidoses (Table 2.1).  

Three polypeptides (α and β chains and GM2-activator protein) encoded by three 

different genes, are involved in enzymatic cleavage.137  Classification of GM2 

gangliosidosis subtypes is based on detection of enzymes that are still present in 

tissues of patients.138 

 
Table 2.1: Overview of GM2 gangliosidoses. 

Deficient protein Disease 

β-hexosaminidase A and S B-variant; infantile onset: Tay-Sachs disease 

β-hexosaminidase A and B O-variant or Sandhoff’s disease 

GM2 activator protein AB-variant 

 

a. B-variant of GM2 gangliosidoses 

 Tay-Sachs disease is characterised by early onset of neurological symptoms, 

including psychomotoric retardation and tonic-clonic seizures, and results in early 

death a few years after birth.  The disease is widespread among Ashkenazi Jews 

(1/27 births).  

The juvenile form exhibits a clinical profile comparable to Tay-Sachs disease 

with slowly progressing symptoms appearing between the age of 2 - 5 years after 

birth.  Life expectancy of the patients reaches up to 40 years. 
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 Adult forms show multiple symptoms, including psychosis and muscular 

atrophy.  In contrast to infantile and juvenile forms, mental retardation is not 

observed.  Worldwide, 50 patients of this type have been identified, mostly among 

Ashkenazi Jews.     

 

b. O-variant of GM2 gangliosidoses or Sandhoff’s disease 

Sandhoff’s disease is comparable to Tay-Sachs disease, but has additional 

peripheric manifestations including hypertrophy of internal organs and bone 

deformations.139 

 

c. AB-variant of GM2 gangliosidoses 

This variant of GM2 gangliosidoses is characterized by massive storage of GM2 

in the brain140 due to the absence of GM2 activator protein, which is believed to act 

as a surfactant.  Clinical progression is identical to Tay-Sachs, but symptoms are 

rather delayed. 

   

2.2.2 NIEMANN-PICK’S DISEASE  

Niemann-Pick’s disease is classified into several subtypes (A, B and C).141 Types 

A and B of Niemann-Pick are characterized by aSMase deficiency, whereas type C 

has normal aSMase activity and results from impaired cholesterol trafficking.142  

Type A Niemann-Pick mainly displays neuropathological symptoms, starting in 

early childhood and characterized by advancing psychomotoric retardation and 

hepatosplenomegaly.  Death follows usually around the age of three years. 

Type B Niemann-Pick shows no neuropathological involvement but mainly affects 

organs.  Patients generally can reach adulthood 

Niemann-Pick disease shows a panethnic distribution, but prevails mainly in 

Ashkenazi Jews.  

  

2.2.3 GALACTOSIALIDOSIS 

Galactosialidosis is a combination of two lysosomal sphingolipid storage 

diseases, GM1 gangliosidoses and sialidosis.  Deficiency of both β-galactosidase 

and sialidase results in the storage of sialic acid- and galactose-containing substrates 
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such as GM3 and GM1.  Both enzymes join to form a so-called “protective 

protein”,143 which combines different enzymatic activities (serine esterase, 

carboxypeptidase and deamidase activities).  The exact physiological role of this 

complex is not entirely clear but it has shown to be identical to a protein that is 

released after thrombin stimulation of blood platelets. 

Galactosialidosis has been diagnosed in about 70 patients worldwide and is 

characterized by cherry-red spots on the ocular fundi, foam cells in the spinal chord, 

vacuolized lymphocytes and facial dysmorphism.144  Three different phenotypes have 

been identified, based upon the onset of symptoms.   

 

2.2.4 SIALIDOSIS 

Sialidase deficiency results in accumulation of sialylated oligosaccharides.  

The infantile form of this disease (Type II sialidosis) is also called mucolipidosis I.  

The typical clinical profile is characterized by skeletal deformations, megaly of 

internal organs and mental retardation.  The juvenile form is also known as 

mucolipidosis IV. 

 

2.2.5 FABRY’S DISEASE 

Fabry’s disease results form deficient α-galactosidase A activity leading to the 

accumulation of α-glycosidically bound galactose substrates.   

Renal failure, painful skin lesions but little neurological involvement characterize the 

disease.  Pathogenesis results form blockage of small blood vessels by lipid 

depositions.  Symptoms usually start in infancy or adolescence.   

 

2.2.6 METACHROMATIC LEUKODYSTROPHY 

Deficiency of arylsulfatase A causes metachromatic leukodystrophy, results in 

the accumulation of sulfatides145 in different organs and is identified by the presence 

of metachromatic granula in affected cells.  This deficiency is mainly observed in 

myelin-forming cells in the central nervous system and results in progressive 

demyelination.  
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Three clinical subtypes have been recognized.  The infantile variant results in 

death a few months after birth while the late infantile variant results in death at the 

age of 2 - 3 years.  The adult form is rarely observed and is characterized by 

personality changes, dementia, psychosis and peripheral neuropathy. 

 

2.2.7 MULTIPLE SULFATASE DEFICIENCY OR AUSTIN’S DISEASE 

Twelve different sulphatases have been identified in humans and deficiency of 

these enzymes results in Austin’s disease.  Clinical manifestations mainly comprise 

skeletal abnormalities, hepatosplenomegaly and neuropathological symptoms 

identical to metachromatic leukodystrophy.146 

 

2.2.8 GAUCHER’S DISEASE 

Gaucher’s disease results from deficiency of β-glucocerebrosidase, the 

enzyme that cleaves the glucose residue from GlcCer, and is the most common of 

the sphingolipidoses.  Storage primarily occurs throughout the reticulo-endothelial 

system.  Hence, lysosomes within macrophages expand due to excessive 

accumulation of GlcCer by phagocytosis, thereby forming so-called Gaucher cells. 

Early classification systems distinguished three phenotypes based on the 

absence or presence and rate of progression of neuropathic manifestations.   

Type I is the most common phenotype.  Worldwide prevalence is 1 in 

57.000147 and 1 in 1000 in Ashkenazi Jews.  The disease presents at any age and is 

characterized predominantly by hepatosplenomegaly, bone deformations and 

pulmonary impairment due to invasion by Gaucher cells. 

In the acute neuropathic type II, symptoms present at the age of 3 months and 

progressive neurological complications result in death within the first year of life. 

Subacute neuropathic type III Gaucher (juvenile form) presents in later 

childhood with slow progressive neurological manifestations.  This type prevails 

predominantly in the Swedish province of Norrbotten.    

However, recent clinical evaluation of Gaucher patients has led to the 

conclusion that Gaucher’s disease is more correctly characterized as a continuum of 

phenotypes (Figure 2.2, p.33)148 subdivided in patients with and without 

neuropathological complications. More than 200 mutations have been detected in the 
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gene encoding for GlcCer synthase, ensuing in multiple genotypes.  However, no 

close relationship has been observed between genotype and fenotype, nor is there a 

connection between residual enzyme activity or the amount of stored lipid and the 

fenotype. 

 

 
Figure 2.2: Gaucher disease as a wide spectrum of phenotyppes.  Reprint from ref. 148. 

   

2.2.9 KRABBE’S DISEASE 

Krabbe’s disease results from impaired activity of lysosomal 

galactocerbrosidase, the enzyme that catalyzes cleavage of the galactose residue 

from GalCer.149  The clinical spectrum is comparable to that of metachromatic 

leukodystrophy.  Neurological symptoms usually start within the first 6 months after 

birth and progressive psychomotoric delay and retrogression result in death, usually 

before the age of 2 years.  Later onset patients have rarely been reported. 

The white substance of the brain and peripheral nerves exclusively are 

affected resulting in complete absence of SM in the terminal phase.   

 

2.2.10 FARBER’S DISEASE 

Deficient acid ceramidase activity, entailing ceramide accumulation, results in 

Farber’s disease, a very rare sphingolipidosis that usually results in death within one 

year after birth.150  To date, only 43 patients have been reported worldwide.  

Symptoms are comparable to Niemann-Pick disease, but histological differences 
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have been described.  Seven different subclasses have been defined, 6 being 

ascribed to a defect in lysosomal acid ceramidase and one attributed to deficiencies 

in SL activator proteins, SAP-C and SAP-D, which fail to execute their cofactor 

function.  Since both neutral and alkaline ceramidase exhibit different tissue 

distribution, they cannot compensate for the defective acid ceramidase.  

 

2.3.  TREATMENT  

Two basic approaches can be considered for the treatment of lysosomal 

sphingolipid storage diseases.  One strategy relies on increasing the enzyme levels 

to compensate for the underlying defect and a second aiming at reduction of the 

quantity of SLs being synthesised.  Current clinical approaches have predominantly 

focused on increasing enzyme levels through protein replacement strategies.  

Enzyme substitution can be either direct by infusion or indirect by bone marrow 

transplantation or gene therapy to replenish the source of fully functional enzyme.151   

 The second approach pursues balancing of impaired SL degradation and 

biosynthesis.152  This therapeutic strategy has been named substrate deprivation 

therapy.153   

 

2.3.1 BONE-MARROW TRANSPLANTATION 

Bone-marrow transplantation (BMT) is particularly useful in addition to enzyme 

replacement therapy (ERT) for the treatment of sphingolipidoses with neuropathic 

manifestations.  Hence, BMT could overcome restrictions in ERT by surpassing the 

blood-brain barrier (BBB) since bone-marrow macrophages can cross the BBB to a 

small extent and, therefore, are able to supply the deficient enzyme in the central 

nervous system.154  Results of BMT are variable,155 and the success of this approach 

is limited by the requirement of well-matched donors and the severity of the 

procedure.  BMT in animal models has led to improvement in neurological symptoms, 

but recovery has not been achieved.156  Therefore, it does not yet present a reliable 

approach for the treatment of sphingolipidoses. 
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2.3.2 GENE THERAPY 

It has been shown that as much as 40% of newly synthesised lysosomal 

enzymes are secreted.157  This fact makes gene therapy particularly interesting since 

it implies that a normal cell could cross-correct the metabolic defect by secretion of 

the deficient enzyme.  Moreover, no examples of toxicity have been observed in 

massive overexpression of lysosomal enzymes, thereby avoiding the need to control 

expression levels.  Thus, genetic modification of a limited number of cells could 

provide a useful means of supplying large amounts of the deficient enzyme to 

virtually all cells.  This idea can be effected by viral transduction and/or 

transplantation in a gene therapy approach.  The primary goal in gene therapy is to 

provide sufficient enzyme activity in the central nervous system, which is 

predominantly affected in a majority of the sphingolipidoses.   

The therapeutic potential of gene therapy has been thoroughly evaluated in 

engineered or spontaneous animal models of several sphingolipidoses.  Most studies 

demonstrated peripheric reconstitution to a certain extent, although tissue and 

storage disease specificity was observed thereby clearly indicating that feasibility of 

gene therapy needs to be assessed separately for every enzyme deficiency.  In 

contrast, all experiments failed to enhance enzyme activity in the central nervous 

system.  This fundamental issue might be overcome by direct injection of viral vectors 

or transplantation of enzyme-overexpressing cells into the brain.158  

  

2.3.3 ENZYME REPLACEMENT THERAPY 

The first sphingolipidosis that was successfully treated with enzyme 

replacement therapy was Gaucher type I.  In early trials, it had been observed that 

administration of purified placental β-glucocerebrosidase resulted in reduction of 

hepatic glucocerebroside in only half of the patients.159  Later on, it was shown that 

most of the enzyme had accumulated in hepatocytes of non-responsive patients and 

was therefore unable to reach the macrophages, which are predominantly affected in 

nonneuropathic Gaucher’s disease.  Accumulation of β-glucocerebrosidase, which 

has four oligosaccharide side chains with terminal N-acetylneuraminic acid or 

galactose residues, was attributed to the presence of a particularly strong lectin for 

galactose in hepatocytes.160  Modification of placentally derived β-
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glucocerebrosidase so that N-glycans terminate in mannose, resulted in a 50-fold 

increase in the uptake in macrophages.161  Clinical trials with this modified enzyme 

unequivocally demonstrated that twice-weekly intravenous administration of the 

mannose-terminated placental β-glucocerebrosidase (CeredaseTM, Genzyme, USA) 

resulted in remarkable improvement in organomegaly and correction of 

heamotological parameters.162  To date, a recombinant form of the enzyme is 

available (CerezymeTM, Genzyme, USA), which reduces potential infection risks 

associated with intravenous infusion of the enzyme derived from pooled human 

tissue.163  At present, over 3000 patients with type I Gaucher’s disease are receiving 

ERT. 

However, ERT suffers from considerable drawbacks.  The yearly cost for 

treatment of adult patients is estimated between 50,000 and 500,000 US$.  

Moreover, little is known about optimal dosing regimens during maintenance therapy.  

Since systemic administered β-glucocerebrosidase is unable to pass the blood-brain 

barrier, the effect of ERT in neuropathic forms of Gaucher’s disease is restricted to 

alleviation of peripheric symptoms.164  However, mild forms of type III neuropathic 

Gaucher’s disease responded well to high dose ERT.165  

Recent clinical trials with cultured α-galactosidase A from cancer cell lines 

proved to be very effective in alleviating peripheric symptoms in Fabry’s disease.166  

This result has led to the approval of cultured α-galactosidase A by several countries 

(FabrazymeTM from Chinese hamster ovary cells and ReplagalTM from human 

cells)167 for the treatment of Fabry’s disease.   

Currently, aSMase for the treatment of Niemann-Pick’s disease is in preclinical 

phase. 

 

2.3.4 SUBSTRATE DEPRIVATION THERAPY 

The ultimate aim in substrate deprivation therapy is reduction of substrate 

influx to a level that matches residual enzyme activity.  Even if this goal cannot be 

achieved, the patient would avoid disease progression if the rate of accumulation 

could be kept below a toxic threshold.  However, this method necessitates minimal 

residual lysosomal enzyme activity, a condition which is the case in most juvenile and 

adult forms.  In contrast, infantile onset of lysosomal sphingolipid storage diseases is 

characterized by no or very little residual enzyme activity.168  Nevertheless, if 
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nonexistent residual enzyme activity would be partially restored exogeneously by 

gene therapy or BMT, combination with substrate deprivation therapy could provide a 

useful means of treating infantile onset forms.  Substrate deprivation therapy is not a 

new or unique concept since it has proven useful, for example, in treatment of lactose 

intolerance by reduction of dietary lactose.  

GlcCer synthase presents an attractive target for substrate deprivation therapy 

since it acts as a hub for biosynthesis of more complex, GlcCer-based SLs.  

Therefore, all sphingolipidoses upstream of GlcCer are potential disease targets for 

GlcCer synthase inhibitors.  An overview of GlcCer synthase inhibitors has been 

presented in section 1.3.2.3 of this chapter (p.11). 

In vivo evaluation of the feasibility of the substrate deprivation concept has 

been focused predominantly on NBDNJ.  NBDNJ had originally been developed as 

an anti-HIV agent.  Its mode of action relied on inhibition of α-glucosidase I and II, 

thereby inhibiting viral replication in vivo.169  Phase II clinical trials of NBDNJ revealed 

that serum levels needed for α-glucosidase inhibition could not be reached without 

the incidence of severe gastro-intestinal side effects and, hence, no significant effect 

on viraemia was observed.  Despite the lack of antiviral efficacy, these trials provided 

important information.  It was shown that NBDNJ was generally well tolerated, the 

major side effect being osmotic diarrhoea.  Moreover, serum levels through oral 

administration ranged between 10 - 50 μM, levels which were known to inhibit GlcCer 

synthase both in vitro and in vivo. 

Three clinical studies170 using NBDNJ (ZavescaTM, OGT 918, miglustat) for the 

treatment of type I Gaucher’s disease have been conducted.  Typical dosage of 

NBDNJ ranged between 50 and 100 mg/day.  Results from these trials indicate that 

treatment with NBDNJ leads to an overall improvement in clinical parameters 

measuring disease progression.171  Moreover, clinical outcome improved if NBDNJ 

was combined with ERT.  Diarrhoea and weight loss are the most prevalent side 

effects of treatment with NBDNJ.  Some rare cases of neuropathy have also been 

observed.  Currently, the galactose analogue (NBDGJ), which exhibits higher 

selectivity than NBDNJ towards GlcCer synthase, is in phase I clinical trial (CDP 923, 

Celltech, UK). 

Potent analogues of PDMP, the representative of the other known class of 

GlcCer synthase inhibitors, have only been discovered since 1999,52 and one drug 
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candidate (3’,4’-ethylenedioxy-P4; Genz-112638, Genzyme General, USA) is 

currently in phase I clinical trial for the treatment of type I Gaucher’s disease.  

Genzyme claims that 3’,4’-ethylenedioxy-P4 was found to be 5000 times more potent 

in vitro than NBDNJ and 100 times more potent than AMPDNJ, the most potent 

iminosugar analogue known to date.  In vivo, it showed to be 20 times more potent 

than AMPDNJ.  Moreover, even at high doses, no significant toxicity has been 

observed.  
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3 OBJECTIVES 
 

This Ph.D. study constitutes part of an extensive project dealing with the 

synthesis of biologically relevant sphingoid and ceramide analogues.  Chemical 

approaches provide useful extentions of molecular and cell biology in elucidating the 

biochemistry and functions of SLs.  Moreover, bioorganic chemistry is able to furnish 

new conceptual therapeutics as demonstrated by the development of GlcCer 

synthase inhibitors.   

The first part of this study presents the development of a convenient synthetic 

route to access new hybrid GlcCer synthase inhibitors.  In a second part, we want to 

disclose a new class of ceramide homologues. 

 

3.1. SYNTHESIS OF HYBRID PDMP ANALOGUES 

An earlier study from this group172 demonstrated that substitution of the 

alkenyl chain of ceramide by a styryl group did not affect the capacity to reverse the 

inhibitory effect of fumonisin B1 on the axonal growth of hippocampal neurons.  Since 

metabolisation of ceramide to GlcCer is a prerequisite to sustain growth of 

hippocampal neurons,173 these results prove that styrene analogues are substrates 

for GlcCer synthase and, therefore, are metabolised to their glucosylated form.  Thus, 

combination of these styrene analogues with basic structural features required for 

GlcCer synthase inhibition might provide new potential therapeutic compounds 

(Scheme 3.1).   

Since further structural modifications could involve the introduction of 

substituted aromatic rings in analogy to more potent PDMP analogues (1.3.2.3a, 

p.11), we aimed at the elaboration of a synthetic route towards a single advanced 

intermediate to allow straightforward introduction of the aryl group.  Since our primary 

concern was whether these merged analogues would still exhibit biological activity, 

initial optimization of the synthetic scheme will be accomplished with the 

unsubstituted aromatic analogue.   
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Scheme 3.1: Overview of structural modifications. 

 

3.2. SYNTHESIS OF N-HOMOCERAMIDES. 

Homologation is a classical tool in medicinal chemistry to enhance biological 

properties of endogenous compounds.  Recently, our group reported an expedient 

route for the synthesis of D-erythro-O1-homoceramides174 (Scheme 3.2), which were 

later shown to exhibit considerable apoptotic activity.175  In analogy to these findings, 

we aim at the synthesis of a new class of ceramide homologues which contain an 

additional methylene group between the N-acyl chain and C2.   
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Scheme 3.2: Overview of structural modifications. 
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4 REPORTED SYNTHETIC STRATEGIES 
 

4.1. SYNTHESIS OF PDMP AND ANALOGUES. 

In 1980,42 Radin and Vunnam reported the first synthesis of PDMP by a 

Mannich reaction of 2-N-decanoylaminoacetophenone, paraformaldehyde and 

morpholine and subsequent reduction with NaBH4, thereby yielding a mixture of (D,L)-

threo- and -erythro-PDMP (Scheme 4.1).  In a subsequent paper,43 Radin and 

Inokuchi described the procedure for isolation of all isomers of PDMP by combination 

of HPLC and crystallisation of the dibenzoyl-tartaric acid salts.  Hence, the authors 

were able to assign inhibitory activity of PDMP to the D-threo isomer.   
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Scheme 4.1: Synthesis of PDMP according to Radin and Vunnam. 

  

 Stereoselective aldol condensation between the boron enolate of bromoacetyl 

oxazolidinone with E-2-hexadecenal, as originally devised by Nicolaou et al.,176 was 

the key reaction in the synthetic approach presented by Carson and Ganem177 

(Scheme 4.2).  Replacement of the bromine with sodium azide, protection of the 

secondary alcohol with TBDMSCl and subsequent deprotection of the oxazolidinone 

with LiBH4 furnished the 1,2-azidoalcohol, which could be easily transformed in five 

steps (61% yield) to the E-alkenyl PDMP analogue (7% total yield over 9 steps).  

Preparation of the homochiral starting material required 4 additional steps.   
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Scheme 4.2:  Synthesis of PDMP analogues according to Carson and Ganem. 

 

 An alternative procedure, starting from D-Garner’s aldehyde, was reported by 

Miura et al.178 (Scheme 4.3).  The authors accessed several D-threo-ceramide 

analogues in a five-step sequence.  Selective mesylation of the primary alcohol of 

ceramide and subsequent treatment with morpholine surprisingly yielded the 2,3-

oxazoline (20 – 50%).  Triflation followed by substitution with morpholine or 

pyrrolidine and final cleavage of the oxazoline gave access to E-alkenyl PDMP 

analogues in low yield (2 - 4 % overall yield).   
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Scheme 4.3: Synthesis of PDMP analogues according to Miura et al. 

 

 A comparable strategy was presented by Hussain and Ganem179 (Scheme 

4.4).  Hence, CuI-Me2S mediated Grignard addition to D-Garner’s aldehyde followed 

by selective acetal cleavage provided the intermediate 1,3-diol, which was converted 

in a 4 step sequence to the desired PDMP analogue. 
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Scheme 4.4:  Synthesis of 3’,4’-ethylenedioxy-P4 according to Hussain and Ganem. 
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Starting from a D-serine derived Schiff base, Mitchell et al.180 have accessed 

PDMP analogues with different cyclic amines (Scheme 4.5).  Thus, treatment of the 

imine with i-Bu5Al2H followed by Grignard reaction with PhMgBr provided the PDMP 

core structure.  Substitution of the tosylate, which was prepared from the Grignard 

adduct in 4 steps, gave access to various cyclic amine derivatives that were smoothly 

transformed to the desired D-threo-PDMP analogues.  An identical procedure was 

employed by Slavish et al.181 for the synthesis of PDMP analogues with altering 

aromatic rings. 
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Scheme 4.5: Synthesis of PDMP analogues according to Mitchell et al. 

 

Shin et al. devised a new method for regioselective ring opening of non-

activated aziridines and applied it towards the elaboration of PDMP analogues 

(Scheme 4.6).182  Thus, TMSI-mediated ring opening of the aziridine, obtained in 4 

steps from ethyl 2,3-dibromopropanoate, produced 2,3-aminoalcohol ring opening 

products in high yield (87 - 99%).  Subsequent hydrogenolysis of the α-methyl benzyl 

moiety followed by selective acylation of the unmasked primary amine afforded 

PDMP analogues in high overall yield (70 – 80%). 
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Scheme 4.6: Access to PDMP analogues according to Shin et al. 
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4.2. SYNTHESIS OF HOMOCERAMIDES 

Homologation in ceramides has been focussing primarily on the synthesis of 

sphingosine-1-phosphate derivatives with improved metabolic stability, which can be 

effected by replacement of the 1-phosphate by a phoshonate group. 

Sandhoff and coworkers183 reported the first synthesis of the phosphonate 

analogue of sphingosine-1-phosphate (Scheme 4.7).  Starting with stereoselective 

alkylation of the bis-lactimether of cyclo(-L-Val-Gly) with 2-bromoethylphosphonate 

followed by mild acidic hydrolysis of the bislactim ether and subsequent tert-Boc 

protection of the liberated primary amine afforded the phosphonate intermediate, 

which was transformed to the desired phosphonate analogue of sphingosine-1-

phosphate in a four-step sequence in moderate yields (28-31%). 
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Scheme 4.7:  Synthesis of the phophonate analogue of sphingosine-1-phospate by Sandhoff and 

coworkers. 

 

Some years later, Tarnowski et al.184 presented an alternative synthetic route 

towards homo-sphingosine-1-phoshonate starting from an N-tert-Boc protected 

ceramide, prepared from D-galactose and D-xylose (Scheme 4.8).  Regioselective 

mesylation of the protected ceramide followed by acid catalyzed removal of the tert-

Boc group and treatment with N,N’-carbonyldiimidazole led to the intermediate cyclic 

urethane.  Substitution of the mesylate group with KCN, followed by reduction of the 

nitrile with DiBAlH and NaBH4 afforded the intermediate primary alcohol, which was 

transformed in 4 steps to the desired homo-sphingosine-1-phosphonate.  Recently, 

an alternative approach starting from D-galactose was presented by the same 

authors.185 
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Scheme 4.8: Synthesis of sphingosine-1-phosphate homologues according to Tarnowski et al. 

 

Bittman and co-workers developed two different routes towards the synthesis 

of phosphonate analogues of sphingolipids.  In a first synthetic strategy, the authors 

introduced chain elongation through regioselective epoxide opening with lithium 

dimethyl methylphosphonate (Scheme 4.9 A).186  In a second paper, the synthesis of 

L-lyxo-phytosphingosine-1-phosphonate was described starting from D-(-)-tartaric 

acid.  Introduction of the methylene spacer was achieved by Horner-Wadsworth-

Emmons olefination between an intermediate aldehyde and tetramethyl 

methylenediphosphonate (Scheme 4.9 B).187   
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Scheme 4.9:  Synthetic routes towards sphingosine-1-phosphonate and L-lyxo-phytosphingosine-1-

phosphonate according to Bittman and co-workers 

     

Recently, our group reported an expedient route for the synthesis of D-erythro-

O1-homoceramides (Scheme 4.10).174  L-Homoserine served as a chiral building 

block and was transformed to a protected Weinreb amide in 4 steps.  Reaction of the 

Weinreb amide with the appropriate lithium acetylide followed by stereoselective 

reduction of the thus formed alkynone and subsequent silyl deprotection with TBAF 

gave access to the 1,4-diol intermediate, which was converted to the desired O1-

homoceramide in two steps involving a one-pot alkyne reduction and Cbz 

deprotection and final acylation of the primary amine. 
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Scheme 4.10: Synthesis of O1-homoceramides according to De Jonghe et al. 

 

Later, an alternative route towards D-erythro-O1-homoceramides was 

presented by Ogino and co-workers175 (Scheme 4.11).  Di-tert-Boc protected L-

homoserine methyl ester, obtained in 4 steps from L-aspartic acid, served as starting 

material and gave access to the intermediate key phosphonate in 3 steps.  Horner-

Wadsworth-Emmons olefination followed by stereoselective reduction of the ketone 

and TBAF mediated desilylation produced the intermediate 1,4-diol, which was 

further transformed in two steps to the coveted O1-homoceramide.  
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Scheme 4.11: Synthesis of O1-homoceramides according to Ogino and co-workers.. 

 

Recently, the synthesis of the C-glycoside analogue of α-galactosylceramide 

has been reported.  In a first report,188 protected D-ribo-homophytosphingosine, 

derived in six steps from L-homoserine, was attached to a thioglycoside.  Key 

transformation was the Ramberg-Bäcklund reaction thereby stitching the 

homophytosphingosine side chain to the galactose moiety (Scheme 4.12).  The same 

group later presented an alternative procedure, employing a cross-metathesis (CM) 

approach.189  
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Scheme 4.12:  Synthesis of the C-glycoside of  α-galactosylceramide according to Franck and co-

workers. 
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6 MONO-PROTECTIVE STRATEGY FOR THE SYNTHESIS OF 

HYBRID PDMP ANALOGUES.   
 

6.1. INTRODUCTION - RETROSYNTHESIS 

Stereochemical and structural features of inexpensive and readily available 

chiral pool compounds such as amino acids and sugars have been extensively 

exploited for the synthesis of SLs.1  Amongst these chiral pool compounds, serine 

has shown to be particularly popular since all four stereoisomers of the sphingoid 

backbone (Figure 1.3, p. 5) are readily accessible depending on the choice of either 

D- or L-serine as starting material.   

Initially, we pursued a similar synthetic strategy as earlier advanced by this 

group2 starting from D-Garner’s aldehyde (Figure 6.1), which can by obtained from 

commercially available D-serine by an established literature procedure.3 

 

R

NHCOC15H31

OH

HO

NHBoc

OH

D-serine

R = pyrrolidinyl
morpholinyl
piperidinyl

O NHBoc

O

H

D-Garner's aldehyde

 
Figure 6.1: Retrosynthesis of hybrid PDMP analogues. 

 

 Stereoselective addition of an appropriate lithium acetylide to Garner’s 

aldehyde results in either threo- or erythro-alkynols, depending on the specific 

reaction conditions.4  While application of a cation-complexing cosolvent accounts for 

high erythro-selectivity, addition in the presence of a Lewis acid, such as anhydrous 

ZnBr2, produces predominantly threo-alkynols (Figure 6.2).  Thus, in the presence of 

a Lewis acid, the chelation-controlled conformation comprises a synperiplanar 

orientation of the aldehyde and the tert-Boc carbonyl, resulting in preferential attack 

at the Si-face of the carbonyl group, which gives rise to the threo-epimer.   
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Figure 6.2:  Diastereoselectivity of nucleophilic additions to Garner’s aldehyde (Nu = nucleophile). 

 

In contrast, the preferred transition state in the absence of complexation is 

based on a conformation in which the bulkiest α-ligand positions itself perpendicular 

to the plane of the carbonyl group, thereby generating an anti-relationship towards 

the incoming nucleophile.  The medium-sized substituent is placed synclinal with 

respect to the carbonyl function and hence, attack occurs preferentially at the least 

hindered Re-face of the aldehyde, leading to the erythro-product.   

Subsequent reduction of the alkyne to the E-alkene followed by introduction of 

the cyclic amine on the N-tert-Boc protected ceramide, as previously described by 

Ganem and Husain,5 was expected to provide the N-tert-Boc protected intermediate 

which could straightforwardly be transformed to the desired D-threo-PDMP analogues 

in a two-step sequence involving tert-Boc deprotection and selective acylation of the 

thus unmasked primary amine. 

 

6.2. SYNTHESIS 

A solution of D-Garner’s aldehyde in Et2O was treated with lithiumphenyl 

acetylide at -78°C in the presence of excess ZnBr2, thereby producing an epimeric 

mixture of threo- and erythro-alkynols 2.1 and 2.2 (threo:erythro 9:1), which was 

repeatedly purified by flash chromatography, ultimately affording pure threo-alkynol 

2.1 and a mixture of both epimers (Scheme 6.1).  Threo-stereochemistry was 

assigned by comparison of NMR data with a previous report.2   
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Selective cleavage of the oxazolidine ring of 2.1 with p-TsOH produced N-tert-

Boc protected 1,3-diol 2.3, which was treated with Red-Al® to afford E-alkene 2.4 in 

very good yield (88%).  By analogy to a literature report by Husain and Ganem,5 2.4 

was subjected to selective mesylation.  Unfortunately, treatment of 2.4 with MsCl in 

the presence of TEA (1 eq. each) in CH2Cl2 failed to produce the desired mesylate, 

but instead gave rise to a complex reaction mixture as observed by TLC.   
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Scheme 6.1: a) lithium phenylacetylide, ZnBr2, Et2O, -78°C (2.1: 44%; 2.1 + 2.2: 28%); b) p-TsOH, 

MeOH, RT, 36 h (70%); c) Red-Al, Et2O, -78°C to RT, overnight (88%); d) see Table 6.1 ; e) 1N 

HCl:dioxane (1:1), reflux, 30’ (72% crude yield); f) 50% NaOAc:THF (1:1), palmitoyl chloride, RT, 2 h, 

(58%); g) MsCl, TEA, CH2Cl2, 0°C to rt, 16 h (38%).  

 

A literature survey revealed that 1,2-N-tert-Boc-amino alcohols are prone to 

undergo oxazolidinone ring closure6 upon attempts to activate the alcohol.  The 

nucleophilic nature of the tert-Boc group might account for the observed complex 

reaction mixtures.  Such reactivity of the tert-Boc group arises on one hand from the 

polarized carbonyl bond and on the other hand, from the presence of the tert-butyl 

group, which can be expelled as a cation, and hence, the presence of any general 

base gives rise to isobutylene (Figure 6.3, B), although a concerted reaction course is 

possible too (A).  Reaction outcome greatly depends upon specific reaction 

conditions including reaction temperature, base and solvent.  Hence, based on 

different literature reports, a set of altered reaction conditions was devised in order to 

circumvent previous issues.  Unfortunately, none of these adjustments (Table 6.1) 

changed the reaction outcome, nor did changing from MsCl to p-TsCl or triflic 

anhydride. 
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Figure 6.3: Nucleophilic reactivity of the tert-Boc group. 

 

Therefore, we decided to switch to an alternative approach in which oxazoline 

formation is exploited as protective strategy to allow selective introduction of a 

leaving group on C1 of the sphingoid backbone, followed by substitution with an 

appropriate secondary amine, as was advanced previously by Miura et al.7  Thus, 

deprotection of the tert-Boc group with 1N HCl, followed by acylation with palmitoyl 

chloride under Schotten-Baumann conditions8 afforded styrene ceramide analogue 

2.6.  Treatment of alcohol 2.6 with MsCl at 0°C in the presence of TEA afforded 

oxazoline 2.7 in disappointing yield (38%).  Substitution of TEA by DIPEA or MsCl by 

p-TsCl resulted in even lower yields. 

 
Table 6.1: Overview of mesylation conditions (1 eq. MsCl) 

Base (eq.) Solvent 4-DMAP Time Temperature 

Pyridine Pyridine Cat. 24 h -20 °C  rt 

DIPEA (1) CH2Cl2 Cat. 4 ha 0 °C 

DIPEA (1) CH2Cl2 - 8 ha 0 °C 

4-DMAP (1) Pyridine Used as base 2 ha 0 °C 

a: Reaction time required for complete consumption of starting material as judged by TLC.  

 

In view of the potentially low yields involved in conversion of the primary 

alcohol of 2.7 to a tertiary amine (20 – 24% for the aliphatic counterparts),7 we did not 

consider further elaboration to the desired PDMP analogues since it had become 

clear that our envisioned synthetic approach would not provide a sufficiently reliable 

means for further structural modifications.  Nonetheless, these unsatisfactory results 

clearly indicated that a double-protective strategy, in consideration of the reactivity of 

1,2-aminoalcohols towards intramolecular cyclisation, might provide a more versatile 

approach.  
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7 DOUBLE-PROTECTIVE STRATEGY FOR THE SYNTHESIS OF 

HYBRID PDMP ANALOGUES 

7.1. REGIOSELECTIVE AZIRIDINE OPENING AS KEY REACTION IN THE 

CONSTRUCTION OF THE PDMP BACKBONE 

7.1.1 INTRODUCTION - RETROSYNTHESIS 

The search for alternative methods for efficient construction of the hybrid 

PDMP core structure drew our attention to recent report by Shin et al.9  The authors 

devised an efficient and short synthesis of D-threo-PDMP based on regioselective 

aziridine ring opening with various amine nucleophiles.   

By analogy, we wanted to explore the application of this new methodology in 

the quest for our envisioned hybrid D-threo-PDMP analogues.  On one hand, the 

aziridine could serve as a protecting group during introduction of the acetylene side 

chain, while on the other hand, it provides the functional requirements for introduction 

of cylic amines.   
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Figure 7.1: Retrosynthesis. 

 

Thus, starting from ethyl 2,3-dibromopropanoate (Figure 7.1), the intermediate 

configurationally stable aldehyde could be prepared in 3 steps providing the required 

stereochemistry at C2 of the sphingoid backbone by use of a chiral anchor which 

concomitantly serves as N-protecting group.  Introduction of the acetylene side chain, 

followed by regioselective aziridine ring opening in the presence of TMSI would 

provide the intermediate ring-opened product.  The proposed mechanism for aziridine 

ring-opening is depicted in Figure 7.2.9  Thus, upon treatment with TMSI, the 

aziridine ring opens up regioselectively providing an intermediate alkyl iodide, which 
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subsequently reacts with amine nucleophiles.  Aqueous work-up cleaves the TMS-

group, thereby providing the α-methylbenzyl protected secondary amine. 
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Figure 7.2: Proposed mechanism for regioselective aziridine ring opening with TMSI. 

 

Reduction of the alkyne followed by deprotection of the α-methylbenzyl group 

and final acylation would furnish the desired PDMP analogues.  Since neither the 

double bond in styrene nor the alkyne intermediate would withstand catalytic 

hydrogenation conditions involved in removal of the α-methylbenzyl protecting group, 

an alternative deprotection strategy should be anticipated.  A literature survey 

revealed that heating in formic acid (50 - 60 °C) had been successfully applied for the 

deprotection of a N-α-methylbenzyl moiety thereby leaving E-double bonds 

unaffected.10  

  

7.1.2 SYNTHESIS. 

Treatment of ethyl 2,3-dibromopropanoate with R-(+)-(1-phenylethyl)amine in 

the presence of TEA11 produced a mixture (1:1) of epimers 2.8 and 2.9, which could 

easily be separated by flash chromatography (Table 7.1).  Stereochemistry could not 

be assigned at this stage since optical rotations for these compounds have not been 

published.  However, reduction of the esters with LiAlH4 furnished primary alcohols 

2.10 and 2.11 with known optical rotations12 (Table 7.1).     

 
Table 7.1: Overview of optical rotations of 2.8-2.11 (measured in CHCl3). 

Compound Measured [α]D20 Literature12 [α]D20 Stereochemistry 

2.8 +63.3 (c 0.85) --- 1’R,2R 

2.9 +42.5 (c 0.79) --- 1’R,2S 

2.10 +74.5 (c 1.0) +71.8 (c 1.0) 1’R,2R 

2.11 +53.7 (c 1.0) +53.3 (c 10.1) 1’R,2S 
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Scheme 7.1: a) R-(+)-α-methylbenzylamine, TEA, 0°C to reflux, 3 h (2.8: 19%; 2.9: 17%; 2.8 + 2.9: 60 

%); b) LiAlH4, THF, 0°C to RT, overnight (2.10: 97%; 2.11: 95%); c) oxalylchloride, DMSO, TEA, 

CH2Cl2, -78°C to 0°C, 2.5 h (72%); d) lithium phenylacetylide, LiCl, THF, -78°C to RT, overnight (2.13: 

57%, 2.14: 10%, 2.13 + 2.14: 17%); e) see text. 

 

Swern oxidation of 2.10 provided aldehyde 2.12, which could be purified by 

column chromatography without loss of optical purity.13  Treatment of the aldehyde 

with lithium phenylacetylide in the presence of excess LiCl produced a mixture of 

diastereomers (6:1; 2.13: faster eluting; 2.14: slower eluting).  Addition of LiCl to the 

reaction medium previously had been shown to enhance stereoselectivity in favour of 

the threo-epimer,13 therefore, we expected that the faster eluting diastereomer 

possessed the threo-configuration as judged by TLC analysis.  This presumption was 

confirmed by oxidation of a mixture of 2.13 and 2.14 to ketone 2.16 and subsequent 

reduction with L-Selectride, a reducing agent that is known to favour threo-selectivity 

(Scheme 7.2).14   
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Scheme 7.2: a) Dess-Martin periodinane, CH2Cl2, 0°C to RT, 4 h (82%); b) L-Selectride, LiBr, THF, -

78°C, 1 h (2.13: 52%, 2.14: 9%, 2.13 + 2.14: 15%). 
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However, the absolute stereochemistry could not be assigned at this point 

since comparison of NMR data with similar reported compounds was non-

conclusive.15  Nonetheless, oxazolidinone ring formation between the proparagylic 

alcohol and the secondary amine of the aziridine ring-opening products in a later 

stage would allow unambiguous assignment of the absolute stereochemistry by 

comparison of NMR data for both epimers.   

Unfortunately, regioselective ring-opening of the aziridine failed in our hands 

with various secondary amines under different conditions.  Reaction of 2.13 with 3 

equivalents of TMSI followed by addition of a secondary amine9 (pyrrolidine, 

morpholine) didn’t furnish the desired tertiary amines (2.15), even after prolonged 

reaction times (72 h).  Instead, a complex reaction mixture was obtained as observed 

by TLC.  In situ generation of TMSI by reaction of TMSCl with NaI did not affect the 

outcome of the reaction.  When 2.10 was subjected to these reaction conditions, a 

similar reaction pattern was observed.   
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Scheme 7.3: a) TMSN3, CH2Cl2, RT, 16 h (100%); b) see Table 7.2; c) palmitoyl chloride, DIPEA, 

CH2Cl2, 0°C to RT, overnight (78%). 

 

On the other hand, reaction of 2.13 with TMSN3 under analoguous reaction 

conditions yielded azido derivative 2.17 in quantitative yield (Scheme 7.3).  Since 

amines are readily accessible from azides by reduction under Staudinger conditions, 

leaving the styrylmoiety unaffected, azide 2.17 could serve as a valuable building 

block for further elaboration to selected cyclic tertiary amines.  However, treatment of 
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2.17 with formic acid at elevated temperatures failed to deprotect the α-methylbenzyl 

group but produced a complex reaction mixture instead.  Several other debenzylation 

methods also failed to produce primary amine 2.18 (Table 7.2).  Since we expected 

that debenzylation of acylated amines might proceed more smoothly, 2.17 was 

acylated with palmitoyl chloride affording protected amide 2.19.  Analogous to our 

previous results, debenzylation failed under a variety of reaction conditions (Table 

7.2).  These disappointing results forced us to explore alternative synthetic strategies 

to access the desired hybrid PDMP analogues. 

 
Table 7.2: Debenzylation of 2.17 and 2.19. 

Reagent Temperature Time Result 

HCOOH10 60°C – 80 °C 16 h – 96 h  No reaction - decomposition 

Li naphtalenide16 -78°C to 0°C 3 h – 9 h   Decomposition 

Li/NH3
17 -78°C to rt 6 h – 18 h Decomposition 

AcBr18 0°C to rt 2 h – 6 h Decomposition 

 

 

7.2. N,N-DIBENZYL PROTECTING GROUP 

7.2.1 INTRODUCTION – RETROSYNTHESIS 

N,N-dibenzyl protected α-amino aldehydes have shown to be valuable organic 

building blocks for the synthesis of pharmaceutically and biologically interesting 

substances,19 not only since they exhibit remarkable configurational stability, but also 

because they allow excellent control of diastereoselectivity in addition reactions.20  

However, special care should be paid to deprotection since classical hydrogenation 

conditions affect both double and triple bonds and are therefore not appropriate for 

our specific needs.  Furthermore, in contrast to the removal the α-methylbenzyl 

group, a myriad of alternative benzyl deprotection methods with enhanced functional 

group tolerance have been described.21  

Thus, addition of lithium phenylacetylide to the modified Reetz’s aldehyde,20 

accessible in three steps from commercially available D-serine methyl ester 

hydrochloride according to a literature procedure, should predominantly provide the 

threo-diastereomer under chelating conditions.  Deprotection of the TBDPS group, 
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followed by conversion of the primary alcohol to a leaving group and subsequent 

substitution with a cyclic secondary amine should provide the intermediate 1,2-

aminoalcohol.  Reduction of the alkyne followed by N,N-dibenzyl deprotection and 

final acylation of the primary amine should give access to the desired PDMP 

analogues. 
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Scheme 7.4: Retrosynthetic scheme for the synthesis of hybrid PDMP analogues starting from D-

serine methyl ester hydrochloride. 

 

7.2.2 SYNTHESIS 

 Chemoselective dibenzylation of D-serine methyl ester with benzylbromide 

gave the desired amino ester 2.21,22 which was quantitatively converted to TBDPS 

ether 2.22 (Scheme 7.5).  Treatment of ester 2.22 with DiBAlH produced the 

corresponding aldehyde 2.23 which was used without further purification since it had 

been reported that silica gel can catalyze the decomposition of N,N-dibenzylamino 

aldehydes.23   
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Scheme 7.5:  a) benzyl bromide, K2CO3, MeCN, RT, 24 h (87%); b) TBDPSCl, imidazole, DMF, 0°C to 

RT, 5h, (100%); c) DiBAlH, toluene, -78°C, 3 h; d) lithium phenylacetylide, -78°C to RT, overnight 

(64%); e) TBAF, THF, RT, 30’ (84%); f) see Table 7.3. 

 

Addition of lithium phenylacetylide to aldehyde 2.23 in the presence of ZnBr2 

gave access to threo-1,2-aminoalcohol 2.24 (threo:erythro 95:5) in excellent 
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diastereoselectivity.  Deprotection of the TBDPS group with TBAF afforded 1,3-diol 

2.25.  Threo-stereochemistry was confirmed by conversion of 2.25 to its dioxolane 

derivative 2.27 and comparison of 1H NMR data with similar reported compounds20b 

(Scheme 7.6). 

HO

NBn2

OH

Ph

a

NBn2

O

Ph

O

4
5

 
2.25  2.27: 3J 4,5 = 4.11 Hz 

 

NBn2

OO

C13H27

 NBn2

OO

C13H27

threo: 3J 4,5 = 4.1 Hz erytrho: 3J 4,5 = 9.8 Hz 

Scheme 7.6: Synthesis of dioxolane 2.27 and comparison of 1H NMR data with previously reported 

compounds.20b a) 2,2-dimethoxypropane/DMF (1:1), PPTS, RT, 2 h (85%). 

 

Surprisingly, all attempts to transform the primary alcohol of 2.25 into a leaving 

group failed and resulted in complex reaction mixtures (Table 7.3).   

 
Table 7.3: Overview of reaction conditions that failed to transform 2.25 to 2.26. 

Solvent/base Reagents (eq.) Temp. Time 

pyridine/pyridine p-TsCl (1.05 + 0.4), 4-DMAP (cat.) 0 °C to rt 33 h 

pyridine/pyridine MsCl (1.1) 0°C to 50 °C 39 h 

CH2Cl2 /TEA MsCl (1.1) 0°C to rt 34 h 

DMF/DIPEA MsCl (1.1) 0 °C to rt 34 h 

CH2Cl2/pyridine  (1:1) Tf2O (1.05) -20 °C 2 h 

 

In order to investigate the underlying reason for the unsuccessful 

transformation of 2.25, we explored the reaction outcome when a more simplified 

model compound was subjected to analogous reaction conditions.  Thus, when 2.21 

was treated with MsCl in CH2Cl2, TLC analysis indicated formation of two distinct new 

products.  Apart from mesylate 2.26, a compound with higher Rf could be isolated 

(2.26:2.28 4:1).  Continued stirring at room temperature for 15 h resulted in a 1:1 ratio 

of both compounds.   
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Scheme 7.7: a) MsCl, DIPEA, 4-DMAP, CH2Cl2, 0°C to RT, 15 h (2.26:2.28 1:1); b) morpholine, DMF, 

50°C, 1 h (100%).  

 

The structure of 2.28 was elucidated from the 1H NMR and NOESY data.  The 
1H NMR spectrum indicated the presence of only 9 aromatic protons and 

disappearance of the primary alcohol, although the typical mesyl –CH3 was lacking, 

and the C(4) protons showed a remarkable upfield shift compared to 2.26 (Table 7.4).  

Moreover, NOESY revealed an unexpected contact between C(4)Ha and the 

aromatic region. This spatial interaction did not manifest itself in the NOESY 

spectrum of 2.26.  Treatment of mesylate 2.26 with morpholine in DMF at elevated 

temperature, resulted in a quick and clean conversion to 2.28 (100%).  A literature 

survey indicated that an identical reaction outcome has been reported when 2.21 

was subjected to tosylation conditions24.  This unexpected electrophilic cyclisation 

might account for the complex reaction mixtures observed in the attempted 

transformation of the primary alcohol of 2.25 to a leaving group. 

 
Table 7.4: Comparison of NMR data between 2.26 and 2.28. 

2.26 2.28 

 δ J (Hz)  δ J (Hz) 

-C(1)Ha 4.42 7.03, 10.55 -C(4)Ha 2.90 5.57, 13.19  

-C(1)Hb 4.51 6.45, 10.56 -C(4)Hb 3.20 9.38, 13.19 

-benzyl CH2 (A) 3.59 13.78 -C(1)H2 3.57 13.48 

-benzyl CH2 (B) 3.81 13.78 -benzyl CH2 3.68 13.48 

-C(2)H 3.60-3.66 m -C(3)H 4.18 5.86, 9.38 

 

Since all alternative procedures failed to access the envisioned hybrid PDMP 

analogues, we decided to revisit our original synthetic strategy (Section 5, p.61) and 

introduce double protection by fixing the tert-Boc protected amine and the secondary 

alcohol in an oxazolidine ring. 
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Abstract 
Sphingolipids (SL) have gained much attention over the last decade since it became clear that they 

not only act as structural elements of cell membranes, but also are involved in a myriad of biological 

processes.  Since the discovery of D-threo-1-phenyl-2-aminodecanoyl-3-morpholinopropanol (D-threo-

PDMP or PDMP), an inhibitor of glucosylceramide synthase (GlcCer synthase), a number of more 

potent analogues have been developed.  A new series of hybrid PDMP analogues, based both on 

PDMP and styryl analogues of natural ceramide, has been synthesised from D-serine.  The synthetic 

route was developed such that future introduction of different aryl groups is straightforward.  Biological 

evaluation, both in vitro on rat liver Golgi fractions as well as in vivo in HEK-293 and COS-7 cells, 

revealed two lead compounds with comparable inhibitory potency as PDMP, which could be 

elaborated to more potent inhibitors.   

  

Introduction 
A plethora of biological effects has been assigned to sphingolipids (SLs) over 

the last two decades.  Whereas SLs initially were regarded as inert structural 

components of cell membranes, it has now become clear that they play an important 

role in the regulation of a myriad of cellular processes including cellular 

differentiation, growth, adhesion, senescence, apoptosis and signal transduction.[1]  It 

is obvious that disruption of this fragile cellular equilibrium, for example by impaired 

lysosomal degradation of SLs, could have severe pathophysiological consequences.  

Lysosomal storage diseases, such as Gaucher and Tay-Sachs diseases, are caused 

by the defective catabolism of glycosphingolipids (GSLs), resulting in substrate 

accumulation.[2]  

Since glucosylceramide (GlcCer; Figure 1) acts as a hub for the synthesis of 

more complex GSLs, it has been suggested[3] that partial reduction of the 
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biosynthesis of GlcCer might offer a valuable strategy for treatment of storage 

diseases such as Gaucher disease and other sphingolipid storage diseases.   
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Figure 1.  Structures of GlcCer, D-threo-PDMP and E-styryl-ceramides. 

 

PDMP[4] and related compounds[5] have been developed as potent inhibitors of 

GlcCer synthase.  Surprisingly, only the D-threo isomer specifically inhibits GlcCer 

synthase.[6]  Furthermore, it was shown that elongation of the acyl chain from 

decanoyl to palmitoyl[5a] and introduction of electron rich aromatic substituents[5b] 

drastically enhanced the inhibitory capacity.  Moreover, a pyrrolidino head group was 

proposed to be the best mimic of the sugar transition state. 

In our approach we aimed at the synthesis of hybrid structures based on E-

styryl analogues of natural ceramide.  It was indeed previously shown that such 

analogues are recognised by GlcCer synthase[7] and subsequently metabolised to 

the glucosylated form.  Our primary concern was whether these hybrid analogues 

would still exhibit biological activity. 

Our strategy focused mainly on the elaboration of a synthetic route towards a 

single advanced intermediate for introduction of the aryl moiety by Sonogashira 

coupling between a terminal alkyne and an appropriate aryl iodide, thereby avoiding 

reworking of the entire synthetic scheme for each compound.  Styryl analogue 2.41a 

(Scheme 2) was first synthesised to test our hypothesis.  In addition, the 

intermediates of this synthetic route served as a back-up to monitor Sonogashira 

coupling in the terminal alkyne route.  Throughout the synthetic scheme, we gained 

access to a number of structural analogues which could provide more insight into the 

structure-activity relationship of this class of compounds. 
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Synthesis 
The known Garner aldehyde (derived in 5 steps from D-serine[8]) served as a 

chiral building block since it allows good control of stereochemistry in nucleophilic 

additions and it has shown to be configurationally stable.[9]  Indeed, addition of the 

appropriate lithium acetylide to the aldehyde under chelating conditions (ZnBr2) 

yielded predominantly threo-adducts 2.29 and 2.30b (41% and 44% isolated yields 

respectively; threo:ertythro 9:1; Scheme 1). 
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Scheme 1.  Conditions: a) lithium trimethylsilylacetylide, ZnBr2, Et2O, -78°C to RT, overnight; b) TBAF, 

THF, RT, 1 h; c) lithiumphenylacetylide, ZnBr2, -78°C to RT, overnight; d) 90% acetic acid, 60°C, 5 h 

or p-TsOH, MeOH, RT, 36 h; e) TBDPSCl, imidazole, 4-DMAP, DMF, RT, 16 h; f) p-TsOH, Me2CO, 

2,2-dimethoxypropane, reflux, 6 h; g) TBAF, THF, RT, 1 h; h) PdCl2(PPh3)2, iodobenzene, piperidine, 

70°C, overnight; i) p-TsCl, 4-DMAP, pyridine, 0°C to RT,  35 h; j) See experimental part. 
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Removal of the TMS group with TBAF from threo-2.29 produced terminal 

alkyne threo-2.30a (93%).  Subsequent opening of the oxazolidine ring with 90% 

acetic acid or p-TsOH in MeOH followed by selective silylation of the primary alcohol 

gave the protected sphingosine analogues 2.32a (83% from threo-2.30a) and 2.32b 

(59% from threo-2.30b).  Since it had become clear from preliminary experiments 

that a double amino-protective strategy would be crucial for successful elaboration to 

the desired compounds, acid mediated oxazolidine ring formation followed by 

desilylation allowed access to alcohols 2.34a (94% from 2.32a) and 2.34b (76% from 

2.32b).  Sonogashira coupling of terminal alkyne 2.34a with iodobenzene rendered 

alcohol 2.34b in excellent yield (98%).   

Although we succeeded in converging both synthetic pathways at this point, it 

would still be more convenient to introduce the aromatic ring at a later stage to avoid 

the separate introduction of amine substituents for each individual aryl analogue.  

Therefore, primary alcohols 2.34a and 2.34b were protected as the respective 

tosylates 2.35a (94%) and 2.35b (64%).  The lower yield of 2.35b might be ascribed 

to decomposition during work-up.  Indeed, the reaction mixture became more 

complex when solvent removal was carried out at 40-50°C.  In contrast, when the 

temperature was strictly kept below 35°C, few side products were observed.  The 

nucleophilic nature of the tert-Boc group,[10] susceptible to formation of a bicyclic 

oxazolidine-oxazolidinone,[11] might be responsible for this phenomenon.  Treatment 

of 2.35a and 2.35b with the appropriate nucleophile in DMF at elevated temperatures 

gave access to key intermediates 2.36a-e (62-99%).  Sonogashira coupling of 2.36d 

with iodobenzene proceeded smoothly to produce 2.36c (93%). 

Acid mediated deprotection of 2.36a-e followed by acylation gave alkyne 

analogues 2.38a-d (48-89%) and 2.43 (60%; Scheme 2). Unfortunately, Sonogashira 

coupling of 2.43 with iodobenzene showed to be a bridge too far since it failed to give 

alkyne 2.38c in satisfactory yields (32%).  Therefore, key intermediate 2.36d should 

be regarded as a solid base for future introduction of aryl substituents.  Reduction of 

2.38d under Staudinger conditions gave amine 2.38e in excellent yield (97%).  Since 

Birch reduction of 2.38a and 2.38b produced complex mixtures, we opted to reduce 

the alkyne with Red-Al®, although we were aware that controversial results[12] had 

been obtained in the presence of amides.  Unfortunately, upon treatment of amides 

2.38a, 2.38b and 2.38e with Red-Al® at -78°C, the corresponding E-styryl ceramines 

2.39a (60%) 2.39b (quant.) and 2.39c (45%) were isolated as the sole reaction 
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products.  Nonetheless, comparison of the biological activities of these amines with 

the amide counterparts could provide more insight into the role of the amide function 

in binding to GlcCer synthase since no D-threo ceramines have been evaluated to 

date as potential inhibitors. 
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Scheme 2.  Conditions: a) 3N HCl, MeOH, 50°C, 12 h; b) p-nitrophenylpalmitate, HOBT, pyridine, 

50°C, 48 h; c) Red-Al, Et2O, -78°C to RT, overnight; d) PPh3, THF, RT for 30' then H2O, RT, 48 h; e) 

PdCl2(PPh3)2, iodobenzene, piperidine, 70°C, overnight; f) triphosgene, TEA, CH2Cl2, 0°C to RT, 1h. 

 

In order to circumvent the reduction of the amide group, amines 2.37a-c were 

first treated with Red-Al® at -78°C followed by acylation with p-nitrophenylpalmitoate 

to give access to PDMP analogues 2.41a-c (84, 78 and 71% respectively). 

Stereochemical assignment of the threo configuration was achieved by 

treatment of amine 2.38e with triphosgene yielding oxazolidinone 2.44 (88%).  Based 

on the small coupling constant 3J5,6 = 3.42 Hz, an axial-axial orientation can be 

excluded (Scheme 3, conformer erythro-2.44A).  The remaining question was 

whether C(5)H was in axial or equatorial position.  The values of the coupling 

constants 3J4a,5 = 6.71 Hz and 3J4b,5 = 5.13 Hz indicate a pseudo-axial-axial 

orientation.  Selective irradiation of C(6)H (δ = 5.40 ppm) and NOEDIF observation 

showed an increase of C(5)H (5.0%) and a weaker, but still significant increase of 
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C(4)Hb (2%).  Only conformer threo-2.44D would give a NOE contact between C(6)H 

and C(4)Hb indicating a cis-relationship of the substituents on C(5) and C(6).  

Performing these experiments at higher temperature (60°C) did not affect the 

coupling constant, demonstrating the presence of a single conformer. 
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Scheme 3.  Possible conformers of erythro/threo-2.44. 

 

Biological evaluation 
In a preliminary, exploratory in vitro assay, using a short acyl chain analogue 

of ceramide, N-[6-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl]D-erythro-

sphingosine (C6-NBD-D-erythro-ceramide), as substrate for GlcCer synthase (Figure 

2), compounds 2.38a,b,d,e, 2.39a-c, 2.41a-c, 2.43 and PDMP were evaluated as 

potential inhibitors of GlcCer synthase in rat liver Golgi membrane homogenates.  

Moreover, specificity of inhibition towards GlcCer synthase was assessed by 

monitoring sphingomyelin (SM) synthesis from C6-NBD-D-erythro-ceramide.[13]  

Indeed, toxicity of PDMP analogues has been associated with increased intracellular 

ceramide (Cer) levels.[5b]  Inhibition of sphingomyelin synthase (SM synthase),[14] as 

well as different mechanisms, have been proposed[5a,5b] to cause this phenomena. 

Interestingly, almost all compounds showed some inhibition of GlcCer 

synthesis (Figure 2A).  Comparison of the inhibitory activities of the morpholino series 

2.38a, 2.39a and 2.41a clearly shows that the presence of an amide carbonyl 

increases inhibitory activity.  Moreover, alkyne 2.38a and E-alkene 2.41a seem to be 

equally potent.  In contrast, piperidine analogues 2.38b and 2.41b show a small 

difference in favour of the E-alkene analogue.   
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Figure 2. Effects of inhibitors on GlcCer (A) and SM (B) synthesis assayed in vitro in Golgi fractions. 

The reactions were carried out in the presence or absence of varying concentrations of inhibitors.  

 

Surprisingly, analogue 2.43 revealed that the presence of the aromatic ring 

was not a prerequisite for inhibitory activity.  Furthermore, terminal alkyne 2.43 
demonstrated comparable potency with respect to its aromatic E-alkene counterpart 

2.41c.  Data for ceramine 2.39b confirmed the necessity of the amide for distinct 

inhibitory activity although this analogue still reduced GlcCer synthesis by 65% at 25 

μM.  By switching to non-cyclic nitrogen substituents as in compounds 2.38d, 2.38e 

and 2.39c, the inhibitory activity drastically dropped, thereby clearly indicating the 

requirement of cyclic amines as sugar transition state mimics, as previously 

assumed.[5a]  In agreement with published results for PDMP analogues,[5a] data for 

2.41a, 2.41b and 2.41c demonstrated that a pyrrolidine substituent on C1 is 

undoubtedly favourable over a morpholino or piperidino head group. 

Most analogues showed a concentration-dependent decrease in SM synthesis 

similar to PDMP, as depicted in Figure 2B.  However, treatment with 25 or 50 μM 

concentrations did not significantly affect SM synthesis, except for 2.38d, which 

induced a substantial decrease in SM synthesis.  When higher molar concentrations 

were applied, a significant decrease in SM synthesis was noticed, except for 2.38b, 
which showed an increase in SM at all inhibitor concentrations. 

An interesting feature was noticed in the assays of compounds 2.38e and 

2.39c.  Apart from the expected SLs, a new “upper band” was observed on TLC with 

an Rf which was slightly larger than the Rf of C6-NBD-ceramide.  It is difficult to 

speculate on the nature of this metabolite, but based on its apolar behaviour, one 

could assume that acylation of C1-OH by 1-O-acyl transferase[15] might have 
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occurred, thereby yielding a compound with larger Rf than C6-NBD-ceramide.  

Further investigation will be necessary to reveal this metabolite’s identity. 

In a subsequent set of assays, the biological profile of the most potent 

inhibitors, 2.41c and 2.43, was examined in detail both in vitro on rat liver Golgi 

fractions and in vivo using HEK-293 cells.  Both compounds were equally as potent 

as PDMP in inhibiting GlcCer synthase in Golgi fractions, as depicted in Figure 3A.  

The calculated IC50 values from these experiments for PDMP, 2.41c and 2.43 are 

5.33, 5.44 and 4.23 μM respectively.  The value for PDMP is in good agreement with 

published data (5 μM).[6]  Within the concentration range of this assay, neither 

analogues affected SM synthesis (Figure 3B). 

 

 
Figure 3. Effects of analogues 2.41c and 2.43 on GlcCer (A) and SM (B) synthesis measured in vitro 

in Golgi fractions.  The reactions were carried out in the presence and absence of various inhibitor 

concentrations. 

 

In vivo inhibition was assessed by incubating HEK-293 cells for 3 h in the 

presence of 10, 25 and 50 μM of analogues 2.41c and 2.43, together with C6-NBD-

ceramide (Figure 4A).  Again, both compounds inhibited GlcCer synthesis to the 

same extent as PDMP.  Data concerning SM synthesis in HEK-293 cells correlate 

well with findings in vitro (Figure 4B).  Even at 50 μM no effect on SM synthesis was 

observed. 

We next examined de novo synthesis of other SLs, using 3H-serine as a 

precursor, in HEK-293 (Figure 5) and COS-7 cells (data not shown), following pre-

treatment with the inhibitors.  GlcCer synthesis was moderately inhibited in both cell 

lines. While values for 2.41c (62% of control) were comparable to PDMP (52% of 

control), 2.43 (37% of control) proved to be somewhat more effective.   
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Figure 4.  Effects of analogues 2.41c and 2.43 on GlcCer (A) and SM (B) synthesis assayed in vivo in 

HEK-293 cells using C6-NBD-ceramide.  The reactions were carried out in the presence and absence 

of various inhibitor concentrations. 

 

Lactosylceramide (LacCer) levels slightly decreased upon treatment with both 

PDMP and 2.41c (48% of control), whereas no effect could be observed upon 

incubation with 2.43 (118% of control).  Cer levels substantially increased (up to two-

fold) upon treatment with the inhibitors.  In contrast, SM levels were only very slightly 

affected by both 2.41c (81% of control) and 2.43 (118% of control) at this 

concentration.  These findings indicate that inhibition of SM synthesis is not 

responsible for the observed ceramide accumulation in these cell lines. Therefore, 

other ceramide salvage pathways must be involved.  The only way to disclose the 

true nature of the specific enzyme(s) involved in ceramide accumulation is by 

rigorously monitoring cellular levels of all known SLs. 

 
Figure 5. Effects of 2.43 and 2.41c on de novo sphingolipid synthesis assayed using L-[3-3H]-serine in 

vivo in HEK-293 cells.  Analyses were performed after 3 h incubation following 1 h pre-treatment with 

50 μM of the inhibitors. 

 

In conclusion, we have developed a flexible synthetic route towards a new 

series of hybrid PDMP analogues.  A key reaction in our approach was the 
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Sonogashira coupling between an aryl iodide and a terminal alkyne intermediate.  

The influence of the synthesized compounds on GlcCer and SM synthesis was 

evaluated both in vitro and in vivo.  An increase in inhibitory activity was observed 

when a pyrrolidine head group was combined with an amide-linked fatty acid.  

Interestingly, substitution of the aromatic moiety by a terminal alkyne resulted in an 

equally potent analogue, compared to its E-alkenyl counterpart.  This simplified 

terminal alkyne PDMP analogue provides a solid lead for future introduction of 

different aryl groups in our search for more potent PDMP analogues.   

 

Experimental 
General: 

All reactions were carried out under inert (N2) atmosphere.  Precoated Macherey-

Nagel (Düren, Germany) silica gel F254 plates were used for TLC and spots were 

examined under UV light at 254 nm and/or revealed by sulphuric acid-anisaldehyde 

spray or phosphomolybdic acid spray.  Column chromatography was performed on 

ICN silica gel (63-200 μM, ICN, Asse Relegem, Belgium).  NMR spectra were 

obtained with a Varian Mercury 300 or 500 spectrometer (Varian, Palo Alto, 

California, USA).  Chemical shifts are given in parts per million (δ) relative to residual 

solvent peak.  All signals assigned to amino and hydroxyl groups were exchangeable 

with D2O.  Numbering for 1H assignment is based on the IUPAC name of the 

compounds.  Structural assignment was confirmed with COSY, HMQC and/or 

NOEDIF if necessary.  Splitting of 13C signals was often observed for oxazolidine 

intermediates due to the presence of rotamers.  Exact mass measurements were 

performed on a quadrupole/orthogonal-acceleration time-of-flight (Q/oaTOF) tandem 

mass spectrometer (qTof2, Micromass, Manchester, UK) equipped with a standard 

electrospray ionisation (ESI) interface.  Samples were infused in a 2-propanol/water 

(1:1) mixture at 3 μL/min.  Optical rotations were measured with a Perkin-Elmer 241 

polarimeter. 

 
Intermediate alkynes 2.29 and 2.30:  
Trimethylsilyl protected alkynes erythro/threo-2.29: 

To a solution of trimethylsilylacetylene (12.53 mL, 88 mmol, 1.66 eq.) in anhydrous 

Et2O (450 mL) at -78°C, nBuLi (50 mL of 1.6M in hexanes, 80 mmol, 1.51 eq.) was 
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added dropwise.  The mixture was stirred for 1 h at 0°C and 1 h at room temperature 

and was subsequently cooled to 0°C.  After addition of ZnBr2 (23.89 g, 106.1 mmol, 2 

eq.), the reaction mixture was stirred at room temperature for 1 h and subsequently 

cooled to -78°C.  D-Garner’s aldehyde (12.160 g, 53.07 mmol) was dissolved in 

anhydrous Et2O (50 mL), cooled to -78°C and added dropwise to the above solution.  

The mixture was allowed to reach room temperature overnight and after cooling to 

0°C, saturated NH4Cl (100 mL) was added in one portion.  The aqueous layer was 

extracted with Et2O (2 x 100 mL).  The combined organic phase was dried over 

MgSO4, and the solvent was removed under reduced pressure.  The residue was 

purified by flash chromatography (hexanes:EtOAc 9:1) affording threo-2.29 (7.167 g, 

41%) and a mixture of erythro/threo-2.29 (4.736 g, 27%), both as a slightly yellow oil. 

 

Sample data for threo-2.29:  
1H NMR (300 MHz; DMSO-d6) δ: 0.11 (s, 9H, (CH3)3Si), 1.35 – 1.52 (m, 15H, 2 x -

CH3 and tert-butyl), 3.75 - 3.85 (m, 1H, -C(4)H),  3.95 (td, 1H, J = 3.51 and 9.08 Hz, -

C(5)Ha), 4.05 (1H, dd, J = 5.28 and 8.21 Hz, -C(5)Hb), 4.67 (m, 1H, -C(4)CHOH), 

5.77 (m, 1H, -C(4)CHOH). 
13C NMR (75 MHz; DMSO-d6) δ: -0.30, -0.20, 23.51, 24.77, 25.54, 26.40, 27.87, 

60.12, 60.65, 61.56, 63.65, 64.09, 79.24, 79.58, 93.58, 93.94, 106.10, 106.27, 

151.88, 151.19.  

Exact mass (ESI-MS) calculated for C16H30NO4Si [M+H]+: 328.1944, found: 

328.1943. 

 

Alkyne threo-2.30a: 

TBAF (38.5 mL of a 1M solution in THF, 38.5 mmol, 1.2 eq.) was added to a solution 

of threo-2.29 (10.5 g, 32.05 mmol) in THF (10 mL).  The solution was stirred for 1 h at 

room temperature and the solvent was subsequently removed under reduced 

pressure.  The residue was dissolved in EtOAc (50 mL) and washed with saturated 

NaHCO3 (50 mL).  The aqueous layer was extracted with EtOAc (2 x 50 mL).  The 

combined organic phase was dried over MgSO4 and the solvent was removed under 

reduced pressure.  The residue was purified by flash chromatography 

(hexanes:EtOAc 4:1) yielding threo-2.30a (7.61 g, 93%) as a white solid. 
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Sample data for threo-2.30a: 
1H NMR (300 MHz; DMSO-d6) δ: 1.35 – 1.42 (m, 12H, -CH3 and tert-butyl), 1.50 (s, 

3H, -CH3), 3.20 (d, 1H, J = 4.4 Hz, alkyne H), 3.81 (m, 1H, -C(4)H), 3.94 (m, 1H, -

C(5)Ha), 4.02 (dd, 1H, J = 2.64 and 9.09 Hz, -C(5)Hb), 4.61 (br s, 1H, -C(4)CHOH), 

5.71 (m, 1H, -C(4)CHOH).  
13C NMR (75 MHz; DMSO-d6) δ: 23.17, 24.49, 25.77, 26.58, 60.18, 60.66, 60.96, 

63.39, 63.81, 75.59, 75.77, 79.23, 79.65, 83.50, 93.63, 93.94, 151.31, 152.00. 

Exact mass (ESI-MS) calculated for C13H21NO4Na [M+Na]+: 278.1368, found: 

278.1364. 

 

Alkynes erythro/threo-2.30b: 

To a stirred and cooled (0°C) solution of lithium phenylacetylide (42.7 mL of a 1M 

solution in THF, 42.7 mmol, 2 eq.) in anhydrous Et2O (200 mL), ZnBr2 (10.11 g, 

44.88 mmol, 2.1 eq.) was added and the mixture was stirred for 1 h at 0°C and 1 h at 

room temperature and was subsequently cooled – 78°C.  D-Garner’s aldehyde (4.90 

g, 21.37 mmol) was dissolved in anhydrous Et2O (25 mL), the resulting solution 

cooled to -78°C and added dropwise to the above solution.  The mixture was allowed 

to reach room temperature overnight and after cooling to 0°C, treated with sat. NH4Cl 

(50 mL).  After separation of the phases, the aqueous layer was extracted with Et2O 

(2 x 100 mL) and the combined organic phase was dried over MgSO4.  After removal 

of the solvent under reduced pressure, the residue was purified by flash 

chromatography (hexanes:EtOAc 9:1  85:15) affording threo-2.30b (3.125 g; 44%) 

and a mixture of erythro-  and threo-2.30b (2.014 g, 28%), both as a yellow oil. 

 

Sample data for threo-2.30b:  
1H NMR (300 MHz; DMSO-d6) δ: 1.46 – 1.49 (m, 12H, -CH3 and tert-butyl), 1.50 (s, 

3H, -CH3), 3.85 – 4.06 (m, 2H, -C(4)H and –C(5)Ha), 4.14 (dd, 1H, J = 2.35 and 9.09 

Hz, –C(5)Hb), 4.82- 4.92 (m, 1H, -C(4)CHOH), 5.88 (m, 1H, -C(4)CHOH), 7.35 – 7.40 

(m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 25.78, 27.59, 60.68, 61.11, 63.65, 78.93, 83.84, 

89.59, 93.34, 122.12, 127.87, 128.06, 131.02, 151.44. 

Exact mass (ESI-MS) calculated for C19H26NO4 [M+H]+: 332.1862, found: 332.1864. 
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Diols 2.31a and 2.31b: 
Diol 2.31a: 

A solution of threo-2.30a (7.57 g, 29.65 mmol) in 90% acetic acid was stirred for 5 h 

at 60°C.  The solvent was removed under reduced pressure, and the residue was 

coevaporated twice with isooctane (25 mL).  The residue was purified by flash 

chromatography (hexanes:EtOAc 1:1) yielding 2.31a (5.935 g, 93%) as a slightly 

yellow, viscous oil. 
 

Sample data for 2.31a:  
1H NMR (300 MHz; DMSO-d6) δ: 1.36 (s, 9H, tert-butyl), 3.21 (d, 1H, J = 2.06 Hz, 

alkyne H), 3.32 – 3.52 (m, 3H, -C(1)H2 and -C(2)H), 4.28 – 4.35 (m, 1H, -C(3)H), 4.61 

(t, 1H, J = 5.57 Hz, -C(1)OH)), 5.38 (d, 1H, J = 6.45 Hz, -C(3)OH), 6.24 (d, 1H, J = 

7.63 Hz, -NH).  
13C NMR (75 MHz; DMSO-d6) δ: 28.20, 56.98, 59.62, 59.95, 75.03, 77.80, 84.25, 

155.41. 

Exact mass (ESI-MS) calculated for C10H17NO4Na [M+Na]+: 238.1055, found: 

238.1047. 

 

Diol 2.31b: 
To a solution of threo-2.30b (5.91 g, 17.83 mmol) in MeOH (70 mL), p-TsOH.H2O 

(339 mg, 1.78 mmol, 0.1 eq.) was added, and the resulting solution was stirred for 36 

h at room temperature.  TEA (3 mL) was added to the cooled (0°C) solution, and the 

solvent was removed in vacuo.  The residue was dissolved in EtOAc (100 mL) and 

the resulting solution extracted with sat. NaHCO3 (2 x 25 mL) and brine (25 mL).  

After drying over MgSO4, the solvent was removed under reduced pressure, and the 

residue was purified by column chromatography (hexanes:EtOAc 3:2) producing 

2.31b (3.64 g, 70%) as a white foam. 
 

 

Sample data for 2.31b:  
1H NMR (300 MHz; DMSO-d6) δ: 1.38 (s, 9H, tert-butyl), 3.25 – 3.68 (m, 3H, -C(1)H2 

and -C(2)H), 4.56 (dd, 1H, J = 3.82 and 6.75 Hz, -C(3)H), 4.64 (t, 1H, J = 5.57 Hz, -
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C(1)OH), 5.47 (d, 1H, J = 6.45 Hz, -C(3)OH), 6.36 (d, 1H,  J = 8.50 Hz, -NH), 7.32 – 

7.42 (m, 5H, arom. H). 

Exact mass (ESI-MS) calculated for C16H22NO4 [M+H]+: 292.1549, found: 292.1545. 

 

Silyl ethers 2.32a and 2.32b: 
Typical procedure: TBDPSCl (9.5 mmol) was added dropwise to a cooled solution 

(0°C) of 2.31a or 2.31b (10 mmol), imidazole (30 mmol) and 4-DMAP (cat.) in 

anhydrous DMF (20 mL).  The mixture was stirred overnight and the solvent was 

subsequently removed under reduced pressure.  The residue was partitioned 

between Et2O (25 mL) and sat. NaHCO3 (12 mL).  After separation of the phases, the 

organic layer was washed with sat. NaHCO3 (12 mL) and brine (12 mL).  The organic 

phase was dried over MgSO4, and the solvent was removed under reduced pressure.  

The residue was purified by flash chromatography (hexanes:EtOAc 9:1) affording 

2.32a (89%) and 2.32b (84%) as very viscous, slightly yellow oils. 

 

Sample data for 2.32a:  
1H NMR (300 MHz; DMSO-d6) δ: 0.97 (s, 9H, tert-butyl silyl), 1.37 (s, 9H, tert-butyl), 

3.25 (d, 1H, J = 2.05 Hz, alkyn H), 3.60 – 3.82 (m, 3H, -C(1)H2 and –C(2)H), 4.39 – 

4.47 (m, 1H, -C(3)H), 5.49 (d, 1H, J = 6.74 Hz, -C(3)OH), 6.41 (d, 1H, J =  8.21 Hz, -

NH), 7.35 – 7.44 (m, 4H, arom. H), 7.59 – 7.65 (m, 6H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 18.82, 26.53, 28.19, 56.90, 60.04, 62.56, 75.30, 

77.77, 83.89, 127.78, 129.77, 133.01, 135.02, 155.39.  

Exact mass (ESI-MS) calculated for C26H35NO4SiNa [M+Na]+: 476.2233, found: 

476.2234. 

 

Sample data for 2.32b:  
1H NMR (300 MHz; DMSO-d6) δ: 1.07 (s, 9H, tert-butyl silyl), 1.37 (s, 9H, tert-butyl), 

3.66 – 3.73 (m, 1H, -C(1)Ha), 3.76 – 3.92 (m, 2H, -C(1)Hb and C(2)H), 4.56 – 4.67 

(m, 1H, -C(3)H), 5.48 – 5.64 (m, 1H, -C(3)OH), 6.56 (d, 1H, J = 7.92 Hz, -NH), 7.28 – 

7.48 (m, 10H, arom. H), 7.58 – 7.67 (m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 18.81, 26.54, 28.20, 57.10, 60.86, 62.83, 77.75, 

84.00, 89.80, 122.24, 127.77, 128.50, 129.76, 131.27, 133.00, 133.03, 135.01, 

155.46. 
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Exact mass (ESI-MS) calculated for C32H40SiNO4 [M+H]+: 530.2727, found: 

530.2721.  

 

Oxazolidines 2.33a and 2.33b: 
Typical procedure: To a solution of 2.32a or 2.32b (10 mmol) in a mixture of 

acetone/2,2-dimethoxypropane (2.6:1, 40 mL), p-TsOH.H2O (5 mol%) was added in 

one portion and the reaction was refluxed for 6 h.  Removal of the solvent under 

reduced pressure, followed by flash chromatography (hexanes:EtOAc 95:5) afforded 

2.33a (98%) and 2.33b (84%) as colourless oils. 

 

Sample data for 2.33a:  
1H NMR (300 MHz; DMSO-d6) δ: 0.96 (s, 9H, tert-butyl silyl), 1.15 – 1.44 (m, 12H, 

tert-butyl and –CH3), 1.62 (s, 3H, -CH3), 3.48 – 3.85 (m, 3H, alkyne H and –C(4)CH2), 

3.90 – 4.05 (m, 1H, -C(4)H), 4.82 – 4.97 (m, 1H, -C(5)H),  7.35 – 7.63 (m, 10H, arom. 

H). 
13C NMR (75 MHz; DMSO-d6) δ: 18.77, 26.50, 26.84, 27.24, 27.77, 61.12, 62.29, 

64.27, 64.51, 65.33, 65.94, 77.03, 79.48, 79.79, 82.43, 82.92, 94.72, 95.27, 127.91, 

129.98, 132.43, 134.99, 150.53, 151.01. 

Exact mass (ESI-MS) calculated for C29H40SiO4N [M+Na]+: 516.2546, found: 

516.2554.  

 

Sample data for 2.33b:  
1H NMR (300 MHz; DMSO-d6) δ: 0.95 – 1.05 (s, 9H, tert-butyl silyl), 1.18 – 1.50 (m, 

12H, tert-butyl and –CH3), 1.67 (s, 3H, -CH3), 3.60 – 3.92 (m, 2H, -C(4)H and -

C(4)CHa), 3.98 – 4.10 (m, 1H, -C(4)CHb), 5.08 – 5.20 (m, 1H, C(5)H), 7.35 – 7.50 (m, 

10H, arom. H), 7.58 – 7.65 (m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 18.79, 26.55, 27.82, 61.32, 62.17, 64.26, 64.51, 

65.23, 65.82, 77.03, 79.33, 79.64, 87.37, 87.82, 95.78, 96.02, 121.36, 127.92, 

128.75, 129.09, 130.00, 131.33, 132.52, 135.07, 150.55, 151.03. 

Exact mass (ESI-MS) calculated for C35H44SiO4N [M+H]+: 570.3040, found: 

570.3043.  
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Alcohols 2.34a and 2.34b:  
Typical procedure: To a solution of 2.33a or 2.33b (10 mmol) in THF (50 mL), TBAF 

(15 mmol) was added in one portion, and the solution was stirred for 75 min at room 

temperature.  The solvent was subsequently removed under reduced pressure, and 

the residue was dissolved in EtOAc (100 mL).  The organic layer was washed with 

saturated NaHCO3 (3 x 25 mL), dried over MgSO4 and concentrated under reduced 

pressure.  The residue was purified by column chromatography (hexanes:EtOAc 4:1) 

yielding 2.34a (96%) and 2.34b (91%) as white solids. 

 

Alcohol 2.34b from 2.34a: 

To a solution of 2.34a (651 mg, 2.55 mmol) and PdCl2(PPh3)2 (36 mg, 51 μmol, 2 

mol%) in piperidine (5 mL), iodobenzene (429 μL, 3.82 mmol, 1.5 eq.) was added 

and the mixture was stirred overnight at 70°C.  The solvent was subsequently 

removed under reduced pressure and the residue was purified by column 

chromatography rendering (hexanes:EtOAc 4:1) 2.34b (841 mg, 99%) as a white 

solid. 

 

Sample data for 2.34a: 
1H NMR (300 MHz; DMSO-d6) δ: 1.40 (s, 9H, tert-butyl), 1.60 – 1.63 (m, 6H, 2 x –

CH3), 3.15 – 3.26 (m, 1H, -C(4)CHa), 3.45 – 3.53 (m, 1H, -C(4)CHb), 3.58 (d, 1H, J = 

2.35, alkyne H), 3.76 - 3.90 (m, 1H, -C(4)H), 4.72 – 4.78 (m, 1H, -C(5)H), 5.05 – 5.15 

(m, 1H, -C(4)CH2OH).  
13C NMR (75 MHz; DMSO-d6) δ: 25.51, 26.84, 27.19, 28.01, 59.50, 60.24, 65.05, 

65.32, 65.48, 65.89, 76.79, 79.42, 79.88, 83.60, 94.60, 94.95, 150.74, 151.07. 

Exact mass (ESI-MS) calculated for C13H21NO4Na [M+Na]+: 278.1368, found: 

278.1364. 

 

Sample data for 2.34b:  
1H NMR (300 MHz; DMSO-d6) δ: 1.41 (m, 9H, tert-butyl), 1.44 (s, 3H, -CH3), 1.68 (s, 

3H, -CH3), 3.24 – 3.36 (m, 1H, -C(4)CHa), 3.51 – 3.62 (m, 1H, -C(4)CHb), 3.88 - 4.20 

(m, 1H, -C(4)H), 5.02 (d, 1H, J = 1.53 Hz, -C(5)H), 5.06 – 5.17 (br s, 1H, -

C(4)CH2OH), 7.34 – 7.45 (m, 5H, arom. H).  
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13C NMR (75 MHz; DMSO-d6) δ: 25.61, 27.06, 27.94, 59.51, 60.25, 65.16, 66.17, 

66.49, 79.42, 79.81, 84.87, 89.01, 94.53, 94.78, 121.49, 128.70, 128.94, 131.21, 

157.75. 

Exact mass (ESI-MS) calculated for C19H26O4N [M+H]+: 332.1862, found: 332.1865. 

 

Tosylates 2.35a and 2.35b: 

Typical procedure: Solid p-TsCl (3 mmol) was added to an ice-cold solution of 2.34a 

or 2.34b (1 mmol) in anhydrous pyridine (1 mL) and after stirring for 35 h at room 

temperature, the reaction mixture was evaporated to dryness at high vacuum (< 35°C 

for 2.35a, 40 – 50°C for 2.35b).  The residue was purified by column chromatography 

(hexanes:EtOAc 85:15) to yield 2.35a (94%) and 2.35b (64%) as white solids. 

 

Sample data for 2.35a:  
1H NMR (300 MHz; DMSO-d6) δ: 1.34 (s, 9H, tert-butyl), 1.58 – 1.61 (m, 6H, 2 x -

CH3), 2.41 (s, 3H, tosyl -CH3), 3.64 (d, 1H, J = 2.34 Hz, alkyne H), 4.00 – 4.10 (m, 

3H, -C(4)CH2 and -C(4)H), 4.70 – 4.75 (br s, 1H, -C(5)H), 7.47 (d, 2H, J = 8.21 Hz, 

arom. H), 7.78 (d, 2H, J = 8.21 Hz, arom. H).  
13C NMR (75 MHz; DMSO-d6) δ: 20.77, 25.40, 26.67, 27.77, 61.52, 61.79, 65.37, 

65.92, 67.26, 68.11, 77.52, 80.13, 80.44, 82.40, 95.22, 95.54, 127.65, 130.30, 

131.85, 145.29, 150.26, 150.87. 

Exact mass (ESI-MS) calculated for C20H27NO6SNa [M+Na]+: 432.1457, found: 

432.1453. 

 

Sample data for 2.35b:  
1H NMR (300 MHz; DMSO-d6) δ: 1.33 (s, 9H, tert-butyl), 1.41 (s, 3H, -CH3), 1.65 (s, 

3H, -CH3), 2.38 (s, 3H, tosyl -CH3), 4.04 – 4.22 (m, 3H, -C(4)CH2 and -C(4)H),  4.93 – 

5.20 (m, 1H, -C(5)H), 7.34 – 7.44 (m, 5H, arom. H), 7.47 (d, 2H, J = 8.21 Hz, arom. H 

tosyl), 7.78 (d, 2H, J = 8.21 Hz, arom. H tosyl).  
13C NMR (75 MHz; DMSO-d6) δ: 21.12, 25.56, 25.62, 26.88, 27.17, 27.83, 61.53, 

61.85, 66.07, 66.63, 67.35, 68.20, 80.18, 80.48, 85.55, 87.84, 95.16, 95.58, 121.21, 

127.74, 128.84, 130.36, 131.37, 131.88, 145.37, 150.37, 150.97. 

Exact mass (ESI-MS) calculated for C26H32O6NS [M+H]+: 486.1950 found: 486.1956. 
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Intermediates 2.36a-e: 
Typical procedure for intermediates 2.36a-d: 

The secondary amine (4 mmol) was added to a solution of 2.35a-b (0.25 mmol) in 

anhydrous DMF (3 mL) and the mixture was heated at 45°C for 72 h.  The residue, 

resulting from removal of the solvent in vacuo, was purified by column 

chromatography (hexanes:EtOAc 4:1 for 2.36a-b, CH2Cl2:MeOH 99:1 for 2.36c-d) 

yielding 2.36a (62%), 2.36b (85%), 2.36c (82%) and 2.36d (89%) as slightly brown 

solids. 

 

Intermediate 2.36c from 2.36d: 

An identical procedure as for the preparation of 2.34b from 2.34a gave 2.36d (93%) 

as a slightly brown solid. 

 

Intermediate 2.36e: 

NaN3 (268 mg, 4.12 mmol, 10 eq.) was added to a solution of 2.35b (200 mg, 0.412 

mmol) in anhydrous DMF (10 mL) and the mixture was heated at 45°C for 72 h.  After 

removal of the solvent under reduced pressure, the residue was purified by flash 

chromatography (hexanes:EtOAc 97:3) rendering 2.36e (145 mg, 99%) as a white 

solid.  

 

Sample data for 2.36a:  
1H NMR (300 MHz; DMSO-d6) δ: 1.43 (s, 9H, tert-butyl), 1.48 (s, 3H, -CH3), 1.71 (s, 

3H, -CH3), 2.32 – 2.46 (m, 4H, CH2-N-CH2 morpholine), 2.50 – 2.62 (m, 2H, -

C(4)CH2),  3.50 – 3.65 (m, 4H, CH2-O-CH2 morpholine), 3.98 – 4.18 (m, 1H, -C(4)H), 

4.96 – 5.05 (m, 1H, -C(5)H), 7.36 – 7.47 (m, 5H, arom. H).  
13C NMR (75 MHz; DMSO-d6) δ: 25.77, 27.41, 28.04, 53.70, 60.20, 61.06, 66.26, 

68.24, 79.65, 82.07, 85.08, 94.87, 121.52, 128.85, 129.13, 131.36, 150.60.  

Exact mass (ESI-MS) calculated for C23H33O4N2 [M+H]+: 401.2440, found: 401.2439. 

 

Sample data for 2.36b:  
1H NMR (300 MHz; DMSO-d6) δ: 1.30 – 1.54 (m, 18H, tert-butyl, -CH3, CH2-CH2-CH2 

piperidine), 1.68 – 1.72 (s, 3H, –CH3), 2.23 – 2.60 (m, 6H, -C(4)CH2 and CH2-N-CH2 
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piperidine), 4.92 – 4.16 (br s, 1H, -C(4)H), 4.82 - 5.04 (br s, 1H, -C(5)H), 7.34 – 7.45 

(m, 5H, arom. H).  
13C NMR (75 MHz; DMSO-d6) δ: 23.84, 25.57, 27.02, 27.38, 27.97, 28.97, 54.55, 

60.37, 61.60, 68.24, 79.51, 84.97, 89.31, 94.87, 121.49, 128.77, 129.04, 131.28, 

150.59. 

Exact mass (ESI-MS) calculated for C24H35O3N2 [M+H]+: 399.2648, found: 399.2640. 

 

Sample data for 2.36c:  
1H NMR (300 MHz; DMSO-d6) δ: 1.40 (s, 9H, tert-butyl), 1.44 (s, 3H, -CH3), 1.64 – 

1.74 (m, 7H, CH2-CH2-CH2-CH2 pyrrolidine and -CH3), 2.20 – 2.90 (br s, 5H, CH2-N-

CH2 pyrrolidine and -C(4)CHa), 3.23 – 3.34 (m, 1H, -C(4)CHb), 3.95 – 4.21 (m, 1H, -

C(4)H), 4.82 – 5.20 (br s, 1H, -C(5)H), 7.32 – 7.44 (m, 5H, arom. H).  
13C NMR (75 MHz; DMSO-d6) δ: 23.12, 25.70, 27.43, 27.97, 53.80, 56.25, 57.58, 

61.82, 62.47, 67.33, 67.96, 79.57, 79.95, 85.06, 89.14, 94.63, 94.93, 121.52, 128.76, 

129.04, 131.28, 150.61, 151.00. 

Exact mass (ESI-MS) calculated for C23H33O3N2 [M+H]+: 385.2491, found: 385.2487. 

 

Sample data for 2.36d:  
1H NMR (300 MHz; DMSO-d6) δ: 1.48 – 1.52 (m, 12H, tert-butyl and -CH3), 1.60 – 

1.70 (m, 7H,  -CH3 and CH2-CH2-CH2-CH2 pyrrolidine), 2.30 – 2.60 (m, 6H, CH2-N-

CH2 pyrrolidine and -C(4)CH2), 3.57 (d, 1H, J = 2.34 Hz, alkyne H), 3.86 – 4.00 (m, 

1H, -C(4)H), 4.68 – 4.73 (br s, 1H, -C(5)H). 
13C NMR (75 MHz; DMSO-d6) δ: 23.16, 25.51, 27.49, 27.96, 53.71, 57.62, 62.59, 

67.23, 76.77, 79.48, 83.72, 94.97, 150.62. 

Exact mass (ESI-MS) calculated for C17H29O3N2 [M+H]+: 309.2178, found: 309.2180. 

 

Sample data for 2.36e: 
1H NMR (300 MHz; DMSO-d6) δ: 1.43 (s, 9H, tert-butyl), 1.50 (s, 3H, -CH3), 1.69 (s, 

3H, -CH3), 3.45 – 3.78 (m, 2H, -C(4)CH2), 4.00 – 4.14 (br s, 1H, -C(4)H), 4.96 (d, 1H, 

J = 2.93 Hz, -C(5)H), 7.34 – 7.46 (m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 25.37, 26.89, 27.83, 49.97, 51.15, 62.56, 66.69, 

67.28, 85.56, 87.56, 95.37, 121.30, 128.68, 129.08, 131.31, 150.48.  

Exact mass (ESI-MS) calculated for C19H25N4O3 [M+H]+: 357,1927, found: 357,1929. 
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Amides 2.38a-e and 2.43: 

Typical procedure for amides 2.38a-d and 2.43: 

A solution of oxazolidines 2.36a-e (0.8 mmol) in a mixture of MeOH/3N HCl (1:2, 30 

mL) was heated at 50°C for 12 h and the solvent was subsequently removed under 

reduced pressure.  The residue was covered with chloroform (3 x 20 mL) and the 

volatiles evaporated thereby quantitatively affording crude amines 2.37a-d and 2.42 

as their hydrochloride salts which were used without further purification. 

To a cooled solution (0°C) of crude amines 2.37a-d and 2.42 (0.8 mmol) and HOBT 

(10 mol %) in anhydrous pyridine (25 mL), p-nitrophenylpalmitate (0.8 mmol) 

dissolved in anhydrous DMF (5 mL) was added dropwise and the mixture was heated 

for 48 h at 50°C.  The solvent was subsequently removed under reduced pressure 

and the residue was purified by column chromatography (hexanes:EtOAc:TEA 

65:34:1 for 2.38a-c and 2.43; hexanes:EtOAc 7:3 for 2.38d) producing 2.38a (67%), 

2.38b (48%), 2.38c (89%), 2.38d (62%) and 2.43 (60%) as colourless solids. 

 

Amide 2.38c from 2.43: 

An identical procedure as for the preparation of 2.34b from 2.34a afforded 2.38c 

(32%) as a colourless solid. 

 

Amide 2.38e from 2.38d: 

To a solution of 2.38d (51.4 mg, 0.113 mmol) in THF (250 μL), PPh3 (59 mg, 0.226 

mmol, 2 eq.) was added.  After stirring for 10 min at room temperature, H2O (250 μL) 

was added and stirring was continued for 48 h.  After removal of the solvent under 

reduced pressure, the residue was purified by flash chromatography 

(CH2Cl2:MeOH(10% 6N NH3 in MeOH) 9:1) affording  2.38e (47 mg, 97%) as a white 

solid. 

 

Sample data for 2.38a:  
1H NMR (300 MHz; CDCl3-d1) δ: 0.81 (t, 3H, J = 6.52 Hz, -CH3 acyl), 1.10 – 1.30 (m, 

24H, acyl H), 1.50 – 1.63 (m, 2H, -COCH2-CH2-C13H27), 2.14 (t, 2H, J = 7.50 Hz, -

CO-CH2-C14H29), 2.45 – 2.80 (m, 5H, -C(1)Ha and CH2-N-CH2 morpholine), 2.58 (dd, 

1H, J = 10.81 and 11.57 Hz, -C(1)Hb), 3.63 – 3.74 (m, 4H, CH2-O-CH2 morpholine), 
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4.41 – 4.54 (m, 1H, -C(2)H), 4.72 (d, 1H, J = 3.73 Hz, -C(3)H), 5.55 – 5.90 (m, 1H, -

NH), 7.31 – 7.40 (m, 5H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 13.12, 13.17, 20.06, 21.68, 24.62, 28.19, 28.34, 

28.45, 28.63, 28.67, 30.90, 35.72, 46.00, 52.88, 58.61, 65.25, 65.55, 85.58, 86.08, 

121.06, 127.39, 127.79, 130.78, 172.18. 

Exact mass (ESI-MS) calculated for C31H51O3N2 [M+H]+: 499.3899, found: 499.3902. 

 

Sample data for 2.38b:  
1H NMR (300 MHz; DMSO-d6) δ: 0.83 (t, 3H, J = 0.83 Hz, -CH3 acyl), 1.12 – 1.29 (m, 

24H, acyl H), 1.30 – 1.40 (m, 2H, -COCH2-CH2-C13H27), 1.41 – 1.53 (m, 6H, CH2-

CH2-CH2 piperidine), 2.09 (t, 2H, J = 6.98 Hz, -CO-CH2-C14H29), 2.32 – 2.45 (m, 5H, -

C(1)Ha, CH2-N-CH2 piperidine), 2.65 (dd, 1H, J = 6.74 and 12.61 Hz, -C(1)Hb), 4.04 – 

4.14 (m, 1H, -C(2)H), 4.56 (d, 1H, J = 3.52 Hz, -C(3)H), 5.80 – 6.20 (br s, 1H, -

C(3)OH), 7.31 -7.42 (m, 5H, arom. H), 7.60 – 7.65 (d, 1H, J = 8.21 Hz, -NH). 
13C NMR (75 MHz; DMSO-d6) δ: 13.93, 22.08, 23.76, 25.52, 28.48, 28.69, 28.86, 

28.93, 28.99, 29.02, 31.28, 35.38, 50.08, 54.23, 58.11, 62.20, 83.74, 90.04, 122.51, 

128.37, 128.49, 131.35, 172.25. 

Exact mass (ESI-MS) calculated for C32H53O2N2 [M+H]+: 497.4107, found: 497.4101. 

 

Sample data for 2.38c: 
1H NMR (300 MHz; DMSO-d6) δ: 0.83 (t, 3H, J = 7.03 Hz, -CH3 acyl), 1.12 – 1.28 (m, 

24H, acyl H), 1.42 – 1.51 (m, 2H,  -COCH2-CH2-C13H27), 1.62 – 1.68 (m, 4H, CH2-

CH2 pyrrolidine), 2.09 (dt, 2H, J = 2.93 and 7.04 Hz, -CO-CH2-C14H29), 2.41 – 2.53 

(m, 5H, -C(1)Ha and CH2-N-CH2 pyrrolidine), 2.76 (dd, 1H, J = 5.57 and 12.02 Hz, -

C(1)Hb), 4.05 (ddd, 1H, J = 3.81, 7.92 and 11.43 Hz, -C(2)H), 4.57 (d, 1H, J = 3.81 

Hz, -C(3)H), 5.75 – 5.87 (br s, 1H, -OH), 7.31 – 7.40 (m, 5H, arom. H), 7.60 (d, 1H, J 

= 8.50 Hz, -NH). 
13C NMR (75 MHz; DMSO-d6) δ: 13.88, 22.02, 23.13, 25,47, 28.45, 28.63, 28.80, 

28.88, 28.96, 31.22, 35.35, 51.94, 53.72, 55.11, 62.00, 86.57, 90.12, 122.53, 128.28, 

128.43, 131.29, 172.19.  

Exact mass (ESI-MS) calculated for C31H51O2N2 [M+H]+: 483.3951, found: 483.3953. 
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Sample data for 2.38d:  
1H NMR (300 MHz; DMSO-d6) δ: 0.83 (t, 3H, J = 6.65 Hz, -CH3 acyl), 1.10 – 1.30 (m, 

24H, acyl H), 1.42 – 1.54 (m, 2H, -COCH2-CH2-C13H27), 2.12 (dt, 2H, J = 2.64 and 

7.04 Hz, -CO-CH2-C14H29), 3.45 (dd, 1H, J = 8.79 and 12.60 Hz, -C(1)Ha), 3.53 (dd, 

1H, J = 4.69 and 12.60 Hz, -C(1)Hb), 4.02 – 4.12 (m, 1H, -C(2)H), 4.53 (app. t, 1H, J 

= 4.83 Hz, -C(3)H), 5.89 (d, 1H, J = 5.57 Hz, -C(3)OH), 7.32 – 7.44 (m, 5H, arom. H), 

7.96 (d, 1H, J = 8.50 Hz, -NH). 
13C NMR (75 MHz; DMSO-d6) δ: 13.93, 13.93, 22.08, 25.34, 28.53, 28.69, 28.83, 

28.91, 28.98, 29.01, 31.28, 35.41, 50.11, 53.23, 54.90, 61.43, 84.25, 88.89, 122.21, 

128.51, 128.56, 131.40, 172.65. 

Exact mass (ESI-MS) calculated for C27H43O2N4 [M+H]+: 455.3386, found: 455.3380.  

 

Sample data for 2.38e:  
1H NMR (300 MHz; DMSO-d6) δ: 0.83 (t, 3H, -CH3 acyl), 1.11 – 1.28 (m, 24H, acyl 

H), 1.41 – 1.53 (m, 2H, -COCH2-CH2-C13H27), 2.02 – 2.19 (m, 2H, -CO-CH2-C14H29), 

2.68 (dd, 1H, J = 7.62 and 12.90 Hz, -C(1)Ha), 2.85 (dd, 1H, J = 6.16 and 12.90 Hz, -

C(1)Hb), 3.10 - 3.50 (br s, 2H, -NH2), 3.76 – 3.88 (m, 1H, -C(2)H), 4.64 (d, 1H, J = 

4.11 Hz, -C(3)H), 7.31 – 7.42 (m, 5H, arom. H), 7.61 (d, 1H, J = 8.50 Hz, -NH).  
13C NMR (75 MHz; DMSO-d6) δ: 13.95, 22.08, 25.51, 28.57, 28.69, 28.86, 28.93, 

29.02, 31.28, 38.96, 54.90, 55.25, 61.74, 83.74, 90.13, 122.53, 128.36, 128.50, 

131.31, 172.60.  

Exact mass (ESI-MS) calculated for C27H45O2N2 [M+H]+: 429.3481, found: 429.3483. 

 

Sample data for 2.43: 
1H NMR (300 MHz; DMSO-d6) δ: 0.82 (t, 3H, J = 6.74 Hz, -CH3 acyl), 1.12 – 1.30 (m, 

24H, acyl H), 1.38 – 1.50 (m, 2H, -COCH2-CH2-C13H27), 1.58 – 1.66 (m , 4H, -CH2-

CH2- pyrrolidine), 2.06 (t, 2H, J = 7.62 Hz, -CO-CH2-C14H29), 2.37 – 2.45 (m, 5H, -

C(1)Ha and CH2-N-CH2 pyrrolidine), 2.68 (dd, 1H, J = 5.86 and 12.02, -C(1)Hb), 3.18 

(d, 1H, J = 2.34 Hz, alkyne H), 3.86 – 3.96 (m, 1H, -C(2)H), 4.32 (dd, 1H, J = 1.76 

and 3.82 Hz, -C(3)H), 7.54 (d, 1H, J = 8.21 Hz, -NH).  
13C NMR (75 MHz; DMSO-d6; hydrochloride salt of 2.43) δ: 14.36, 23.33, 23.68, 

23.89, 26.31, 26.47, 30.00, 30.18, 30.25, 30.42, 30.61, 32.64, 36.79, 51.38, 52.98, 

53.63, 55.13, 63.15, 86.00, 88.42, 174.27. 
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Exact mass (ESI-MS) calculated for C25H47O2N2 [M+H]+: 407.3638, found: 407.3632. 

 

Ceramines 2.39a-c: 
Typical procedure: Red-Al® (4 mmol) was added to a cooled (-78°C) solution of 

2.38a, 2.38b or 2.38e (0.4 mmol) in anhydrous Et2O (10 mL), and the resulting 

mixture was stirred overnight at room temperature.  After quenching the reaction 

(0°C) by addition of MeOH (10 mL), sat. disodiumtartrate (20 mL) was added, and 

the mixture was stirred for an additional 4 h.  Et2O (25 mL) and sat. NaHCO3 (25 mL) 

were added, the aqueous layer was extracted with Et2O (3 x 25 mL) and the 

combined organic phase was dried over MgSO4.  Flash chromatography 

(hexanes:EtOAc:TEA 60:39:1 for 2.39a and 2.39b, CH2Cl2:MeOH (5% 6N NH3 in 

MeOH) 4:1 for 2.39c) afforded 2.39a (60%), 2.39b (100%) and 2.39c (45%) as 

colourless oils. 

 

Sample data for 2.39a:  
1H NMR (300 MHz; DMSO-d6 + D2O) δ: 0.83 (t, 3H, J = 6.70 Hz, -CH3 alkyl), 1.12 – 

1.42 (m, 28H, alkyl H), 2.19 (dd, 1H, J = 7.62 and 12.31 Hz, -C(5)Ha), 2.24 – 2.42 (m, 

5H, CH2-N-CH2 morpholine and -C(5)Hb), 2.58 (dt, 2H, J = 2.35 and 7.04 Hz, -NH-

CH2-C15H31), 2.68 – 2.75 (m, 1H, -C(4)H), 3.52 (t, 4H, J = 4.69 Hz, CH2-O-CH2 

morpholine), 4.17 (app. t, 1H, J = 3.81 Hz, -C(3)H), 6.38 (dd, 1H, J = 5.28 and 15.83 

Hz, -C(2)H), 6.53 (d, 1H, J = 15.83 Hz, -C(1)H), 7.15 – 7.40 (m, 5H, arom). 
13C NMR (75 MHz; DMSO-d6) δ: 13.94, 22.08, 26.64, 28.68, 28.86, 28.99, 29.74, 

31.28, 47.74, 53.70, 58.77, 59.19, 66.32, 71.36, 126.07, 127.04, 128.43, 128.55, 

132.05, 137.06. 

Exact mass (ESI-MS) calculated for C31H55O2N2 [M+H]+: 487.4264, found: 487.4268. 

 

Sample data for 2.39b:  
1H NMR (300 MHz; CDCl3-d1) δ: 0.88 (t, 3H, J = 6.66 Hz, -CH3 alkyl), 1.41 – 1.51 (m, 

26H, alkyl H), 1.32 – 1.42 (m, 2H, -NHCH2-CH2-C14H29), 1.75 – 1.83 (m, 4H, CH2-

CH2 pyrrolidine), 2.56 – 2.77 (m, 8H, -C(5)H2, -NH-CH2-C15H31 and CH2-N-CH2 

pyrrolidine), 2.93 (dt, 1H, J = 4.17 and 6.99 Hz, -C(4)H), 4.16 (app. t, 1H, J = 4.90 Hz, 

-C(3)H), 6.30 (dd, 1H, J = 5.43 and 15.93 Hz, -C(2)H), 6.71 (dd, 1H, J = 1.03 and 

15.92 Hz, -C(1)H), 7.20 – 7.43 (m, 5H, arom. H).  
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13C NMR (75 MHz; CDCl3-d1) δ: 14.12, 22.69, 23.59, 27.19, 29.36, 29.49, 29.61, 

29.69, 30.23, 31.92, 48.63, 54.51, 57.69, 59.53, 73.20, 126.64, 127.35, 128.50, 

130.49, 130.66, 137.11. 

Exact mass (ESI-MS) calculated for C31H55ON2 [M+H]+: 471.4314, found: 471.4308. 

 

Sample data for 2.39c:  
1H NMR (300 MHz; DMSO-d6 + D2O) δ: 0.83 (t, 3H, J = 6.73 Hz, -CH3 alkyl), 1.15 – 

1.30 (m, 26H, alkyl H), 1.33 – 1.40 (m, 2H, -NHCH2-CH2-C14H29), 2.36 – 2.73 (m, 5H, 

-C(5)H2, -NH-CH2-C15H31 and –C(4)H), 4.35 (app. t, 1H, J = 4.06 Hz, -C(3)H), 6.33 

(dd, 1H, J = 5.61 and 16.00 Hz, -C(2)H), 6.55 (d, 1H, J = 16.14 Hz, -C(1)H), 7.16 – 

7.42 (m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 13.94, 22.08, 26.78, 28.69, 29.07, 30.07, 31.28, 

37.02, 47.38, 57.84, 64.91, 71.55, 126.10, 127.09, 128.54, 128.74, 132.13, 137.03. 

Exact mass (ESI-MS) calculated for C27H49ON2 [M+H]+: 417.3845, found: 417.3844. 

 

Ceramides 2.41a-c: 
Applying an identical procedure as described for the reduction of amides 2.38a, 

2.38b and 2.38e quantitatively produced crude E-alkene amines 2.40a-c, which were 

used without further purification.   

An identical procedure as for the acylation of amines 2.37a-d and 2.42 afforded 

ceramides 2.41a (84%), 2.41b (78%) and 2.41c (71%) as colourless oils. 

 

Sample data for 2.41a:  
1H NMR (300 MHz; DMSO-d6) δ: 0.84 (t, 3H, J = 6.70 Hz, -CH3 acyl), 1.09 – 1.30 (m, 

24H, acyl H), 1.36 – 1.48 (m, 2H, -COCH2-CH2-C13H27), 2.04 (t, 2H, J = 7.47 Hz, -

CO-CH2-C14H29), 2.21 – 2.42 (m, 5H, -C(1)Ha and CH2-N-CH2 morpholine), 2.54 – 

2.64 (m, 1H, -C(1)Hb), 3.48 – 3.54 (m, 4H, CH2-O-CH2 morpholine), 4.00 – 4.12 (m, 

1H, -C(2)H), 4.24 – 4.32 (m, 1H, -C(3)H), 5.21 (d; 1H, J = 4.69 Hz, -C(3)OH) 6.23 

(dd, 1H, J = 4.98 and 15.83 Hz, -C(4)H), 6.47 – 6.56 (dd, 1H, J = 1.18 and 15.83 Hz, 

-C(5)H), 7.11 – 7.37 (m, 5H, arom. H), 7.46 (d, 1H, J = 9.09 Hz, -NH). 
13C NMR (75 MHz; DMSO-d6) δ: 14.02, 22.16, 25.61, 28.55, 28.77, 29.91, 28.99, 

29.09, 35.49, 49.86, 53.56, 58.63, 66.29, 70.71, 126.18, 127.07, 128.16, 128.19, 

128.45, 128.81, 131.29, 136.99, 172.02. 
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Exact mass (ESI-MS) calculated for C31H53O3N2 [M+H]+: 501.4056, found: 501.4058. 

 

Sample data for 2.41b: 
1H NMR (300 MHz; DMSO-d6) δ: 0.83 (app. t, 3H, J = 6.78 Hz,  -CH3 acyl), 1.09 – 

1.30 (m, 32H, acyl chain and CH2-CH2-CH2 piperidine), 2.04 (t, 2H, J = 7.03 Hz, -CO-

CH2-C14H29), 2.16 – 2.25 (dd, 1H, J = 4.69 and 12.02 Hz, -C(1)Ha), 2.25 – 2.38 (m, 

4H, -CH2-N-CH2 piperidine), 2.42 – 2.50 (m, 1H, -C(1)Hb), 4.00 – 4.10 (m, 1H, -

C(2)H), 4.24 – 4.30 (m, 1H, -C(3)H), 5.20 – 5.40 (br s, 1H, -C(3)OH), 6.23 (dd, 1H, J 

= 4.99 and 15.83 Hz, -C(4)H), 6.51 (dd, 1H, J = 1.17 and 15.83 Hz, -C(5)H), 7.05 – 

7.38 (m, 5H, arom. H), 7.43 (d, 1H, J = 8.79 Hz, -NH). 
13C NMR (75 MHz; DMSO-d6) δ: 13.94, 22.09, 23.99, 25.54, 25.68, 28.49, 28.70, 

28.85, 28.93, 28.99, 29.03, 31.29, 31.79, 35.46, 50.01, 54.31, 58.92, 70.91, 126.12, 

127.06, 128.16, 128.21, 128.46, 128.78, 131.39, 137.05, 171.91. 

Exact mass (ESI-MS) calculated for C32H55O2N2 [M+H]+: 499.4263, found: 499.4258. 

 

Sample data for 2.41c:  
1H NMR (300 MHz; DMSO-d6) δ: 0.79 – 0.88 (app. t, 3H, -CH3 acyl), 1.09 – 1.30 (m, 

24H, acyl chain), 1.34 - 1.48 (m, 2H, -COCH2-CH2-C13H27), 1.58 – 1.69 (m, 4H, CH2-

CH2 pyrrolidine), 2.04 (dt, 2H, J = 3.52 and 7.04 Hz, -CO-CH2-C14H29), 2.33 (dd, 1H, 

J = 7.62 and 12.02 Hz, -C(1)Ha), 2.38 – 2.46 (m, 4H, CH2-N-CH2 pyrrolidine), 2.65 

(dd, 1H, J = 6.45 and 12.02 Hz, -C(1)Hb), 3.96 – 4.07 (m, 1H, -C(2)H), 4.26 – 4.33 

(m, 1H, -C(3)H), 6.24 (dd, 1H, J = 4.98 and 15.83 Hz, -C(4)H), 6.52 (dd, 1H, J = 1.18 

and 15.84 Hz, -C(5)H), 7.10 – 7.38 (m, 5H, arom.), 7.45 (d, 1H, J = 8.80 Hz, -NH).  
13C NMR (75 MHz; DMSO-d6) δ: 13.94, 22.08, 23.15, 25.52, 28.48, 28.69, 28.83, 

28.91, 28.99, 29.02, 31.28, 35.44, 51.77, 53.75, 55.85, 70.73, 126.11, 127.05, 

128.16, 128.73, 128.45, 128.73, 131.37, 137.04, 171.97. 

Exact mass (ESI-MS) calculated for C31H53O2N2 [M+H]+: 485.4107, found: 485.4109 

 

Oxazolidinone 2.44: 

To a cooled solution (0°C) of 2.38e (64 mg, 149 μmol) and TEA (83 μL, 596 μmol, 4 

eq.) in anhydrous CH2Cl2 (10 mL), triphosgene (46.5 mg, 156 μmol, 1.05 eq.) 

dissolved in CH2Cl2 (1 mL) was added dropwise and the resulting solution was stirred 

for 1 h at room temperature.  After removal of the solvent under reduced pressure, 
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the mixture was purified by column chromatography (EtOAc) affording 2.44 (60 mg, 

88%) as a white solid. 

 

Sample data for 2.44:  
1H NMR (500 MHz; DMSO-d6) δ: 0.85 (t, 3H, J = 7.00 Hz, -CH3 acyl), 1.1 – 1.3 (m, 

24H, acyl H), 1.48 (m, 2H, -COCH2-CH2-C13H27), 2.16 (dt, 1H, J = 7.33 and 13.91 Hz, 

-CO-CHa-C14H29), 2.20 (dt, 1H, J = 7.32 and 13.91 Hz, -CO-CHb-C14H29 ), 3.19 (ddd, 

1H, J = 2.19, 6.71 and 11.60 Hz -C(4)Ha), 3.40 (ddd, 1H, J = 2.07, 5.13 and 11.60 

Hz, -C(4)Hb), 4.36 (dddd, 1H, J = 3.66, 5.13, 6.59, and 7.81 Hz, -C(5)H), 5.41 (d, 1H, 

J = 3.42 Hz, -C(6)H), 7.40 (obsolete, -C(3)NH), 7.35 – 7.50 (m, 5H, arom. H), 8.33 (d, 

1H, J = 7.82 Hz, -C(3)NH).  
13C NMR (125 MHz; DMSO-d6) δ: 13.99, 22.17, 25.53, 28.67, 28.79, 28.94, 28.96, 

29.11, 31.37, 35.18, 41.99, 43.13, 68.12, 83.86, 86.81, 121.32, 128.67, 129.27, 

131.72, 151.08, 172.98.  

Exact mass (ESI-MS) calculated for C28H43N2O3 [M+H]+: 455.3274 found: 455.3275. 

 

In vitro analysis of GlcCer synthase  
 In vitro GlcCer synthase analysis in rat Golgi membranes was performed using 

N-[6-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl]D-erythro-sphingosine (C6-

NBD-D-erythro-Cer). C6-D-erythro-NBD ceramide was synthesized by N-acylation of 

sphingosine using the NHS-ester of NBD-hexanoic acid (Molecular Probes)[16]. 

A Golgi fraction was isolated from rat liver by the method of Dominguez et al. 
[17], as follows. Rat liver was homogenized in ice-cold 0.25 M sucrose, 50 mM Tris-

HCl, pH 7.4, 25 mM KCl, 5 mM MgCl2, 4.5 mM CaCl2 (STKCM buffer) using a 

motorized Potter-Elvehjem homogenizer. After centrifugation at 400g for 10 min, 

supernatants were adjusted to 0.2 M sucrose in STKCM buffer and underlayed 

beneath a discontinuous gradient of 0.9 and 0.4 M sucrose in STKCM buffer. After 

centrifugation at 83000 gav for 3 h in a SW 32 rotor at 4oC, Golgi fractions were 

collected at the 0.4/0.9 M sucrose interface. 

The in vitro reaction mixture contained a rat liver Golgi fraction (1.6 μg of 

protein), UDP-glucose (5 mM), C6-NBD-D-erythro-ceramide(5 μM), MnCl2 (5 mM), 

and protease inhibitors in a total volume of 1 ml of TK buffer (50 mM Tris-HCl, 25 mM 

KCl, pH 7.4). The reactions were allowed to proceed for 20 min at 37oC, and were 
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terminated by addition of 3 ml of chloroform/methanol (1:2 v/v). Lipids were extracted 
[18] and separated by thin-layer chromatography using chloroform/methanol/9.8 mM 

CaCl2 (60:35:8, v/v/v) as the developing solvent. C6-NBD-sphingolipids were 

identified using authentic standards. C6-NBD-fluorescence was quantified by Quantity 

One software after exposing the TLC plates using a Fluor-S Max spectrometer 

(BioRad). 

 
In vivo analysis of GlcCer synthase activity 

Human embryonic kidney HEK-293 cells were grown to 80-90% confluency.  

C6-NBD-D-erythro-Ceramide was added directly to the culture dishes, together with 

10, 25, and 50 μM of inhibitors.  Cells were incubated for 3 hours at 37oC in a 5% 

CO2 incubator.  At the end of the incubation, dishes were washed with PBS, and 

cells removed by scraping with a rubber policeman into ice-cold water.  Lipids were 

extracted[18], separated and quantified as above.  

 
3H-serine labeling  

Dishes, containing HEK-293 and COS-7 cells, were incubated for 1 hour  with 

50 mM of compounds 2.43 and 2.41c, followed by addition of L-[3-3H]-serine 

(Amersham) (30 μCi in 3 ml medium) for another 3 hours. At the end of the 

incubation, dishes were washed with PBS, cells removed by scraping with a rubber 

policeman into ice-cold water, and lipids extracted[18]. Phospholipids were degraded 

by mild alkaline hydrolysis with methanolic NaOH (100mM) for 2 h at 37oC. Lipid 

extracts were desalted by Sephadex G-25 (superfine, Sigma)[19], and separated by 

TLC using chloroform/methanol/9.8 mM CaCl2 (60:35:8, v/v/v) as the developing 

solvent. Sphingolipids were visualized by spraying with cupric sulfate, followed by 

brief charring. Ceramide, glucosylceramide, lactosylceramide, and sphingomyelin 

were identified using authentic standards. Corresponding bands were scraped from 

the TLC plates, radioactivity was recovered from silica in 1 ml of methanol, followed 

by addition of Ultima Gold scintillation cocktail. Radioactivity was determined by liquid 

scintillation counting.  
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8 EXPERIMENTAL PART 
General 

IUPAC names were generated with Chemdraw Ultra 8.0 (Chemoffice 2004, 

Cambridge Soft, Cambridge, USA). 

All reactions were carried out under inert (N2) atmosphere.  Precoated Macherey-

Nagel (Düren, Germany) silica gel F254 plates were used for TLC and spots were 

examined under UV light at 254 nm and/or revealed by sulphuric acid-anisaldehyde 

spray or phosphomolybdic acid spray.  Column chromatography was performed on 

ICN silica gel (63-200 μM, ICN, Asse Relegem, Belgium).  NMR spectra were 

obtained with a Varian Mercury 300 spectrometer (Varian, Palo Alto, California, 

USA).  Chemical shifts are given in parts per million (δ relative to residual solvent 

peak) and coupling constants are expressed in Hz.  Abbreviations used are: s = 

singlet, d = doublet, t = triplet, m = multiplet, br s = broad signal.  All signals assigned 

to amino and hydroxyl groups were exchangeable with D2O.  Numbering for 1H 

assignment is based on the IUPAC name of the compounds unless stated otherwise.  

Structural assignment was confirmed with COSY, HMQC and/or NOEDIF/NOESY if 

necessary.  Exact mass measurements were performed on a quadrupole/orthogonal-

acceleration time-of-flight (Q/oaTOF) tandem mass spectrometer (qTof2, Micromass, 

Manchester, UK) equipped with a standard electrospray ionisation (ESI) interface.  

Samples were infused in a 2-propanol/water (1:1) mixture at 3 μL/min.  Optical 

rotations were measured with a Perkin-Elmer 241 polarimeter. 

Most chemicals were obtained from Sigma-Aldrich (Bornem, Belgium) or Acros 

Organics (Geel, Belgium) and were used without further purification.  Anhydrous THF 

was obtained by distillation from LiAlH4. 

 

(R)-tert-butyl 4-((R)-1-hydroxy-3-phenylprop-2-ynyl)-2,2-dimethyloxazolidine-3-
carboxylate (2.1) 
To a stirred and cooled (0°C) solution of lithium phenylacetylide (42.7 mL of a 1M 

solution in THF, 42.7 mmol, 2 eq.) in anhydrous Et2O (200 mL), ZnBr2 (10.11 g, 

44.88 mmol, 2.1 eq.) was added, and the mixture was stirred for 1 h at 0°C and 1 h at 

room temperature and was subsequently cooled –78°C.  D-Garner’s aldehyde (4.90 

g, 21.37 mmol) was dissolved in anhydrous Et2O (25 mL), the resulting solution 
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cooled to -78°C and added dropwise to the above solution.  The mixture was allowed 

to reach room temperature overnight and after cooling to 0°C treated with sat. NH4Cl 

(50 mL).  After separation of the phases, the aqueous layer was extracted with Et2O 

(2 x 100 mL) and the combined organic phase was dried over MgSO4.  After removal 

of the solvent under reduced pressure, the residue was purified by flash 

chromatography (hexanes:EtOAc 9:1  85:15) affording 2.1 (3.125 g; 44%) and a 

mixture of 2.1 and 2.2 (2.014 g, 28%), both as a yellow oil. 
1H NMR (300 MHz; DMSO-d6) δ: 1.46 - 1.49 (m, 12H, -CH3 and tert-butyl), 1.50 (s, 

3H, s, -CH3), 3.85 - 4.06  (m, 2H, -C(4)H and –C(5)Ha), 4.14 (dd, 1H, J = 2.35 and 

9.09 Hz, –C(5)Hb), 4.82 - 4.92 (m, 1H, -C(4)CHOH), 5.88 (2 x d, 1H, J = 5.60 and 

9.09 Hz, -C(4)CHOH), 7.35 - 7.40 (m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 25.78, 27.59, 60.68, 61.11, 63.65, 78.93, 83.84, 

89.59, 93.34, 122.12, 127.87, 128.06, 131.02, 151.44. 

Exact mass (ESI-MS) calculated for C19H26NO4 [M+H]+: 332.1862, found: 332.1864. 

 

tert-Butyl (2R,3R)-1,3-dihydroxy-5-phenylpent-4-yn-2-ylcarbamate (2.3) 
To a solution of 2.2 (5.91 g, 17.83 mmol) in MeOH (70 mL), p-TsOH (339 mg, 1.783 

mmol, 0.1 eq.) was added, and the resulting solution was stirred for 36 h at room 

temperature.  TEA (3 mL) was added to the cooled (0°C) solution, and the solvent 

was removed in vacuo.  The residue was dissolved in EtOAc (100 mL) and the 

resulting solution extracted with sat. NaHCO3 (2 x 25 mL) and brine (25 mL).  After 

drying over MgSO4, the solvent was removed under reduced pressure, and the 

residue was purified by column chromatography (hexanes:EtOAc 3:2) yielding 2.3 

(3.64 g, 70%) as a white foam. 
1H NMR (300 MHz; DMSO-d6) δ: 1.38 (s, 9H, tert-butyl), 3.25 – 3.68 (m, 3H, -C(1)H2 

and -C(2)H), 4.56 (dd, 1H, J = 3.82 and 6.75 Hz, -C(3)H), 4.64 (t, 1H, J = 5.57 Hz, -

C(1)OH), 5.47 (d, 1H, J = 6.45 Hz, -C(3)OH), 6.36 (d, 1H,  J = 8.50 Hz, -NH), 7.32 - 

7.42 (m, 5H, arom. H). 

Exact mass (ESI-MS) calculated for C16H22NO4 [M+H+]: 292.1549, found: 292.1545. 

 

tert-Butyl (E,2R 3R)-1,3-dihydroxy-5-phenylpent-4-en-2-ylcarbamate (2.4) 
To a solution of 2.3 (3.45 g, 11.84 mmol) in anhydrous Et2O (25 mL) at -78°C, Red-Al 

(42.67 mL of a 3.33M solution in toluene, 142 mmol, 12 eq.) was added dropwise and 
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the resulting mixture was allowed to reach room temperature overnight.  After diluting 

the mixture with Et2O (50 mL), saturated disodium tartrate solution (50 mL) was 

added dropwise at 0°C and the resulting mixture was stirred for 1 h at room 

temperature.  After separation of the phases, the aqueous layer was extracted with 

Et2O (3 x 50 mL) and the combined organic phase was washed with brine (25 mL).  

After drying over MgSO4 and removal of the solvent under reduced pressure, the 

residue was purified by column chromatography (hexanes:EtOAc 1:1) yielding 2.4 

(3.046 g, 88%) which proved to be pure enough for further manipulations. 
1H NMR (300 MHz; DMSO-d6) δ: 1.30 – 1.40 (m, 9H, tert-butyl), 3.31 – 3.60 (m, 3H, -

-C(1)H2 and -C(2)H), 4.31 – 4.39 (m, 1H, -C(3)H), 4.52 (br. s, 1H, -C(1)OH), 4.99 (d, 

1H, J = 5.65 Hz, -C(3)OH), 6.16 (d, 1H, J = 8.67 Hz, -NH), 6.26 (dd, 1H, J = 5.86 and 

15.82 Hz, -C(4)H), 6.64 (d, 1H,  J = 16.13 Hz, -C(5)H), 7.16 - 7.39 (m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 28.24, 55.54, 64.07, 73.32, 79.89, 126.56, 127.81, 

128.44, 131.62, 136.42, 156.41. 

Exact mass (ESI-MS) calculated for C16H24NO4 [M+H]+: 294.1705 found: 294.1707. 

 

N-((E,2R,3R)-1,3-dihydroxy-5-phenylpent-4-en-2-yl)palmitamide (2.6) 
A) A solution of 2.4 (400 mg, 1.36 mmol) in a dioxane/1N HCl mixture (1:1; 30 mL) 

was heated to reflux for 30’ and subsequently evaporated to dryness.  EtOAc (25 mL) 

and K2CO3 (10 mL) were added to the residue and the aqueous phase was extracted 

with EtOAc (5 x 25 mL).  After drying over MgSO4, the solvent was removed under 

reduced pressure yielding the crude amine (190 mg, 72%). A small sample was 

purified by column chromatography (CH2Cl2:MeOH/6N NH3 in MeOH 90:10:1) for 

identification purposes. 
1H NMR (300 MHz; DMSO-d6 + D2O) δ: 2.87 (td, 1H, J = 4.72 and 6.23 Hz, -C(2)H), 

3.55 (dd, 1H, J = 6.24 and 10.92 Hz, -C(1)Ha), 3.70 (dd, 1H, J = 4.72 and 11.05Hz, -

C(1)Hb), 4.24 (t, 1H, J = 6.24 Hz, -C(3)H), 6.31 (dd, 1H, J = 6.88 and 15.88 Hz, -

C(4)H), 6.64 (d, 1H, J = 15.98 Hz, -C(5)H), 7.15 – 7.40 (m, 5H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 57.61, 62.33, 72.32, 126.35, 127.47, 128.81, 

129.91, 131.12, 136.97. 

Exact mass (ESI-MS) calculated for C11H16NO2 [M+H]+: 194.1181 found: 194.1183. 
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B) The crude amine (738 mg, 3.82 mmol) was dissolved in a mixture of THF (30 mL) 

and 50% NaOAc (30 mL).  Palmitoyl chloride (1.134 mL, 0.98 eq., 3.743 mmol) was 

added dropwise over 30’ and the reaction mixture was subsequently stirred for 2 h at 

room temperature.  EtOAc (25 mL) was added and the phases were separated.  The 

aqueous layer was extracted twice with EtOAc (25 mL) and the combined organic 

phase was dried over MgSO4.  After removal of the solvent under reduced pressure, 

the mixture was purified by column chromatography (hexanes:EtOAc 3:1) yielding 2.6 

(962 mg, 58%) as a slightly yellow solid. 
1H NMR (300 MHz; DMSO-d6) δ: 0.84 (t, 3H, J = 6.91 Hz, -CH3 alkyl), 1.14 – 1.22 

(m, 24H, alkyl), 1.34 – 1.48 (m, 2H, -COCH2CH2 alkyl), 1.97 – 2.14 (m, 2H, -COCH2 

alkyl), 3.28 – 3.36 (m, 1H, -C(1)Ha), 3.51 (ddd, 1H, J = 6.06, 6.19 and 10.42 Hz, -

C(1)Hb), 3.84 (ddd, 1H, J = 3.12, 6.87 and 9.29 Hz, -C(2)H), 4.37 (ddd, 1H, J = 5.12, 

5.36 and 6.87 Hz, -C(3)H), 4.58 (t, 1H, J = 5.52 Hz, -C(1)OH), 5.07 (d, 1H, J = 5.13 

Hz, -C(3)OH), 6.21 (dd, 1H, J = 5.38 and 15.94 Hz, -C(4)H), 6.51 (d, 1H, J = 16.06 

Hz, -C(5)H), 7.13 – 7.35 (m, 6H, arom. H and –C(2)NH). 
13C NMR (75 MHz; DMSO-d6) δ: 13.89, 22.03, 25.46, 28.52, 28.63, 28.80, 28.84, 

28.98, 31.23, 35.43, 54.92, 60.19, 69.24, 126.06, 127.03, 128.41, 128.68, 131.60, 

136.97, 172.26. 

Exact mass (ESI-MS) calculated for C27H46NO3 [M+H]+: 432.3478 found: 432.3479. 

 

((4R,5R)-4,5-dihydro-2-pentadecyl-5-styryloxazol-4-yl)methanol (2.7) 

To a cooled (0°C) solution of 2.6 (51.3 mg, 0.118 mmol) and TEA (11 μL, 0.118 

mmol, 1 eq.) in CH2Cl2 (5 mL), MsCl (9 μL, 0.118 mmol, 1 eq.) was added and the 

reaction was stirred at room temperature for 16 h.  The solvent was subsequently 

removed under reduced pressure and the residue was purified by column 

chromatography (CH2Cl2:MeOH:6N NH3 in MeOH 95:5:0.25) yielding the oxazoline 

2.7 (19 mg, 38%) as a slightly yellow wax.    
1H NMR(300 MHz; CDCl3-d1) δ: 0.88 (t, 3H, J = 6.63 Hz, -CH3 alkyl), 1.19 – 1.45 (m, 

24H, alkyl), 1.60 – 1.70 (m, 2H, -N=CCH2CH2 alkyl), 2.27 (t, 2H, J = 7.49 Hz, -

N=CCH2 alkyl), 3.54 – 3.72 (m, 2H, C(1)H2), 3.89 (dd, 1H, J = 5.47 and 9.62 Hz, -

C(4’)H), 4.97 (t, 1H, J = 6.95 Hz, C(5’)H), 6.34 (dd, 1H, J = 6.99 and 15.89 Hz, -

C(5’)CH=CHPh), 6.51 (d, 1H, J = 15.90 Hz, -C(5’)CH=CHPh), 7.13 – 7.35 (m, 5H, 

arom. H). 
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13C NMR (75 MHz; CDCl3-d1) δ: 13.62, 22.54, 26.12, 27.93, 28.42, 29.58, 29.67, 

63.72, 74.62, 82.18, 126.77, 127.11, 128.37, 128.78, 131.26, 136.84, 166.93. 

Exact mass (ESI-MS) calculated for C27H44NO2 [M+H]+: 414.3372 found: 414.3377. 

 

(R/S) ethyl 1-((R)-1-phenylethyl)aziridine-2-carboxylate (2.8 and 2.9) 
To a solution of ethyl 2,3-dibromopropanoate (52.57 g, 0.202 mol) and TEA (56.4 mL, 

0.404 mol, 2 eq.) in anhydrous toluene (150 mL), D-(+)-α-methylbenzylamine (25 g, 

0.206 mol, 1.02 eq.) was added at 0°C and the reaction mixture was subsequently 

heated at reflux for 3 h.  After cooling to room temperature, the organic phase was 

extracted with 0.5N HCl (3 x 100 mL), sat. NaHCO3 (150 mL) and brine (150 mL) and 

subsequently dried over MgSO4.  After removal of the solvent under reduced 

pressure, the residue was purified by column chromatography (hexanes:EtOAc 3:1) 

yielding 2.8 (8.56 g, 19%) and 2.9 (7.44 g, 17%) and a mixture of 2.8 and 2.9 (26.54 

g, 60%). 

2.8: 

 [α]D
25= + 63.30 (c 0.85, CHCl3) 

1H NMR (300 MHz; CDCl3-d1) δ: 1.30 (t, 3H, J = 7.32 Hz, -OCH2CH3), 1.48 (d, 3H, J 

= 6.45 Hz, -C(1’)CH3), 1.60 (dd, 1H, J = 1.05 and 6.41 Hz, -C(3)Ha), 2.13 (dd, 1H, J = 

0.88 and 3.14 Hz, -C(3)Hb), 2.20 (dd, 1H, J = 3.19 and 6.40 Hz, -C(2)H), 2.54 (q, 1H, 

J = 6.55 Hz, -C(1’)H), 4.23 (2 x q, 2H, J = 7.14 Hz, -OCH2CH3), 7.22 – 7.42 (m, 5H, 

arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 14.16, 23.13, 33.95, 38.13, 61.09, 69.87, 126.84, 

127.21, 128.29, 143.37, 170.87. 

Exact mass (ESI-MS) calculated for C13H18NO2 [M+H]+: 220.1338, found: 220.1339. 

 
2.9: 

 [α]D
25 = + 42.45° (c 0.79, CHCl3) 

1H NMR (300 MHz; CDCl3-d1) δ: 1.21 (t, 3H, J = 7.14 Hz, -OCH2CH3), 1.46 (d, 3H, J 

= 6.58 Hz, -C(1’)CH3), 1.78 (d, 1H, J = 6.75 Hz, -C(3)Ha), 2.05 (dd, 1H, J = 3.07 and 

6.53 Hz, -C(2)H), 2.33 (d, 1H, J = 2.83 Hz, -C(3)Hb), 2.57 (q, 1H, J = 6.56 Hz, -

CHCH3), 4.14 (q, 2H, J = 7.04 Hz, -OCH2CH3), 7.22 – 7.38 (m, 5H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 14.02, 23.46, 34.77, 37.01, 60.83, 69.57, 126.32, 

127.00, 128.30, 143.65, 170.53. 



 106

Exact mass (ESI-MS) calculated for C13H18NO2 [M+H]+: 220.1338, found: 220.1339. 

 

((R)-1-((R)-1-phenylethyl)aziridin-2-yl)methanol (2.10). 
To a solution of 2.8 (8.56 g, 39 mmol) in anhydrous THF (100 mL), LiAlH4 (1.11 g, 

29.3 mmol, 1.5 eq.) was added at 0°C and the mixture was stirred overnight at room 

temperature.  After cooling back to 0°C, EtOH was added until the formation of H2-

gas ceased, followed by saturated NaHCO3 (150 mL) and EtOAc (150 mL).  The 

aqueous layer was extracted with EtOAc (2 x 100 mL) and the combined organic 

phase was dried over MgSO4.  After removal of the solvent under reduced pressure, 

the residue was purified by flash chromatography (hexanes:EtOAc 2:3) yielding 2.10 
(6.675 g, 97%) as a colourless oil. 

[α]D
25 = + 74.47 (c = 1.0; CHCl3)  

1H NMR (300 MHz; CDCl3-d1) δ: 1.38 (d, 1H, J = 6.06 Hz, -C(3’)Ha), 1.46 (d, 3H, J = 

6.15 Hz, -CHCH3), 1.66 - 176 (m, 1H, -C(3’)Hb), 1.80 – 1.90 (m, 1H, -C(2’)H), 2.54 (q, 

1H, J = 6.15 Hz, -CHCH3), 3.46 (dd, 1H, J = 5.38 and 11.09 Hz, -C(1)Ha), 3.89 (d, 

1H, J = 11.00 Hz, -C(1)Hb), 7.22 – 7.40 (m, 5H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 23.46, 30.65, 40.32, 62.75, 69.05, 126.72, 127.12, 

128.30, 143.68. 

Exact mass (ESI-MS) calculated for C11H16NO [M+H]+: 178.1232, found: 178.1238. 

 

((S)-1-((R)-1-phenylethyl)aziridin-2-yl)methanol (2.11). 
To a solution of 2.9 (120 mg, 0.547 mmol) in anhydrous THF (1 mL), LiAlH4 (16 mg, 

0.421 mmol, 1.5 eq.) was added at 0°C and the mixture was stirred overnight at room 

temperature.  After cooling back to 0°C, two drops of ethanol were added, followed 

by sat. NaHCO3 (5 mL) and EtOAc (5 mL).  The aqueous layer was extracted with 

EtOAc (2 x 5 mL) and the combined organic phase was dried over MgSO4.  After 

removal of the solvent under reduced pressure, the residue was purified by flash 

chromatography (hexanes:EtOAc 2:3) yielding 2.11 (92 mg, 95%). 

[α]D
25= + 53.74 (c = 1.0; CHCl3) 

1H NMR (300 MHz; CDCl3-d1) δ: 1.43 (d, 3H, J = 6.74 Hz, -CHCH3), 1.50 (d, 1H, J = 

6.45 Hz, -C(3’)Ha), 1.64 – 1.72 (m, 1H, -C(3’)Hb), 1.92 (d, 1H, J = 3.42 Hz, -C(2’)H), 

2.54 (q, 1H, J = 6.45 Hz, -CHCH3), 3.34 (dd, 1H, J = 4.98 and 11.43 Hz, -C(1)Ha), 

3.60 (dd, 1H, J = 3.52 and 11.43 Hz, -C(1)Hb), 7.22 – 7.38 (m, 5H, arom. H). 
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13C NMR (75 MHz; CDCl3-d1) δ: 22.66, 31.21, 39.88, 62.52, 69.23, 126.73, 127.34, 

128.20, 143.92. 

Exact mass (ESI-MS) calculated for C11H16NO [M+H]+: 178.1232, found: 178.1238. 

 

(R)-1-((R)-1-phenylethyl)aziridine-2-carbaldehyde (2.12) 
To a solution of oxalylchloride (28.2 mL of a 2M solution in CH2Cl2, 56.4 mmol, 1.5 

eq.) at -78°C, a solution of DMSO (8 mL, 113 mmol, 3 eq.) in CH2Cl2 (10 mL), was 

added dropwise over 30’ while the temperature raised to -70°C.  When the solution 

had reached -60°C, a solution of 2.10 (6.675 g, 37.66 mmol) in CH2Cl2 (60 mL), was 

added dropwise over 60’ while the temperature raised to -55°C.  When the solution 

had reached -45°C, a solution of DIPEA (37.3 mL, 226 mmol, 6 eq.) in CH2Cl2 (10 

mL) was added over 5’ and the resulting solution was stirred for 30’ at 0°C.  The 

organic phase was subsequently extracted with ice-cold 0.1N HCL (200 mL) and the 

aqueous phase was back-extracted with CH2Cl2 (3 x 50 mL).  The combined organic 

phase was subsequently washed with phosphate buffer (3 x 100 mL, pH 7.6) and 

dried over Na2SO4.  After removal of all volatiles in vacuo, the residue was purified by 

column chromatography (hexanes:EtOAc 85:15) yielding 2.12 (4.765 g, 72%) as a 

dark yellow oil. 
1H NMR (300 MHz; CDCl3-d1) δ: 1.44 (d, 3H, J = 6.74 Hz, -CHCH3), 1.81 (d, 1H, J = 

6.75 Hz, -C(3)Ha),  2.14 – 2.26 (m, 2H, -C(3)Hb and C(2)H), 2.61 (q, 1H, J = 6.75 Hz, 

-CHCH3), 7.22 – 7.40 (m, 5H, arom. H), 8.96 (d, 1H, J = 6.45 Hz, aldehyde H). 
13C NMR (75 MHz; CDCl3-d1) δ: 22.96, 32.16, 45.11, 69.00, 126.62, 127.43, 128.48, 

143.41, 200.05. 

Exact mass (ESI-MS) calculated for C11H14NO [M+H]+: 176,1075, found: 176,1077. 

 

(R/S)-3-phenyl-1-((R)-1-((R)-1-phenylethyl)aziridin-2-yl)prop-2-yn-1-ol (2.13 and 
2.14) 
Method A: LiCl (17.15 g, 404 mmol, 15 eq.) was suspended in anhydrous THF (50 

mL) and lithium phenylacetylide (54 mL of a 1M solution in THF, 54 mmol, 2 eq.) was 

added to the cooled (-78°C) solution.  After stirring for 30’, a solution of 2.12 (4.725 g, 

26.96 mmol) in anhydrous THF (25 mL) was added dropwise over 30’ and the 

resulting reaction mixture was allowed to warm to room temperature overnight.  

Saturated NH4Cl (50 mL) was slowly added and the aqueous layer was extracted 
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with Et2O (3 x 50 mL) and the combined organic layer was washed with brine (25 

mL), dried over MgSO4 and concentrated in vacuo.  A mixture of erythro- and threo-

alkynols was obtained, which was separated by flash chromatography 

(hexanes:EtOAc 4:1) affording 2.13 (4.30 g, 57%), 2.14 (728 mg, 10%) and a mixture 

of 2.13 and 2.14 (1.253 g, 17%). 

 

Method B: LiBr (2.28 g, 26.31 mmol, 15 eq.) was added to a solution of 2.16 (483 mg, 

1.75 mmol) in anhydrous THF (10 mL) and the resulting suspension was stirred for 

30’ at room temperature and subsequently cooled to -78°C, followed by slow addition 

of L-Selectride (3.5 mL of a 1M solution in THF, 3.5 mmol, 2 eq.).  After stirring for 1 h 

at -78°C, TLC indicated complete consumption of the starting material.  The reaction 

was quenched by slow addition of EtOH (2 mL) followed by addition of sat. NH4Cl (10 

mL).  After separation of the phases, the aqueous layer was extracted with EtOAc (2 

x 10 mL).  Drying over MgSO4, followed by removal of all volatiles under reduced 

pressure afforded mixture of both diastereomers which was separated by flash 

chromatography (hexanes:EtOAc 4:1) furnishing 2.13 (253 mg, 52%), 2.14 (44 mg, 

9%) and a mixture of 2.13 and 2.14 (73 mg, 15%) 

 
2.13: 
1H NMR (300 MHz; CDCl3-d1) δ: 1.42 (d, 1H, J = 6.34 Hz, -C(3’)Ha), 1.55 (d, 3H, J = 

6.45 Hz, -CHCH3), 1.86 (d, 1H, J = 3.39 Hz, -C(3’)Hb), 2.07 (td, 1H, J = 3.45 and 6.64 

Hz, -C(2’)H), 2.65 (q, 1H, J = 6.45 Hz, -CHCH3), 3.46 (br s, 1H, -C(1)OH), 4.49 (d, 

1H, J = 2.28 Hz, -C(1)H), 7.22 – 7.51 (m, 10H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 23.63, 30.32, 43.72, 61.07, 68.62, 84.51, 89.03, 

122.53, 126.70, 127.09, 128.24, 128.33, 128.40, 131.71, 144.04. 

Exact mass (ESI-MS) calculated for C19H20NO [M+H]+: 278.1545, found: 278.1543. 

 
2.14: 
1H NMR (300 MHz; CDCl3-d1) δ: 1.47 (d, 1H, J = 6.23 Hz, -C(3’)Ha), 1.48 (d, 1H, J = 

6.58 Hz, -CHCH3), 1.98 (d, 1H, J = 3.40 Hz, , -C(3’)Hb), 2.10 (ddd, 1H, J = 3.43, 4.67 

and 6.24 Hz, -C(2’)H), 2.67 (q, 1H, J = 6.53 Hz, -CHCH3), 2.98 (br s, 1H, -C(1)OH), 

4.77 (d, 1H, J = 4.62 Hz, -C(1)H), 7.25 – 7.50 (m, 10H, arom. H). 
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13C NMR (75 MHz; CDCl3-d1) δ: 23.48, 30.68, 42.98, 61.70, 68.75, 85.33, 87.64, 

122.47, 126.69, 127.16, 128.24, 128.37, 128.45, 131.76, 143.99. 

Exact mass (ESI-MS) calculated for C19H20NO [M+H]+: 278.1545, found: 278.1543. 

 

3-phenyl-1-((R)-1-((R)-1-phenylethyl)aziridin-2-yl)prop-2-yn-1-one (2.16) 
Dess-Martin periodinane (14.5 mL of a 0.467 M solution in CH2Cl2, 6.77 mmol, 1.5 

eq.) was added to a solution of 2.13 and 2.14 (1.253 g, 4.517 mmol) in CH2Cl2 (20 

mL) and the resulting solution was stirred until TLC indicated complete consumption 

of the starting material (2 h).  NaHCO3 (20 mL) was added and after separation of 

both phases, the organic layer was washed with brine (2 x 20 mL).  After drying over 

MgSO4 and removal of the solvent under reduced pressure, the residue was purified 

by column chromatography (hexanes:EtOAc 9:1  85:15) affording ketone 2.15 

(1.02 g, 82%) as a dark brown oil. 
1H NMR (300 MHz; CDCl3-d1) δ: 1.49 (d, 3H, J = 6.54 Hz, -CHCH3), 1.78 (d, 1H, J = 

6.16 Hz, -C(3’)Ha), 2.34 – 2.39 (m, 1H, -C(3’)Hb), 2.51 (dd, 1H, J = 2.81 and 6.33 Hz, 

-C(2’)H), 2.64 (q, 1H, J = 6.48 Hz, -CHCH3), 7.24 – 7.64 (m, 10H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 16.43, 28.73, 39.31, 62.71, 79.28, 85.74, 119.81, 

120.31, 121.40, 121.61, 123.82, 126.26, 136.69, 178.80. 

Exact mass (ESI-MS) calculated for C19H18NO [M+H]+: 276.1383, found: 276.1387. 

 

(3R,4R)-4-((R)-1-phenylethylamino)-5-azido-1-phenylpent-1-yn-3-ol (2.17) 

To a solution of 2.13 (122 mg, 0.440 mmol) in CH2Cl2 (5 mL), TMSN3 (173 μL, 1.32 

mmol, 3 eq.) was added.  The mixture was stirred for 16 h at room temperature and 

subsequently treated with 1N HCl (5 mL) and stirring was continued for 1 h.  Sat. 

K2CO3 (25 mL) and EtOAc (50 mL) were added and the aqueous layer was extracted 

with EtOAc (3 x 25 mL).  The combined organic phase was dried over Na2SO4 and 

removed under reduced pressure.  Flash chromatography (hexanes:EtOAc 4:1) 

provided 2.17 (141 mg, quant.) as a white solid. 
1H NMR (300 MHz; CDCl3-d1) δ: 1.42 (d, 3H, J = 6.45 Hz, -CHCH3), 2.93 (m, 1H, -

C(4)H), 3.32 (dd, 1H, J = 4.98 and 12.60 Hz, -C(5)Ha), 3.46 (dd, 1H, J = 5.28 and 

12.31 Hz, -C(5)Hb), 4.08 (q, 1H, J = 6.45 Hz, -CHCH3), 4.43 (d, 1H, J = 5.87 Hz, -

C(3)H), 7.24 – 7.50 (m, 10H, arom. H). 
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13C NMR (75 MHz; CDCl3-d1) δ: 24.28, 51.84, 56.80, 59.41, 62.13, 86.04, 87.76, 

122.26, 126.46, 127.45, 128.34, 128.62, 128.71, 131.71, 145.04. 

Exact mass (ESI-MS) calculated for C19H21N4O [M+H]+: 321.1715, found: 321.1717. 

 

N-((2R,3R)-1-azido-3-hydroxy-5-phenylpent-4-yn-2-yl)-N-((R)-1-phenylethyl) 
palmitamide (2.19)  
To a cooled solution (0°C) of 2.17 (637 mg, 1.99 mmol) and DIPEA (1.02 mL, 5.97 

mmol, 3 eq.) in anhydrous CH2Cl2 (10 mL), palmitoyl chloride (584 μL, 1.93 mmol, 

0.97 eq.) was added dropwise and the resulting solution was stirred overnight at 

room temperature.  Sat. NaHCO3 (10 mL) was added and after separation of the 

phases, the organic layer was washed with NaHCO3 (10 mL) and brine (10 mL).  

After drying over MgSO4 and removal of all volatiles under reduced pressure, the 

residue was purified by column chromatography (hexanes:EtOAc 97:3) yielding 2.19 

(862 mg, 78%) as a colourless oil. 
1H NMR (300 MHz; CDCl3-d1) δ: 0.88 (t, 3H, J = 6.51 Hz, -CH3 acyl), 1.20 – 1.35 (m, 

24H, acyl H), 1.38 (d, 3H, J = 6.49 Hz, -CHCH3), 1.55 – 1.70 (m, 3H, -COCH2CH2) 

and –C(3)OH), 2.35 (t, 2H, J = 7.63 Hz, -COCH2), 2.89 (td, 1H, J = 4.83 and 6.77 Hz, 

-C(2)H), 3.32 (dd, 1H, J = 4.93 and 12.60 Hz, -C(1)Ha), 3.46 (dd, 1H, J = 7.18 and 

12.56 Hz, -C(1)Hb), 4.13 (q, 1H, J = 6.42 Hz, -CHCH3), 5.86 (d, 1H, J = 4.66 Hz, -

C(3)H), 7.24 – 7.50 (m, 10H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 14.64, 22.78, 26.06, 25.57, 28.94, 29.30, 29.39, 

29.53, 29.60, 29.68, 29.71, 32.00, 34.06, 52.33, 55.96, 58.00, 64.82, 85.29, 86.94, 

121.98, 127.36, 127.55, 129.35, 129.86, 132.34, 146.22, 172.50. 

Exact mass (ESI-MS) calculated for C35H51N4O2 [M+H]+: 559.4012, found: 559.4017. 

 

(R)-methyl 2-(dibenzylamino)-3-hydroxypropanoate (2.21) 
To a solution of D-serine methyl ester hydrochloride (25.13 g, 161.5 mmol) in MeCN 

(400 mL), potassium carbonate (111.6 g, 0.808 mol, 5 eq.) was added, followed by 

benzyl bromide (69.1 g, 0.404 mol, 2.5 eq.). After stirring for 24 h at room 

temperature, water (500 mL) was added and after separation of both phases, the 

aqueous phase was extracted with EtOAc (3 × 500 mL). The combined organic 

phase was dried over MgSO4 and concentrated under reduced pressure. The 
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resulting residue was purified by column chromatography (hexanes:EtOAc 4:1  

65:35) affording the title compound (42.01 g, 87%) as a colourless oil. 
1H NMR (300 MHz; CDCl3-d1) δ: 2.58 (br.s, 1H, -C(3)OH), 3.59 (m, 1H, -C(2)H), 3.68 

(d, 2H, J = 14.31 Hz, benzyl -CH2), 3.71 - 3.82 (m, 2H, -C(3)H2), 3.83 (s, 3H, -OCH3), 

3.94 (d, 2H, J = 14.31 Hz, benzyl -CH2), 7.18 - 7.39 (m, 10 H, arom. H).  
13C NMR (75 MHz; CDCl3-d1) δ: 51.23, 55.00, 59.29, 61.61, 127.27, 128.40, 128.90, 

138.56, 171.09. 

Exact mass (ESI-MS) calculated for C18H22NO3 [M+H]+: 300.1600, found: 300.1594. 

 

Methyl (2R)-3-(tert-butyldiphenylsiloxy)-2-(dibenzylamino)-propanoate (2.22) 
To a solution of ester 2.21 (15.0 g, 50.11 mmol) and imidazole (13.65 g, 0.2 mol, 4 

eq.) in anhydrous DMF (100 mL), TBDPSCl (41.3 g, 0.15 mol, 3 eq.) was added at 

0°C and the mixture was stirred for 5 h at room temperature.  After removal of the 

solvent in vacuo, EtOAc (300 mL) was added to the residue and the organic layer 

was washed with brine (100 mL) and subsequently dried over MgSO4.  After removal 

of all volatiles in vacuo, the residue was purified by column chromatography 

(hexanes:EtOAc 95:5) yielding the title compound (26.9 g, 100%) as a viscous 

colourless oil. 
1H NMR (300 MHz; CDCl3-d1) δ: 1.05 (s, 9H, tert-butyl), 3.68 (t, 1H, J = 6.18 Hz, -

C(2)H), 3.76 (s, 3H, -OCH3), 3.78 (d, 2H, J = 14.10 Hz, benzyl -CH2), 3.99 (dd, 1H, J 

= 6.18 and 10.22 Hz, -C(3)Ha), 4.02 (d, 2H, J = 14.10 Hz, benzyl -CH2), 4.07 (dd, 1H, 

J = 6.18 and 10.22 Hz, -C(3)Hb), 7.18 - 7.65 (m, 20H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 18.99, 26.50, 51.08, 55.25, 62.78, 63.12, 126.79, 

127.27, 128.41, 128.90, 129.51, 133.05, 134.47, 139.59, 171.12. 

Exact mass (ESI-MS) calculated for C34H40NO3Si [M+H]+: 538,2777, found: 

538,2772. 

 

(3R,4R)-4-(dibenzylamino)-5-(tert-butyldiphenylsiloxy)-1-phenylpent-1-yn-3-ol 
(2.24) 
To a solution of 2.22 (4.643 g, 8.63 mmol) in anhydrous toluene (75 mL), DiBAlH 

(17.27 mL of a 1M solution in toluene, 17.27 mmol, 2 eq.) was added dropwise over 

60’.  The mixture was stirred for 3 h at -78°C and subsequently quenched by slow 

addition of EtOH until the evolution of H2-gas ceased.  After addition of celite (40 g) 
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and subsequent filtration of the reaction mixture, all volatiles were removed under 

reduced pressure affording crude aldehyde 2.23, which was used without further 

purification. 

Anhydrous ZnBr2 (2.53 g, 11.22 mmol, 1.3 eq.) was added to a cooled (0°C) solution 

of lithium phenylacetylide (10.4 mL of a 1M solution in THF, 10.4 mmol, 1.2 eq.) in 

anhydrous Et2O (200 mL) and the resulting mixture was stirred for 2 h at room 

temperature.  A cooled (-78°C) solution of crude 2.23 in anhydrous Et2O (20 mL) was 

subsequently added at -78°C over 60’ and the resulting mixture was allowed to reach 

room temperature overnight.  The reaction was quenched by slow addition of sat. 

NH4Cl (50 mL).  After separation of both phases, the aqueous layer was extracted 

with Et2O (2 x 100 mL) and the combined organic layers were washed with 0.5N HCl 

(100 mL) and brine (100 mL) and subsequently dried over MgSO4.  After removal of 

the solvent under reduced pressure, the residue was purified by column 

chromatography (hexanes:EtOAc 93:7) yielding threo-2.24 (3.36 g, 64%) and an 

impure fraction (262 mg, 5%), both as slightly yellow oils. 
1H NMR (300 MHz; DMSO-d6) δ: 1.03 (s, 9H, tert-butyl), 3.04 (dd, 1H, J  = 6.15 and 

10.95 Hz, -C(4)H), 3.86 (d, 2H, J = 14.36 Hz, benzyl -CH2), 3.97 - 4.07 (m, 4H, 

benzyl -CH2 and -C(5)H2), 4.80 (1H, d, J = 6.16 Hz, -C(3)H), 5.57 (br s, 1H, -

C(3)OH), 7.17 – 7.72 (m, 25H, arom. H) 
13C NMR (75 MHz; DMSO-d6) δ: 18.67, 26.59, 54.59, 61.19, 62.15, 63.20, 84.51, 

91.13, 109.26, 122.29, 126.61, 127.44, 127.78, 127.99, 128.36, 128.55, 129.81, 

131.01, 132.68, 132.75, 134.43, 135.06, 135.12, 140.36. 

Exact mass (ESI-MS) calculated for C41H44NO2Si [M+H]+: 610.3141, found: 

610.3148. 

 

(2R,3R)-2-(dibenzylamino)-5-phenylpent-4-yne-1,3-diol (2.25) 
To a solution of 2.24 (3.362 g, 5.51 mmol) in THF (50 mL), TBAF (11 mL of a solution 

1M in THF, 11 mmol, 2 eq.) was added and the reaction mixture was stirred at room 

temperature until TLC indicated the disappearance of the starting material (30’).  

After removal of the solvent under reduced pressure, EtOAc (100 mL) and water (100 

mL) were added and after separation of both phases, the aqueous layer was 

extracted with EtOAc (2 x 50 mL) and the combined organic phase was dried over 

MgSO4.  After removal of all volatiles under reduced pressure, the residue was 
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purified by column chromatography (hexanes:EtOAc 7:3) yielding the title compound 

(1.717 g, 84%) as a colourless oil. 
1H NMR (300 MHz; DMSO-d6) δ: 2.84 (dd, 1H, J = 5.86 and 11.72 Hz, -C(2)H), 3.81 

(m, 4H, benzyl -CH2 and -C(1)H2), 4.01 (d, 2H, J = 13.78 Hz, benzyl -CH2), 4.45 (br s, 

1H, -C(1)OH), 4.71 (m, 1H, -C(3)H), 5.44 (br s, 1H, -C(3)OH), 7.14 – 7.45 (m, 15H, 

arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 54.59, 58.33, 61.46, 63.15, 84.29, 91.56, 122.57, 

126.58, 127.98, 128.34, 128.55, 128.63, 131.05, 140.55. 

Exact mass (ESI-MS) calculated for C25H26NO2 [M+H]+: 372.1964, found: 372.1967. 

 

(4R,5R)-N,N-dibenzyl-2,2-dimethyl-4-(2-phenylethynyl)-1,3-dioxan-5-amine 
(2.27). 
To a solution of 2.25 (37.2 mg, 0.1 mmol) in 2,2-dimethoxypropane/DMF (1:1; 3 mL), 

PPTS (cat.) was added and the mixture was stirred for 2 h at room temperature.  The 

solvent was subsequently removed under reduced pressure and column 

chromatography (hexanes:EtOAc 96:4) of the residue yielded 2.27 (35 mg, 85%) as a 

colourless oil. 
1H NMR (300 MHz; DMSO-d6) δ: 1.33 (s, 3H, -CH3 isopropylidene), 1.42 (s, 3H, -CH3 

isopropylidene), 2.57 - 2.64 (m, 1H, -C(5)H), 3.69 (d, 2H, J = 14.36 Hz, benzyl -CH2), 

3.96 (dd, 1H, J = 3.81 and 12.60 Hz, - C(6)Ha), 4.20 (dd, 1H, J = 2.06 and 12.59 Hz, -

C(6)Hb), 4.23 (d, 2H, J = 14.07 Hz, benzyl -CH2), 5.29 (d, 1H, J = 4.11 Hz, -C(4)H), 

7.12 - 7.25 (m, 6H, arom. H), 7.42 - 7.58 (m, 9H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 19.58, 28.52, 52.04, 54.94, 58.11, 64.78, 85.82, 

88.01, 98.73, 122.28, 126.65, 128.00, 128.28, 128.72, 128.83, 131.10, 141.84. 

Exact mass (ESI-MS) calculated for C28H30N2O [M+H]+: 412.2277, found: 412.2274. 

 

Mesylation of 2.25: 
To an ice-cold solution of 2.21 (1.1 g, 3.67 mmol), 4-DMAP (5 mg; cat.) and DIPEA 

(1.82 mL, 11.02 mmol, 3 eq.) in CH2Cl2 (20 mL), MsCl (427 μL, 5.51 mmol, 1.5 eq.) 

was added and the resulting mixture was stirred at room temperature.  After 20’, TLC 

indicated the formation of a single new product with a higher Rf whereas after 80’, a 

more polar product appeared on TLC.  A small aliquot was withdrawn from the 

reaction mixture and purified by column chromatography (hexanes:EtOAc 8:2  7:3) 
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affording two products which were identified as 2.26 and 2.28 (4:1).  The reaction 

mixture was stirred for 15 h at room temperature and after removal of the solvent 

under reduced pressure, the residue was purified by column chromatography yielding 

2.26 (624 mg, 45%) and 2.28 (476 mg, 46%). 

To a solution of 2.26 (624 mg, 1.65 mmol) in anhydrous DMF (10 mL), morpholine 

(1.44 mL, 16.55 mmol, 10 eq.) was added and the resulting solution was heated at 

50°C.  After 1 h, TLC analysis indicated the complete consumption of the starting 

material and the formation of a single new product.  Removal of the solvent under 

reduced pressure, followed by column chromatography (hexanes:EtOAc 7:3) 

rendered 2.28 (465 mg, 100%) as a white solid. 

 

(R)-2-(methoxycarbonyl)-2-(dibenzylamino)ethyl methanesulfonate (2.26) 
1H NMR (300 MHz; DMSO-d6) δ: 3.12 (s, 3H, mesyl -CH3), 3.59 (d, 2H, J = 13.78 Hz, 

benzyl -CH2), 3.60 - 3.66 (m, 1H, -C(2)H), 3.72 (s, 3H, -OCH3), 3.81 (d, 2H, J = 13.78 

Hz, benzyl -CH2), 4.42 (dd, 1H, J = 7.03 and 10.55 Hz, -C(1)Ha), 4.51 (dd, 1H, J = 

6.45 and 10.56 Hz, -C(1)Hb), 7.19 - 7.40 (m, 10H, arom. H). 
13C NMR (75 MHz; DMSO) δ: 36.54, 51.75, 54.36, 59.80, 67.45, 127.21, 128.34, 

128.54, 138.79, 169.74. 

Exact mass (ESI-MS) calculated for C19H24NO5S [M+H]+: 378.1375, found: 

378.1379. 

 

(R)-methyl 2-benzyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (2.28) 
1H NMR (300 MHz; CDCl3-d1) δ: 2.90 (dd, 1H, J = 5.57 and 13.19 Hz, -C(4)Ha), 3.20 

(dd, 1H, J = 9.38 and 13.19 Hz, -C(4)Hb), 3.57 (d, 2H, J = 13.48 Hz, benzyl -CH2), 

3.68 (d, 2H, J =  13.48 Hz, benzyl -CH2), 3.70 (s, 3H, -OCH3), 4.18 (dd, 1H, J = 5.86 

and 9.38 Hz, -C(3)H), 7.22 - 7.42 (m, 9H, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 52.73, 53.94, 54.98, 57.82, 58.78, 127.24, 127.28, 

128.29, 128.33, 128.82, 128.94, 138.45, 169.55. 

Exact mass (ESI-MS) calculated for C18H20NO2 [M+H]+: 282.1494, found: 282.1493. 
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10 D-GALACTOSE AS SOURCE OF CHIRALITY FOR THE 

SYNTHESIS OF N-HOMOCERAMIDES 
 

10.1. INTRODUCTION - RETROSYNTHESIS 

As chiral templates for the synthesis of biologically active compounds, sugars 

offer inherent advantages including extensive stereodiversity, high degree of 

functionality and, most importantly, high optical purity.  It is therefore logical that 

sugars have extensively been exploited for the synthesis of SLs.1  A typical synthetic 

protocol comprises the introduction of the amino group by activation of a sugar 

hydroxyl group followed by substitution with an appropriate N-nucleophile and the 

oxidative removal of unnecessary carbon units, thereby providing a suitable aldehyde 

intermediate for introduction of the aliphatic moiety. 

A particularly interesting method for the synthesis of ceramides, as first 

reported by Schmidt et al.,2 relies on the stereochemical and structural features of D-

galactose.  An optimized version of this synthetic strategy was later proposed by 

Duclos Jr.3  The main advantages of this method over other reported strategies 

include the relatively limited number of synthetic steps and the ease of up-scaling, 

which allows the synthesis of large amounts of key intermediates.  While the reported 

synthetic strategy aims at the synthesis of natural ceramides, thereby introducing the 

amino-group through substitution of the activated C2-hydroxyl function by an azide, 

introduction of an extra-methylene spacer for our envisioned compounds could be 

accomplished by simple replacement of the azide by a cyanide nucleophile (Figure 

10.1).  Indeed, nitriles have shown to be flexible functional groups for introduction of 

branching since judicious selection of derivatizing conditions allows straightforward 

access to the corresponding aldehydes,4 carboxylic acids5 or primary amines.6  The 

resulting intermediate nitrile could then simply be elaborated to the desired N-

homoceramides in 3 steps, including reduction of the nitrile to the corresponding 

primary amine, acylation and final benzylidene deprotection.  
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Figure 10.1:  Retrosynthetic scheme for the synthesis of N-homoceramides starting from D-galactose.  

The sphingoid backbone is depicted in blue. 

 

10.2. SYNTHESIS 

Treatment of D-galactose with benzaldehyde in the presence of anhydrous 

ZnCl2 afforded 4,6-O-benzylidene-α/β-D-galactose 3.1 (54%), which was oxidatively 

cleaved with sodium metaperiodate to give access to threose 3.2 (Figure 10.2).   
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Figure 10.2: a) D-galactose, benzaldehyde, ZnCl2, rt, 14 h (54%); b) NaIO4, phosphate buffer pH 7.8, 

1N NaOH, rt, 30’ (100%); c) i. PPh3, tetradecylbromide, 170°C, 60 h (76%); ii. bromobenzene, Li, 

tetradecylphosphoniumbromide, toluene:THF (9:2), -30°C, 3.5 h (46%); d) MsCl, TEA, THF, 0°C, 1 h 

(70%); e) see Table 10.1; f) p-TsOH, THF:MeOH (1:1), rt, 8 h (100%). 
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Schlosser-type modification of the Wittig reaction by treatment of the crude 

threose 3.2 with lithium and tetradecylphosphoniumbromide, prepared from 

bromobenzene and Li, afforded almost exclusively E-alkene 3.3 (E:Z >95:5; 3J4,5 = 

15.84 Hz), albeit in very modest yield (46%).  Activation of the secondary alcohol in 

3.3 is preferably achieved by mesylation since other leaving groups, such as the 

tosylate and triflate, have been reported to produce complex reaction mixtures.7  

Hence, the intermediate mesylate 3.4 was easily prepared in the presence of excess 

TEA in CH2Cl2 (70%). 

Surprisingly, treatment of mesylate 3.4 with different cyanides failed to 

produce the desired nitrile 3.5 under various reaction conditions (Table 10.1).  As 

lower reaction temperatures resulted in full recuperation of the starting material, 

higher temperatures gave rise to a gamut of products.  These complex reaction 

mixtures might originate from double bond isomerisation and benzylidene 

deprotection, as previously described.7  Since it had been shown that introduction of 

an azide on C2 of the sphingoid backbone proceeded more smoothly on the 

benzylidene deprotected intermediate thereby avoiding side products resulting from 

debenzylidenation, we decided to submit 3.4 to acid-catalyzed deprotection.  Hence, 

1,3-diol 3.6 was obtained quantitatively upon treatment of 3.4 with a catalytical 

amount of p-TsOH in MeOH:THF.  Unfortunately, an identical reaction profile as for 

mesylate 3.4 was observed upon treatment of 3.6 with different cyanides.  These 

results necessitated us to explore alternative routes for the synthesis of 2-cyano-1,3-

diols.   

 
Table 10.1: Tested reaction conditions for displacement of the mesyl group in 3.4 and 3.6 by CN-. 

Solvent CN- source (eq.) T (°C) Time (h) Result 

DMSO NaCN (15)4 95 168  Decomposition 

DMSO NaCN (15) + 18-crown-6 (cat) 50 96 No reaction 

DMSO Bu4NCN (2)8 50  90 96 + 24 Decomposition 

DMSO KCN (10)9 95 96 Decomposition 

DMSO Bu4NCN (2) / NaCN10 95 96 Decomposition 

MeCN KCN (10) + 18-crown-6 (cat) Reflux 48 No reaction 

EtOH/H2O (3:1) KCN (6)11 Reflux 96 No reaction 
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11 ACCESS TO N-HOMOCERAMIDES THROUGH 

REGIOSELECTIVE EPOXIDE OPENING 

11.1. SYNTHESIS VIA A C4-O-BENZYL PROTECTED 2,3-EPOXY ALCOHOL 

11.1.1 INTRODUCTION - RETROSYNTHESIS 

In view of the flexiblility of the cyano-group for homologation, we investigated 

alternative methods for the synthesis of a 2-cyano-1,3-diol scaffold.  A literature 

survey indicated that 2-cyano-1,3-diols have been accessed only through 

nucleophilic 2,3-epoxy alcohol opening.12  However, a majority of literature reports 

have dealt with selective C3- rather than the C2-opening, required for our envisioned 

compounds.   

Recently, Sasaki et al.12g reported a convenient procedure to access 2-cyano-

1,3-diols by C2 regioselective substitution (up to 92:8) of various 2,3-epoxy alcohols 

(Scheme 11.1; A).  Most interestingly, the epoxide-opening products (B) possess the 

required erythro stereochemistry for construction of the homosphingoid backbone.  

Hence, starting from the 2-cyano-1,3-diol, the E-alkene intermediate (C) could be 

obtained in 4 steps involving protection of the primary and secondary alcohol, 

oxidation of the deprotected C4 alcohol to the corresponding aldehyde and Wittig 

olefination.  Reduction of the nitrile to the primary amine followed by acylation and 

final deprotection of the alcohols would afford the desired N-homoceramides (D). 

 

OH

CN

HO HO
O

2 3
OROR

OR

CN
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OH

HO alkyl

NHCOalkyl

ABCD  
Scheme 11.1: Retrosynthetic scheme for the synthesis of N-homoceramides by regioselective 

epoxide opening. 

 

11.1.2 SYNTHESIS 

Commercially available Z-(benzyloxy)but-2-en-1-ol served as starting material 

and was isomerised to its E-isomer 3.7 in a two step sequence entailing oxidation of 
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the primary alcohol with PCC and subsequent reduction of the crude aldehyde with 

DiBAlH (61%).  Sharpless epoxidation13 using standard conditions gave access to 

epoxide 3.8 in good yield (80%).  Although the optical purity of epoxide 3.8 ([α]D25= 

+19.6° in CHCl3) was consistent with literature reports14 ([α]D25= +19.6°; ee = 94%), 

this lower ee value might compromise the outcome of biological assays.  Since 

epoxide 3.8 prevails as an oil, improvement of the enantiomeric excess by 

crystallisation would necessitate its conversion to a crystallisable ester.  Subsequent 

recrystallisation and hydrolysis of the ester would afford enantiomerically pure 3.8.   

 

HO
OBn OBnHO

OHO OBn

Z-4-(benzyloxy)but-2-en-1-ol 3.7 3.8

a b

 
Scheme 11.2: a) i. PCC, celite, CH2Cl2, RT, 18 h; ii. DiBalH, Et2O, -78°C to RT, 90’ (61%); b) 

Ti(OiPr)4, D-(-)-DET, TBHP, CH2Cl2 , -20°C, overnight (80%). 

 

However, it seemed more convenient at this point to adjust the synthetic route 

to allow recrystallisation without the involvement of extra synthetic steps.  To this aim, 

we opted to switch the benzyl-protecting group for a p-bromobenzyl-protecting 

group.15  Since the p-bromobenzyl analogue of the starting material was not 

commercially available, an alternative synthetic approach had to be pursued 

(Scheme 11.3). 
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Scheme 11.3: a) LiAlH4, THF, 0°C to reflux, 3.5 h (80%); b) Ag2O, p-bromobenzyl bromide, CH2Cl2, 

RT, 15 h (81%); c) Ti(OiPr)4, D-(-)-DET, TBHP, CH2Cl2 , -20°C, overnight (98%; 61% after 

recrystallisation); d) NaCN, B(OEt)3, DMF, 70°C, 15 h (35%); e) TBDMSCl, imidazole, DMF, 0°C to 

RT, overnight (93%). 
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   Hence, reduction of butyne-1,4-diol with LiAlH4 to E-alkene 3.9 (80%) and 

subsequent Ag2O mediated chemoselective monobenzylation with p-bromobenzyl 

bromide afforded alcohol 3.10 in good yield (81%).  This method proved to be 

superior over standard conditions (4-bromobenzyl bromide, NaH, THF) for 

monobenzylation of 1,4-diols.16  Asymmetric epoxidation rendered epoxide 3.11 in 

excellent yield (98%).  Recrystallisation from hexanes/Et2O afforded a first crop of 

epoxide 3.11 (61%).  Repeating of this procedure produced a second crop (24%) of 

3.11, whereas the resulting filtrate was purified by flash chromatography gave a third 

crop, which was used as a reference for the determination of the enantiomeric 

excess (ee).  Determination of the ee by use of a chiral shift reagent (europium(III) 

tris[3-(heptafluoropropylhydroxymethylene)-d-camphorate]) failed since no resolution 

of the signals could be observed.  In order to circumvent this issue, epoxide 3.11 was 

converted to its acetate ester 3.14, which was expected to exhibit distinct 1H NMR 

signals for the acetate group upon treatment with the chiral shift reagent.  Although 

splitting of NMR signals could be observed, integration was non-conclusive since no 

baseline separation of the signals could be obtained (Scheme 11.4). 
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Scheme 11.4: a) Ac2O, 4-DMAP, CH2Cl2, RT, 2 h (100%); b) (+)-Mosher’s chloride, DIPEA, 4-DMAP, 

CH2Cl2, RT, 1 h (95%).  

 

Hence, we choze to prepare the corresponding Mosher esters by treatment of 

3.11 with (+)-Mosher’s17 chloride in the presence of DIPEA and 4-DMAP.  

Unfortunately, both 1H NMR and 19F NMR spectra of 3.15 failed to produce baseline 



 125

separation of relevant signals.  Since comparison of the measured optical rotations to 

literature data was likewise nonconclusive, the different crops of 3.11 were analyzed 

by chiral HPLC (Table 11.1).  Based on these findings, the first recrystallisation crop 

was considered pure enough for further use.      

 
Table 11.1: Optical rotations and enantiomeric excess of the different batches of 3.11. 

 [α]D20 (c = 1 in CHCl3)a ee determined by chiral HPLC 

1st crop + 21.78° 98% 

2nd crop + 21.34° 95% 

Filtrate + 8.81° 41% 
a Reported [α]D20: +17° (c = 1.5 in CHCl3)18 

 
Treatment of epoxide 3.11 (50 mmol scale) with sodium cyanide and triethyl 

borate in DMF afforded, after a tedious work-up,  crude 3.12 as a 1:9 mixture of 1,2- 

and 1,3-diols.  Removal of the 1,2-diol by oxidative cleavage with sodium 

metaperiodate, followed by flash chromatography produced 1,3-diol 3.12 in 

disappointing yield (35%) compared to reported yields (83-96%; 0.3 mmol scale).12g  

However, apart from the 1,2- and 1,3-diols, a substantial amount (37%) of 4-

bromobenzyl alcohol could be isolated from the reaction mixture after repeated 

chromatographic purification.  Hence, debenzylation, which presumably occurs 

through boron mediated nucleophilic attack of cyanide on C4 of the epoxide ring-

opening products, might account for the observed low yield.  Although the 

corresponding C4-substituted nitrile could not be isolated, it is highly likely that it had 

been removed from the reaction mixture during aqueous work-up.  Moreover, up-

scaling of cyanide mediated epoxide ring opening reactions had previously proved to 

be troublesome.12e   

Protection of 1,3-diol 3.12 with TBDMSCl in DMF afforded silyl ether 3.13 in 

very good yield (93%).  Pd/C mediated removal of the p-bromobenzyl moiety 

unexpectedly gave rise to a complex reaction mixture (Scheme 11.5). The desired p-

bromobenzyl deprotected product 3.16 could not be isolated in pure form but co-

eluted with 3.17 (1:1.1), which resulted from intra –and/or intermolecular silyl 

migration.  Apart from 3.17, two other compounds resulting from intermolecular silyl 

migration could be isolated.  Whereas 3.18 comprised a fully silyl protected 1,2,4-diol 

backbone, 3.19 resulted from desilylation of the primary alcohol of 3.13 (Table 11.2).  
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A literature survey indicated that desilylation and silyl migration under hydrogenating 

conditions had earlier been observed.19   
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Scheme 11.5: Pd/C, H2, EtOH, RT, 4 h (3.16 + 3.17: 32%; 3.18: 10%; 3.19, 50%) 

 

A recent study pointed out that the occurrence of silyl migration/deprotection 

depends mainly on the quality of the palladium catalyst.19b  In an earlier paper, the 

same authors indicated that this issue could easily be overcome by use of 

encapsulated palladium catalysts (Pd EnCat20).19a   

 
Table 11.2: Comparison of NMR data for 3.16, 3.17, 3.18 and 3.19. 

 3.16 3.17 3.18 3.19 

 δ (ppm) J (Hz) δ (ppm) J (Hz) δ (ppm) J (Hz) δ (ppm) J (Hz) 

C(1)Ha 3.50-3.66 m 3.50–3.66 m 3.87 dd 3.54-3.70 m 

C(1)Hb 3.50-3.66 m 3.50–3.66 m 3.93 dd 3.54-3.70 m 

C(1)OH - - 5.16 t - - 5.17 dd 

C(2)H 2.90 ddd 2.97 dt 3.09 m 2.96 dt 

C(3)H 3.85-3.93 m 3.85-3.93 m 4.05 m 3.90 dt 

C(4)Ha 3.75 dd 3.37 td 3.70 dd 3.40 dd 

C(4)Hb 3.80 dd 3.45 td 3.78 dd 3.46 dd 

C(4)OH 4.85 t - - - - 4.88 t 

 

Nonetheless, it had become clear that our envisioned synthetic approach was 

hampered by too many obstacles, and since we were back at the point of epoxide 

opening, we investigated more efficient methods for introduction of branching on a 

2,3-epoxy alcohol scaffold.  Our attention was drawn to a report in which branching 

was achieved in high yield (90%) by C2 regioselective (C2:C3 9:1) opening of a 2,3-
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epoxy alcohol with lithium 1,3-dithiane.21  Indeed, 1,3-dithianes have shown to be 

invaluable for introduction of C1 fragments in natural product syntheses.22   

 Hence, epoxide 3.11 was treated with lithium 1,3-dithiane in THF.  Although 

the reaction proceeded in high yield (95%), it gave rise to low regioselectivity as 1,3-

dithianes 3.20 and 3.21 were obtained in a 2:1 ratio (Scheme 11.6).  Comparison of 

NMR data of 3.20 and 3.21 is presented in Table 11.3. 

 

Op-BrBn

OH

S S
Op-BrBnHO

O HO

Op-BrBn

OH

HO

SS
+

3.11 3.20 3.21  
Scheme 11.6: nBuLi, 1,3-dithiane, DMPU, THF, -78°C to -20°C, 1.5 h (95%) 

 
Table 11.3: Comparison of NMR data of 3.20 and 3.21 

 3.20 3.21 

  1H NMR δ (ppm) 13C NMR δ (ppm)  1H NMR δ (ppm) 13C NMR δ (ppm) 

C(1)Ha  3.62 (dd) 

C(1)Hb  3.67 (dd) 
58.36 3.36 (app.t) 64.08 

C(1)OH 4.51 (t) - 4.55 (t) - 

C(2)H  1.86 – 1.96 (m) 48.08 3.79 (ddd) 69.84 

C(2)OH  - - 4.57 (d) - 

C(3)H  3.97- 4.06 (m) 68.19 1.94 – 2.11 (m) 45.46 

C(3)OH  4.82 (d) - - - 

C(4)Ha  3.48 (dd) 3.58 (dd) 

 3.52 (dd) 
73.15 

3.62 (dd) 
69.84 

 

We conceived that higher regioselectivity could be achieved by replacement of 

the p-bromobenzyl moiety by a sterically more demanding protecting group suchas a 

trityl group.  To this aim, an alternative synthetic strategy starting from D-isoascorbic 

acid was investigated.  

 

11.2. ACCESS TO N-HOMOCERAMIDES STARTING FROM D-ISOASCORBIC ACID 
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A versatile (S)-3-(hydroxymethyl)butane-1,2,4-triol (1) building block has been synthesized starting 

from D-isoascorbic acid, a common food preservative.  The key transformation in this approach was 

the introduction of branching through a high yield and fully regioselective epoxide opening.  This 

flexible synthon has been elaborated to a new class of (dihydro)-N-homo(phyto)ceramides. 

 

The development and availability of reliable and efficient methods for the 

construction of chiral building blocks are crucial for the synthesis of many 

pharmaceutical agents and complex natural products.  These chiral building blocks 

can be derived from the chiral pool or by chemical/enzymatic means from achiral or 

racemic starting material.  

(S)-3-(Hydroxymethyl)butane-1,2,4-triol is a multivalent, flexible scaffold with 

defined stereochemical features which can be exploited by judicious selection of 

appropriate protecting groups.  Some examples of the synthetic potential of this 

intermediate are summarized in Figure 1.   

Indeed, sugar derivatives (S,S)-4-(hydroxymethyl)pyrrolidine-3-ol,[1a,b] the 

enantiomer of the common precursor of second-generation purine phosphorylase 

inhibitors[1c-e] and oxetanocin A, a known antibacterial, antitumoral and antiviral 

natural product,[2] are readily accessible through a limited number of steps (A).  

Moreover, inversed amide ceramide analogues (B) could provide useful biochemical 

tools for assessment of ceramide interaction with a myriad of clinically relevant 

enzymes.  Finally, simple elaboration of the other primary alcohol (C(4)OH) to the 

amide part gives access to PDMP homologues[3a] (D-threo-1-phenyl-2-
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aminodecanoyl-3-morpholinopropanol), an inhibitior of glucosyl ceramide synthase 

which is a potential target in the treatment of cancer (C). [3b,c]   

 

 
Figure 1. Synthetic potential of key intermediate (S)-3-(hydroxymethyl) butane-1,2,4-triol: A) 

(aza)sugar derivatives; B) inversed amide ceramides and phytoceramides; C) PDMP homologues; D) 

N-(dihydro)homo(phyto)ceramides 

 

 Here, we wish to demonstrate the usefulness of the (S)-3-

(hydroxymethyl)butane-1,2,4-triol scaffold in preparing a novel class of 

homoceramide analogues (Figure 1; D), which contain an additional methylene group 

between the N-acyl chain and C2 (Figure 2; 2.22-24).  Interestingly, our procedure 

seemed also convenient for the synthesis of N-homophytoceramide (2.25), which can 

serve as key intermediate for the synthesis of α-galactosyl-N-homoceramide.  This 

latter compound represents a homologue of α-galactosylceramide, a potentially 

useful agent for the treatment of autoimmune diseases.[4] 
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Figure 2.  General stuctures of O1-homoceramides and N-(dihydro)homo(phyto)ceramides (3.22-
3.25). 

 

Homologation is a classical tool in medicinal chemistry to alter biological 

properties of endogenous compounds.  Salbutamol, for instance, a widely[5] used 

bronchodilator with agonistic properties for β2-receptors, consists of a 4-hydroxy-3-

hydroxymethylphenyl moiety instead of the catechol ring, which is present in 

(nor)adrenaline. 

Recently, our group reported an expedient route for the synthesis of D-erythro-

O1-homoceramides[6a] (Figure 2).  An alternative synthetic procedure for this class of 

non-natural ceramide analogues was later proposed by Ogino and coworkers.[6b,c]  

The authors found that several representatives exhibited considerable apoptotic 

activities.  Recently, Schmidt and coworkers[7] presented the synthesis of O1-

homosphingosine-phosphonate starting from D-galactose. 
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Scheme 1. Conditions: a) TrtCl, Hünig’s base, CH2Cl2, 2.5 h at 0°C, then RT for 3 h (83%); b) 

NaBH4, MeOH/THF (3:2), 0°C to RT, overnight (91%); c) 1,3-dithiane, nBuLi, THF, -20°C to -10°C, 27 

h (86%); d) di-tert-butylsilyl ditriflate, pyridine, CH2Cl2, -78°C to -20°C, 1.5 h (100%); e) MeI, CaCO3, 

MeCN:H2O (8:1), reflux, 24 h (99% crude); f) NaBH4, EtOH/THF (5:3), 0°C to RT, 5 h (86% from 3.27). 

 

 Epoxide synthon 3.26 (Scheme 1), prepared from D-isoascorbic acid as 

previously described,[8] provided the stereochemical and structural features required 

for our synthetic approach.  Since epoxide opening is often hampered by 
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regioselectivity issues involving the use of hazardous cyanide[1b] or additional 

synthetic steps implicated in allylic transformations[2b] (two common methylene 

sources), we opted to use 1,3-dithiane[9] to introduce branching.   

Hence, tritylation followed by reduction of the ester and subsequent epoxide 

opening with 2-lithio-1,3-dithiane[10] produced intermediate 1,3-diol 3.27 with 

complete regioselectivity (47% yield in six steps from D-isoascorbic acid).  Protection 

of 1,3-diol 3.27 with di-tert-butylsilyl ditriflate followed by dithiane deprotection with 

MeI under alkaline conditions and final reduction of the unmasked aldehyde with 

NaBH4 gave access to 3.28 (75% from 3.27, 36% from D-isoascorbic acid in 9 steps), 

which represents a unique intermediate from which each of the primary alcohols can 

selectively be addressed for further modification. 
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Scheme 2.  Conditions: a) MsCl, 2,6-lutidine, 4-DMAP, CH2Cl2, 0°C to RT, 21 h (100% crude); b) 

NaN3, DMF, 70°C, 2h (86%); c) ZnBr2, CH2Cl2/iPrOH (85:15), RT, 10 h (96%); d) Dess-Martin 

periodinane, CH2Cl2/pyridine (12:1), 0°C to RT, 4 h; e) tetradecylmagnesium chloride in THF, Et2O, 

overnight (40% from 3.29); f) TBAF, THF, RT, 6 h (62%); g) 2,2-dimethoxypropane, p-TsOH, RT, 14 h 

(83%); h) TBDMSCl, 4-DMAP, imidazole, DMF, 0°C then 50°C for 18 h (68%); i) PPh3, THF, H2O, 30 

h; j) palmitoyl chloride, Hünig’s base, CH2Cl2, 0°C, 0.5 h (58% over two steps); k) TBAF, THF, RT, 48 

h (62%). 

 

Access to D-ribo-N-homophytoceramide 3.25 is outlined in Scheme 2.  

Mesylation of intermediate 3.28 followed by azide introduction and trityl removal 

provided alcohol 3.29 in good yield (83%).  Subsequent periodinane oxidation and 

addition of tetradecylmagnesium chloride to the thus formed aldehyde furnished 

protected azido-N-homophytosphingosine 3.30 (40%) as a single diastereomeric 
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form.  Assignment of the erythro configuration was achieved by converting 

intermediate 3.30 to the 3,4-isopropylidene protected triol 3.31 in a two steps 

sequence entailing silyl deprotection and dioxolane formation (51%) and subsequent 

comparison of 1H NMR data with natural D-ribo-azidophytosphingosine 3.32.[11,12]  

Azide reduction under Staudinger conditions following TBDMS protection of the 

secondary alcohol in 3.30 and subsequent acylation of the primary amine with 

palmitoyl chloride afforded silyl protected intermediate 3.33 (39%).  Final desilylation 

with TBAF furnished D-ribo-N-homophytoceramide 3.25 (62%). 
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Scheme 3. Conditions: a) see Scheme 2 (100%); b) N-ethoxycarbonyl phthalimide, Hünig’s base, 

THF, 75°C, 2 h (88%); c) Dess-Martin periodinane, CH2Cl2, 0°C to RT, 3.5 h; d) PhLi, 

tetradecylphosphonium bromide, LiBr, Et2O, THF, -78°C to RT, 5.5 h (53% from 3.34); e) hydrazine, 

EtOH, 55°C, 3 h (100% crude); f)  palmitoylchloride, Hünig’s base, CH2Cl2, 0°C to RT, 1 h (65% from 

3.35); g) TBAF, THF, RT, 3 h (91%); h) diphenyldisulfide, hν, cyclohexane/dioxane (3:1), RT, 4 h 

(38%); i) Pd/C, EtOAc, RT, 48 h (84%).  

 

Since the presence of azides in Wittig olefination has led to controversial 

results,[13] we opted to transform the azide to a phthalimide in a two step sequence 

involving reduction of 3.29 under Staudinger conditions followed by phthalimide 

protection of the thus formed primary amine, thereby yielding intermediate 3.34 in 

good yield (88%; Scheme 3).  Subsequent oxidation of the primary alcohol with Dess-

Martin periodinane yielded the intermediate aldehyde.  Although reaction conditions 

specifically addressed the E-isomer, Schlosser-Wittig olefination surprisingly only 

yielded Z-isomer 3.35.  Hydrazine mediated phthalimide deprotection followed by 
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acylation with palmitoyl chloride and silyl deprotection with TBAF furnished Z-N-

homoceramide 3.22 (59%).  Photoinduced double bond isomerisation[12c] in the 

presence of diphenyl disulfide as sensitizer produced, after two recrystallisations, 

isomerically pure E-N-homoceramide 3.23 (38%).  Finally, hydrogenation of the Z-

double bond in 3.22 gave access to dihydro-N-homoceramide 3.24 (84%). 

In summary, we have reported an expedient route towards a versatile (S)-3-

(hydroxymethyl)butane-1,2,4-triol scaffold starting from D-ascorbic acid, a common 

food preservative.  The key transformation in this approach was the introduction of 

branching through a high yield and fully regioselective 2-litio-1,3-dithiane epoxide 

opening.  Based on this flexible synthon, we report the first synthesis of (dihydro)-N-

homoceramides 3.22-24. In addition, a fully stereoselective Grignard reaction gave 

access to D-ribo-N-homophytoceramide 3.25, which will be utilised in a further study 

towards the elaboration of its α-galacosyl derivative.       
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Supporting information: 
General: 

All reactions were carried out under inert (N2) atmosphere.  Precoated Macherey-

Nagel (Düren, Germany) silica gel F254 plates were used for TLC and spots were 

examined under UV light at 254 nm and/or revealed by sulphuric acid-anisaldehyde 

spray or phosphomolybdic acid spray.  Column chromatography was performed on 

ICN silica gel (63-200 μM, ICN, Asse Relegem, Belgium).  NMR spectra were 

obtained with a Varian Mercury 300 spectrometer (Varian, Palo Alto, California, 

USA).  Chemical shifts are given in parts per million (δ) relative to residual solvent 

peak.  All signals assigned to amino and hydroxyl groups were exchangeable with 

D2O.  Numbering for 1H assignment is based on the IUPAC name of the compounds, 

exept for compound 3.31 where standard sphingolipid numbering was applied.  

Structural assignment was confirmed with COSY, HMQC and/or NOEDIF if 

necessary.  Exact mass measurements were performed on a quadrupole/orthogonal-

acceleration time-of-flight (Q/oaTOF) tandem mass spectrometer (qTof2, Micromass, 

Manchester, UK) equipped with a standard electrospray ionisation (ESI) interface.  

Samples were infused in a 2-propanol/water (1:1) mixture at 3 μL/min.  Optical 

rotations were measured with a Perkin-Elmer 241 polarimeter. 
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Abbreviations: 4-DMAP = 4-dimethylaminopyridine; DMF = N, N-dimethylformamide; 

DMPU = 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone; MsCl = 

methanesulfonyl chloride; i-PrOH = isopropanol; RT = room temperature; THF = 

tetrahydrofuran; p-TsOH = para-toluenesulfonic acid; TBAF = tetrabutylammonium 

fluoride; TrtCl = tritylchloride; TBDMSCl = tert-butyldimethylsilyl chloride.  

 

 

1,3-diol 3.27: 

O

HO

O

OMe
HO

OH

OTrt

S S

O
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O

OMe O

TrtO OH

3.26 3.27

a b c

1
2

3
4

1'
2'

3'

4'

5'
6'

 
a) To an ice-cold solution of 3.26 (10.0 g, 75.69 mmol) and Hünig’s base (39 mL, 

0.228 mol, 3 eq.) in CH2Cl2 (300 mL), trityl chloride (22.16 g, 79.48 mmol, 1.05 eq.) in 

CH2Cl2 (150 mL) was added dropwise over 90’.  After stirring for 1 h at 0°C and 3 h at 

RT, TLC indicated complete consumption of the starting material.  Sat. NaHCO3 (50 

mL) was added and the aqueous layer was extracted with EtOAc (3 x 50 mL).  The 

combined organic phase was dried over Na2SO4 and all volatiles were removed 

under reduced pressure.  The resulting syrup was covered with EtOH (100 mL) and 

heated at 50°C until a clear solution was obtained.  Overnight standing in a 

refrigerator (2°C) yielded trityl protected 3.26 (18.2 g, 63%) as white crystals.  Flash 

chromatography of the residue (EtOAc:hexanes:TEA 30:70:1) yielded another crop of 

tritylated 3.26 (5.6 g, 20%) as a white solid.  
1H NMR (300 MHz, [D6]DMSO, 25°C): δ= 2.96 – 3.04 (m, 1H, -C(3)H), 3.31 – 3.38 

(m ,2H, -C(2)H and –C(2)CHa), 3.58 (d, 1H, J = 1.76 Hz, –C(2)CHb), 3.65 (s, 3H, -

OCH3), 7.22 – 7.38 (m, 15H, arom. H).  
13C NMR (75 MHz, [D6]DMSO, 25°C): δ= 49.72, 52.21, 56.26, 62.59, 86.26, 127.19, 

128.03, 128.15, 143.35, 168.80.  

Exact mass (ESI-MS) calculated for C24H22NaO4 [M+Na]+: 397.1416, found: 

397.1419. 

b) To a cooled solution (0°C) of tritylated 3.26 (23.812 g, 63.59 mmol) in a mixture of 

MeOH/THF (3:2; 250 mL), NaBH4 (2.646 g, 69.95 mmol, 1.1 eq.) was added in small 

portions and the mixture was stirred overnight at RT.  The solvent was removed 
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under reduced pressure and the residue was dissolved in EtOAc (300 mL) and 

cooled to 0°C.  Ice-cold 0.1N HCl was added under vigorous stirring until pH 2.  After 

separation of both layers, the aqueous layer was extracted with EtOAc (2 x 100mL).  

The combined organic phase was extracted with NaHCO3 (2 x 100 mL) and brine 

(100 mL) and subsequently dried over Na2SO4.  After removal of the solvent in 

vacuo, the residue was recrystallised from diisopropylether (100 mL) yielding the 

intermediate epoxide (20.083 g, 91%) as colourless needles.   
1H NMR (300 MHz, [D6]DMSO, 25°C): δ= 2.89 (dd, 1H, J = 5.55 and 10.86 Hz, -

C(1)Ha), 2.93 – 2.97 (m, 1H, -C(3)H), 3.07 (dt, 1H, J = 2.36 and 5.54 Hz, -C(2)H), 

3.25 (dd, 1H, J = 2.36 and 10.86 Hz, -C(1)Hb), 3.34 (dt, 1H, J = 5.87 and 12.56 Hz, -

C(3)CHa), 3.57 (ddd, 1H, J = 3.23, 5.57 and 12.28 Hz, -C(3)CHb), 4.81 (t, 1H, J = 

5.86 Hz, C(1)OH), 7.22 – 7.39 (m, 15H, arom. H).  
13C NMR (75 MHz, [D6]DMSO, 25°C): δ= 53.9, 55.8, 60.9, 63.9, 86.0, 127.1, 128.0, 

128.2, 143.6. 

Exact mass (ESI-MS) calculated for C23H22NaO3 [M+Na]+: 369.1467, found: 

369.1470. 

 

c) To a stirred solution of 1,3-dithiane (19.84 g, 0.165 mol, 5 eq.) in anhydrous THF 

(250 mL) at -20°C, nBuLi (100 mL of 1.6M solution in hexanes, 0.160 mol, 4.85 eq.) 

was added slowly over 30’ and the resulting mixture was stirred for 2 h while the 

temperature reached -15°C.  DMPU (41.3 mL, 0.33 mol, 10 eq.) was added in one 

portion followed by dropwise addition of the intermediate epoxide (11.43 g, 33.0 

mmol) in anhydrous THF (100 mL) over 30’.  The temperature was kept between -

15°C and -10°C.  Since the starting material and 3.27 have an identical Rf, a small 

aliquot was withdrawn from the reaction mixture after 24 h and partitioned between 

Et2O and sat. NH4Cl.  The organic layer was separated, dried over Na2SO4 and all 

volatiles were removed in vacuo.  1H NMR analysis indicated the absence of starting 

material and the presence of a new compound, besides unreacted 1,3-dithiane.  The 

reaction mixture was subsequently treated with sat. NH4Cl (200 mL) and Et2O (300 

mL).  After separation of both phases, the aqueous layer was extracted with Et2O (2 x 

150 mL) and the combined organic phase was dried over Na2SO4.  After removal of 

all volatiles, excess 1,3-dithiane was sublimed (1 mBar at 56°C).  The resulting 

yellow syrup was purified by column chromatography (hexanes:EtOAc:TEA 30:70:0.1 

 40:60:0.1) yielding 3.27 (13.21 g, 86%) as a slightly yellow foam.  
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1H NMR (300 MHz, [D6]DMSO, 25°C): δ= 1.50 – 1.70 (m, 1H, -C(5’)Ha), 1.93 – 2.08 

(m, 2H, -C(2)H and -C(5’)Hb), 2.62 – 2.81 (m, 4H, -C(4’)H2 and –C(6’)H2), 2.94 – 3.06 

(m, 2H, -C(4)H2), 3.49 – 3.64 (m, 2H, -C(1)H2), 4.02 – 4.12 (m, 1H, -C(3)H), 4.31 (d, 

1H, J = 4.10 Hz, -C(2’)H), 4.48 (t, 1H, J = 4.99 Hz, -C(1)OH), 4.93 (d, 1H, J = 5.57 

Hz, -C(3)OH), 7.22 – 7.44 (m, 15H, arom. H). 
13C NMR (75 MHz, [D6]DMSO, 25°C): δ= 26.02, 30.23, 30.29, 47.84, 48.94, 58.28, 

65.92, 68.64, 85.70, 126.95, 127.84, 128.34, 143.92.  

Exact mass (ESI-MS) calculated for C27H30NaO3S2 [M+Na]+: 489.1534, found: 

489.1538. 
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a) To a cooled solution (-78°C) of 3.27 (12.045 g, 25.81 mmol) and pyridine (9 mL, 

0.111 mol, 4.3 eq.) in anhydrous CH2Cl2 (500 mL), di-tert-butylsilyl ditriflate (11.369 

g, 25.81 mmol, 1 eq.) dissolved in CH2Cl2 (100 mL) was added dropwise over 60’.  

The mixture was subsequently allowed to warm up and when it reached – 20°C, TLC 

indicated the disappearance of the starting material.  Sat. NaHCO3 (250 mL) was 

added and the resulting suspension was stirred for 20’ while the temperature reached 

20°C.  After separation of the phases, the aqueous layer was extracted with CH2Cl2 

(200 mL) and the combined organic phase was extracted with ice cold 0.1N HCl (2 x 

100 mL), sat. NaHCO3 (100 mL) and brine (100 mL).  After drying over anhydrous 

Na2SO4 and removal of the solvent under reduced pressure, the residue was purified 

by column chromatography (hexanes:EtOAc:TEA 95:5:0.1) yielding silyl protected 

3.27 (15.67 g, quant.) as a white foam.  
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 1.05 (s, 9H, tert-butyl), 1.14 (s, 9H, tert-

butyl), 1.62 – 1.73 (m, 1H, -C(5’)Ha), 1.91 – 2.02 (m, 1H, -C(5’)Hb), 2.25 (dt, 1H, J = 

2.16 and 14.08 Hz, -C(4’ or 6’)Ha), 2.57 (dt, 1H, J = 3.61 and 14.09 Hz, -C(4’ or 

6’)Hb), 2.71 – 2.84 (m, 3H, -C(4’ or 6’)Ha+Hb and -C(5)H), 3.44 (dd, 1H, J = 2.53 and 

10.11 Hz, -C(4)CHa), 3.55 (dd, 1H, J = 1.80 and 10.11 Hz, -C(4)CHb), 3.93 (d, 1H, J 
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= 3.26 Hz, -C(2’)H), 4.16 (t, 1H, J = 11.19 Hz, -C(6)Ha), 4.27 – 4.34 (m, 2H, -C(6)Hb 

and -C(4)H), 7.23 – 7.35 (m, 9H, arom. H), 7.54 - 7.58 (m, 6H, arom. H). 
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 20.04, 22.82, 26.11, 27.10, 27.58, 31.03, 

32.00, 45.12, 48.43, 64.90, 66.35, 75.28, 85.96, 126.93, 127.79, 128.80, 143.96. 

Exact mass (ESI-MS) calculated for C35H46NaO3S2Si [M+Na]+: 629.2555, found: 

629.2553. 

 

b) To a solution of silyl protected 3.27 (10.52 g, 17.33 mmol) and CaCO3 (8.67 g, 

86.66 mmol, 5 eq.) in a degassed (N2) mixture of MeCN:H2O (8:1, 173 mL), MeI 

(21.58 mL, 34.66 mmol, 2 eq.) was added in one portion and the resulting mixture 

was refluxed for 24 h.  After reduction of the solvent in vacuo (~50 mL), ice-cold H2O 

(100 mL) and EtOAc (150 mL) were added and the heterogeneous mixture was 

filtered.  Both phases were separated and the aqueous layer was extracted with Et2O 

(3 x 50 mL).  The combined organic phase was dried over Na2SO4 and removed 

under reduced pressure.  The resulting yellow syrup (8.9 g, 99%) was used without 

further purification.  A small aliquot was purified by column chromatography 

(PE:Me2CO 98:2) for analytical purposes. 
1H NMR (300 MHz, [D6]DMSO, 25°C): δ= 0.98 (s, 9H, tert-butyl), 0.99 (s, 9H, tert-

butyl), 3.05 (dd, 1H, J = 4.27 and 10.05 Hz, -C(4)CHa), 3.11 (ddt, 1H, J = 2.05, 5.06 

and 9.57 Hz, -C(5)H), 3.19 (dd, 1H, J =  4.14  and 9.99 Hz, -C(4)CHb), 4.04 – 4.15 

(m, 2H, -C(6)CH2), 4.43 (td, 1H, J = 4.12 and 9.49 Hz, -C(4)H), 7.21 – 7.44 (m, 15H, 

arom. H), 9.47 (d, 1H, J = 2.05 Hz, aldehyde –H). 
13C NMR (75 MHz, [D6]DMSO, 25°C): δ= 19.71, 22.08, 26.75, 27.17, 53.90, 62.67, 

66.25, 72.97, 86.12, 127.08, 127.85, 128.18, 143.57, 200.73.  

Exact mass (ESI-MS) calculated for C32H40O4SiNa [M+Na]+: 539.2594, found: 

539.2598. 

 

c) The crude aldehyde (8.9 g, 17.16 mmol) was dissolved in EtOH:THF (5:3, 80 mL) 

and the resulting clear solution was cooled to 0°C in an ice-bath.  NaBH4 (649 mg, 

17.16 mmol, 4 eq.) was added portionwise over 10’ and the reaction mixture was 

stirred for 1 h at 0°C and 5 h at RT.  Saturated NaHCO3 (5 mL) was added and after 

stirring for 10’, the solvent was reduced in vacuo (~40 mL).  Et2O (200 mL) was 

added and the heterogeneous mixture was filtered over celite.  The filter was rinsed 
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with Et2O (3 x 50 mL) and after drying over Na2SO4, all volatiles were removed under 

reduced pressure.  Flash chromatography (hexanes:EtOAc 85:15) of the residue 

yielded 3.28 (7.69 g, 86% over 2 steps from silyl protected 3.27). 
1H NMR (300 MHz, [D6]DMSO, 25°C): δ= 1.00 (s, 9H, tert-butyl), 1.07 (s, 9H, tert-

butyl), 2.20 – 2.31 (m, 1H, -C(5)H), 3.05 (dd, 1H, J = 3.63 and 9.99 Hz, -C(4)CHa), 

3.03 (dd, 1H, J =  6.02  and 11.02 Hz, -C(5)CHa), 3.18 (dd, 1H, J =  3.15  and 11.02 

Hz, -C(5)CHb), 3.29 (dd, 1H, J = 1.44 and 9.89 Hz, -C(4)CHb), 3.94 (app t, 1H, J = 

11.17 Hz, -C(6)Ha), 4.04 – 4.13 (m, 2H, -C(4)H and -C(6)Hb), 7.19 – 7.34 (m, 9H, 

arom. H), 7.44 – 7.52 (m, 6H, arom. H).  
13C NMR (75 MHz, [D6]DMSO, 25°C): δ= 19.67, 22.36, 26.92, 27.39, 42.46, 58.61, 

65.50, 67.13, 75.08, 85.36, 126.92, 127.71, 128.27, 143.97. 

Exact mass (ESI-MS) calculated for C32H42O4SiNa [M+Na]+: 541.2751, found: 

541.2750. 
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a) To a cold solution (0°C) of 3.28 (7.421 g, 14.30 mmol), 2,6-lutidine (3.33 mL, 28.61 

mmol, 2 eq.) and 4-DMAP (cat.) in CH2Cl2 (100 mL), MsCl (1.66 mL, 21.46 mmol, 1.5 

eq.) dissolved in CH2Cl2 (20 mL) was added dropwise over 30’ and the resulting 

solution was stirred at RT for 21 h.  Sat. NaHCO3 (100 mL) and Et2O (200 mL) were 

added and after separation of the phases, the aqueous layer was extracted with Et2O 

(2 x 50 mL).  The combined organic phase was washed with ice-cold 0.1N HCl (2 x 

50 mL), sat. NaHCO3 (50 mL) and brine (50 mL), dried over Na2SO4 and evaporated 

yielding crude mesylated 3.28 (8.55 g, > 100%) which was used without further 

purification. 

 

b) To a solution of crude mesylated 3.28 (8.55 g) in anhydrous DMF (120 mL), NaN3 

(3.72 g, 57.22 mmol, 4 eq.) was added and the resulting suspension was heated at 

70°C until TLC indicated complete consumption of the starting material (2 h).  After 
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removal of the solvent under reduced pressure, sat. NaHCO3 (100 mL) and Et2O 

(100 mL) were added and after separation of the phases, the aqueous layer was 

washed with Et2O (2 x 50 mL).  The combined organic phase was washed with water 

(50 mL) and brine (50 mL) and dried over Na2SO4.  The residue was treated with 

EtOH (100 mL) and subsequently cooled to 0°C.  After 20’, the crystallised product 

was filtered and the filter was rinsed with ice-cold EtOH (2 x 10 mL) yielding the 

intermediate azide (6.04 g, 78%) as a white solid.  The filtrate was evaporated in 

vacuo yielding a yellow syrup which was purified by column chromatography 

(hexanes:EtOAc 9:1) yielding an additional crop of the intermediate azide (640 mg, 

8%) and detritylated product 3.29 (355 mg, 8%). 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 1.07 (s, 9H, tert-butyl), 1.15 (s, 9H, tert-

butyl), 2.45 – 2.57 (m, 1H, -C(5)H), 2.93 (dd, 1H, J = 3.25 and 10.31 Hz, -C(4)CHa), 

3.03 (dd, 1H, J =  6.53  and 12.68 Hz, -C(5)CHa), 3.15 (dd, 1H, J =  3.41  and 12.67 

Hz, -C(5)CHb), 3.29 (dd, 1H, J = 2.45 and 10.33 Hz, -C(4)CHb), 3.97 (app t, 1H, J = 

11.12 Hz, -C(6)Ha), 4.06 (dt, 1H, J = 2.83 and 9.85 Hz,  -C(4)H), 4.13 (dd, 1H, J = 

4.13 and 10.88 Hz, -C(6)Hb), 7.23 – 7.35 (m, 9H, arom. H), 7.52 – 7.56 (m, 6H, arom. 

H). 
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 20.07, 22.81, 27.08, 27.53, 40.42, 49.93, 

65.78, 67.50, 75.34, 86.26, 127.02, 127.81, 128.66, 143.98.  

Exact mass (ESI-MS) calculated for C32H41N3O3SiNa [M+Na]+: 566.2815, found: 

566.2813. 

 

c) A solution of anhydrous ZnBr2 (45.03 g, 0.20 mol, 1M in 200 mL CH2Cl2:iPrOH 

85:15) was added to the intermediate azide (6.68 g, 12.28 mmol) and the resulting 

yellow solution was stirred for 10 h at RT.  Water (100 mL) was added and after 

separation of the phases, the aqueous layer was extracted with Et2O (3 x 100 mL).  

The combined organic phase was washed with sat. NaHCO3 (2 x 50 mL) and brine (2 

x 50 mL) and subsequently dried over Na2SO4.  After removal of all volatiles under 

reduced pressure, the residue was purified by column chromatography 

(hexanes:EtOAc 95:5  85:15) yielding 3.29 (3.21 g, 96%; 83% over 3 steps from 

3.28) as a colourless oil. 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 1.00 (s, 9H, tert-butyl), 1.04 (s, 9H, tert-

butyl), 2.12 (m, 1H, -C(5)H), 3.25 (dd, 1H, J = 4.27 and 11.55 Hz, -C(4)CHa), 3.31 
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(dd, 1H, J =  3.30  and 11.54 Hz, -C(4)CHb), 3.55 (dd, 1H, J =  5.96  and 11.38 Hz, -

C(5)CHa), 3.76 (dd, 1H, J =  3.05  and 11.36 Hz, -C(5)CHb), 3.97 (app t, 1H, J = 

11.06 Hz, -C(6)Ha), 4.00 - 4.06 (m, 1H, -C(4)H), 4.08 (dd, 1H, J = 4.51 and 10.97 Hz, 

-C(6)Hb). 
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 19.90, 22.68, 27.07, 27.38, 40.51, 49.79, 

65.01, 66.84, 76.18. 

Exact mass (ESI-MS) calculated for C13H28N3O3Si [M+H]+: 302.1900, found: 

302.1908. 

 
Intermediate protected azido homophytosphingosine 3.30: 
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a) Dess-Martin periodinane (9.324 g of a 15 wt% solution in CH2Cl2, 3.298 mmol, 2 

eq.) was added to a solution of 3.29 (497 mg, 1.649 mmol) in CH2Cl2/pyridine (6:0.5, 

32.5 mL) at 0°C and the resulting solution was stirred for 4.5 h at RT.  Sat. 

NaHCO3/Na2S2O3 (5:1, 50 mL) was added and the mixture was stirred until a clear 

solution was obtained (1 h).  After separation of the phases, the aqueous layer was 

extracted with Et2O (2 x 50 mL) and the combined organic phase was dried over 

Na2SO4 yielding the crude aldehyde (502 mg, > 100%) which was used without 

further purification. 

 

b) The crude aldehyde (502 mg) was dissolved in anhydrous Et2O (20 mL) and 

cooled to -78°C.  Tetradecylmagnesium chloride (3.3 mL of a 1M solution in THF, 3.3 

mmol, 2 eq.) was added dropwise over 20’ and the resulting brown solution was 

allowed to reach RT overnight.  After cooling 0°C, H2O (20 mL) was slowly added 

and the reaction mixture was stirred for an additional 10’.  After separation of the 

phases, the aqueous layer was extracted with Et2O (4 x 20 mL) and the combined 

organic phase was washed with ice-cold 0.1N HCl (20 mL) and sat. NaHCO3 (20 mL) 

and subsequently dried over Na2SO4.  After removal of all volatiles in vacuo, the 
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residue was purified by column chromatography (PE:Me2CO 97:3) yielding 3.30 (327 

mg, 40%) as a single diastereomer. 

 1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.81 (t, 3H, J = 6.69 Hz, alkyl –CH3), 0.93 

(s, 9H, tert-butyl), 0.97 (s, 9H, tert-butyl), 1.10 – 1.60 (m, 26H, alkyl H), 1.91 – 2.04 

(m, 1H, -C(5)H), 3.16 (dd, 1H, J = 6.33 and 12.76 Hz, -C(5)CHa), 3.31 (dd, 1H, J =  

4.46 and 12.75 Hz, -C(5)CHb), 3.46 – 3.52 (m, 1H, -C(4)CH(OH)), 3.89 (app t, 1H, J 

= 10.89 Hz, -C(6)Ha), 3.99 - 4.06 (m, 1H, -C(4)H), 4.01 (dd, 1H, J = 6.36 and 10.91 

Hz, -C(6)Hb).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 14.11, 20.20, 22.68, 22.78, 25.65, 27.09, 

27.21, 27.51, 29.35, 29.67, 30.58, 31.92, 41.19, 49.72, 67.40, 72.57, 78.92. 

Exact mass (ESI-MS) calculated for C27H56N3O3Si [M+H]+: 498.4091, found: 

498.4093. 

 

Dioxolane 3.31: 
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a) TBAF (2.17 mL of a 1M solution in THF, 2.17 mmol, 6 eq.) was added to a solution 

of 3.30 (180 mg, 0.361 mmol) in THF (2 mL) and after stirring for 6 h at RT, the 

solvent was removed under reduced pressure.  Column chromatography 

(hexanes:EtOAc 3:7) of the residue yielded the intermediate azido 

homophytosphingosine (80 mg, 62%) as a colourless solid. 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.88 (t, 3H, J = 6.70 Hz, alkyl  –CH3), 1.20 

– 1.60 (m, 26H, alkyl  H), 2.07 (dtd, 1H, J = 3.39, 6.63 and 9.87 Hz, -C(2)H), 2.85 – 

3.15 (br. s, 3H, -C(1)OH, -C(3)OH and –C(4)OH), 3.45 – 3.54 (m, 2H, C(2)CH2), 3.66 

– 3.85 (m, 4H, -C(1)H2, C(3)H and –C(4)H).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 14.09, 22.67, 25.89, 29.34, 29.60, 29.63, 

29.67, 31.90, 32.81, 40.85, 51.90, 60.22, 73.61, 74.32.  

Exact mass (ESI-MS) calculated for C19H40N3O3 [M+H]+: 358.3070, found: 358.3070. 

b) To a solution of the intermediate azido homophytosphingosine (80 mg, 0.224 

mmol) in 2,2-dimethoxypropane (5 mL), pTsOH (4 mg, 22.4 μmol, 10 mol%) was 
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added and the resulting solution was stirred for 14 h at RT.  After removal of the 

solvent in vacuo, the residue was dissolved in acetone (2 mL) and 1 N HCl (2 mL) 

and the resulting mixture was vigorously stirred for 1 h.  EtOAc (20 mL) and water (5 

mL) were added and after separation of the phases, the aqueous layer was washed 

with EtOAc (2 x 10 mL).  After drying the combined organic phase over Na2SO4 and 

removal of all volatiles in vacuo, the residue was purified by column chromatography 

(hexanes:EtOAc 95:5) yielding 3.31 (72 mg, 83%) as a colourless oil.  
1H NMR (300 MHz, [D5]pyridine, 25°C): δ= 0.88 (t, 3H, J = 6.45 Hz, -CH3 alkyl), 1.18 

– 1.38 (m, 24H, alkyl H), 1.40 (s, 3H, -CH3), 1.53 (s, 3H, -CH3), 1.65 – 1.80 (m, 2H, -

C(5)H2), 2.22 – 2.34 (m, 1H, -C(2)H), 3.73 (dd, 1H, J = 5.57 and 12.31 Hz, -C(2)CHa), 

3.84 (dd, 1H, J = 6.15 and 12.31 Hz, -C(2)CHb), 4.13 (dd, 1H, J = 6.74 and 10.56 Hz, 

-C(1)Ha), 4.25 – 4.34 (ddd, 1H, J  = 2.94, 5.57 and 8.51 Hz, -C(4)H, partially resolved 

from -C(1)Hb), 4.32 (dd, 1H, J  = 3.52 and 10.55 Hz, -C(1)Hb), 4.40 (dd, 1H, J = 5.57 

and 8.50 Hz, -C(3)H), 6.36 (br. s, 1H, -C(1)OH)).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 14.10, 22.67, 25.66, 25.97, 27.89, 29.34, 

29.54, 29.57, 29.64, 29.67, 30.05, 31.91, 40.18, 50.87, 62.48, 77.69, 77.81, 107.86. 

Exact mass (ESI-MS) calculated for C22H43N3O3Na [M+H]+: 420.3202, found: 

420.3209. 

 

Intermediate 3.33: 

O O
Si

N3

t-Bu t-Bu

OTBDMS

C14H29

O O
Si

H2N

t-Bu t-Bu

OTBDMS

C14H29

O O
Si

C15H31OCHN

t-Bu t-Bu

OTBDMS

C14H293.30

3.33

a cb
1

2

3

45
6

 
 

a) To a cooled solution (0°C) of 3.30 (177 mg, 0.355 mmol), imidazole (145 mg, 

2.133 mmol, 6 eq.) and 4-DMAP (cat.) in anhydrous DMF (5 mL), TBDMSCl (161 mg, 

1.067 mmol, 3 eq.) was added portionwise and the resulting solution was heated at 

50°C for 18 h.  After removal of the solvent under reduced pressure, the residue was 

partitioned between Et2O (20 mL) and sat. NaHCO3 (20 mL) and the aqueous layer 

was extracted with Et2O (2 x 20 mL).  The combined organic phase was washed with 
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ice-cold 1N HCl (20 mL), sat. NaHCO3 (20 mL) and brine (20 mL) and subsequently 

dried over Na2SO4.  After removal of all volatiles in vacuo, the residue was purified by 

column chromatography (hexanes:Me2CO 100:0.3) yielding silyl protected 3.30 (149 

mg, 68%) as a colourless oil. 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.03 (s, 6H, 2 x -CH3 ), 0.80 (t, 3H, J = 

6.76 Hz, alkyl –CH3), 0.83 (s, 9H, tert-butyl), 0.92 (s, 9H, tert-butyl), 0.95 (s, 9H, tert-

butyl), 1.15 – 1.40 (m, 25H, alkyl H), 1.59 – 1.65 (m, 1H, -C(4)CH(OH)CHb), 1.88 – 

2.00 (m, 1H, -C(5)H), 3.22 (dd, 1H, J = 7.09 and 12.57 Hz, -C(5)CHa), 3.36 (dd, 1H, J 

=  9.94  and 12.56 Hz, -C(5)CHb), 3.70 (dt, 1H, J = 3.86 and 6.62 Hz,  -C(4)CH(OH)), 

3.81 – 3.90 (m, 2H, -C(4)H and -C(6)Ha), 4.00 (dd, 1H, J = 4.19 and 11.11 Hz, -

C(6)Hb);  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= -4.28, -4.25, 14.11, 18.07, 20.32, 22.62, 

22.69, 24.86, 25.93, 27.22, 27.52, 29.36, 29.61, 29.66, 29.87, 32.93, 32.13, 41.73, 

50.66, 66.81, 75.06, 78.05. 

Exact mass (ESI-MS) calculated for C33H69N3O3Si2 [M+Na]+: 634.4775, found: 

634.4780. 

 

b) A solution of silyl protected 3.30 (147 mg, 240 μmol) and PPh3 (126 mg, 480 μmol, 

2 eq.) in anhydrous THF (4 mL) was stirred for 30’ followed by addition of H2O (250 

μL) and the resulting reaction mixture was stirred for 29 h at RT.  Removal of the 

solvent under reduced pressure produced the crude amine, which was used without 

further purification. 

 

c) To a cooled solution (0°C) of the crude amine in CH2Cl2 (2 mL) and Hünig’s base 

(209 μL, 1.2 mmol, 5 eq.), palmitoylchloride (147 μL, 480 μmol, 2 eq.) was added 

dropwise and the resulting mixture was stirred at 0°C until TLC indicated 

disappearance of the starting material (30’).  Sat. NaHCO3 (10 mL) was added and 

the aqueous layer was extracted with Et2O (2 x 20 mL).  After drying over Na2SO4 

and removal of the solvent under reduced pressure, the residue was purified by 

column chromatography (hexanes:EtOAc 88:12) producing 3.33 (115 mg, 58% over 

two steps) as a colourless oil. 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.00 (s, 3H, -CH3 ), 0.01 (s, 3H, -CH3 ), 

0.78 (t, 6H, J = 6.74 Hz, alkyl and acyl –CH3), 0.82 (s, 9H, tert-butyl), 0.90 (s, 9H, 
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tert-butyl), 0.92 (s, 9H, tert-butyl), 1.12 – 1.42 (m, 48H, alkyl and acyl H), 1.30 – 1.38 

(m, 1H, C(4)CH(OSi)CHa), 1.44 – 1.56 (m, 2H, -C(O)CH2CH2), 1.60 – 1.70 (m, 1H, -

C(4)CH(OSi)CHb), 1.84 – 1.96 (m, 1H, -C(5)H), 2.03 (t, 2H, J = 7.57 Hz, -C(O)CH2), 

3.02 (app. td, 1H, J = 6.15 and 13.96 Hz, -C(5)CHa), 3.21 (app td, 1H, J =  5.37  and 

13.98 Hz, -C(5)CHb), 3.65 – 3.79 (m, 3H, -C(4)H, -C(4)CH(OSi) and -C(6)Ha), 3.79 

(dd, 1H, J = 4.02 and 9.00 Hz, -C(6)Hb), 5.70 (t, 1H, J = 5.71 Hz, -NH).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= -4.17, -4.09, 14.11, 18.16, 20.22, 22.63, 

22.68, 24.95, 25.83, 26.04, 27.19, 27.54, 29.36, 29.49, 29.66, 29.69, 29.90, 31.92, 

32.63, 36.88, 38.10, 42.33, 67.44, 76.11, 78.54, 172.97. 

Exact mass (ESI-MS) calculated for C49H102NO4Si2 [M+H]+: 824.7347, 

found:824.7355. 

 

N-homophytoceramide 3.25: 
OH

C15H31OCHN
OH

C14H29
HO3.33

3.25

1 5

3
42

 
TBAF (597 μL of a 1M solution in THF (5% H2O), 597 μmol, 6 eq.) was added to a 

solution of 3.33 (84 mg, 99.45 μmol) in THF (1 mL) and the resulting mixture was 

stirred for 48 h at RT.  After removal of all volatiles in vacuo, the residue was 

partitioned between CH2Cl2 (10 mL) and sat. NaHCO3 (10 mL) and the aqueous 

phase was washed with CH2Cl2 (5 x 10 mL).  The combined organic phase was 

extracted with brine (10 mL) and after drying over Na2SO4 and removal of the solvent 

under reduced pressure, the residue was purified by flash chromatography 

(CH2Cl2:MeOH 97:3) yielding 3.25 (35 mg, 62%) as a white solid. 

[α]D
20 = + 7.9° (c=0.42 in pyridine). 

1H NMR (300 MHz, [D5]pyridine, 25°C): δ= 0.88 (t, 6H, J = 6.54 Hz, alkyl and acyl –

CH3), 1.20 – 1.50 (m, 46H, alkyl and acyl H), 1.58 – 1.74 (m, 1H, -C(6)Ha), 1.76 – 

2.00 (m, 4H, -C(6)Hb, -C(5)Ha and –C(O)CH2CH2), 2.16 – 2.31 (m, 1H, -C(5)Hb), 2.44 

(t, 2H, J = 7.39 Hz, -C(O)CH2), 2.77 – 2.90 (m,  1H, -C(2)H), 3.95 (td, 1H, J = 6.24 

and 13.62 Hz, -C(1)Ha), 4.10 (dd, 1H, J = 6.84 and 13.78 Hz, -C(1)Hb), 4.15 – 4.34 

(m, 3H, -C(2)CHa, -C(3)H and –C(4)H), 4.31 (dd, 1H, J = 4.73 and 10.80 Hz, -
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C(2)CHb), 6.00 – 6.50 (m, 3H, -C(2)CH2OH, -C(3)OH and –C(4)OH), 8.79 (t, 1H, J  = 

6.00 Hz, -NH).  
13C NMR (75 MHz, [D5]pyridine, 25°C): δ= 14.20, 22.84, 26.34, 26.47, 29.51, 29.60, 

29.68, 29.77, 29.83, 29.88, 29.90, 29.93, 30.04, 30.28, 32.03, 34.81, 36.64, 39.91, 

43.11, 60.37, 72.76, 74.94, 174.68.  

Exact mass (ESI-MS) calculated for C35H72NO4 [M+H]+: 570.5461, found:570.5459. 

 

Pthalimide 3.34: 
 

O O
Si

OH

H2N

t-Bu t-Bu

O O
Si

OH

Phth

t-Bu t-Bu

3.29

3.34

a b

1

2'

3'

4'5'
6'

1'

 
a) To a cooled (0°C) solution of azide 3.29 (498 mg, 1.652 mmol) in anhydrous THF 

(10 mL), PPh3 (867  mg, 3.304 mmol, 2 eq.) was added followed by water (1 mL) 

after stirring for 30’.  The resulting reaction mixture was stirred for 26 h at RT.  After 

removal of all volatiles in vacuo, the residue was purified by column chromatography 

(CH2Cl2:MeOH:6N NH3 in MeOH  95:5:0.25) yielding the intermediate amine (454 mg, 

quant.) as a colourless oil. 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.98 (s, 9H, tert-butyl), 1.01 (s, 9H, tert-

butyl), 1.83 (ttd, 1H, J = 4.18, 8.30 and 9.69 Hz, -C(5’)H), 2.50 – 2.70 (m, 5H, -

C(1)OH, -C(5’)CH2NH2 and -C(5’)CH2), 3.64 (app. d, 2H, J = 5.46 Hz, -C(1)H2), 3.78 

(app. t, 1H, J = 11.22 Hz, C(6’)CHa), 3.91 (td, 1H, J = 5.42 and 9.69 Hz, -C(4’)H), 

4.00 (dd, 1H, J = 4.30 Hz and 10.94 Hz, - C(6’)CHb).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 19.85, 22.65, 27.08, 27.36, 40.60, 45.94, 

66.52, 67.53, 78.89.  

Exact mass (ESI-MS) calculated for C13H30NO3Si [M+H]+: 276.1995, found: 

276.1997. 

 

b) To a solution of the intermediate amine (421 mg, 1.528 mmol) and Hünig’s base 

(0.532 mL, 3.057 mmol, 2 eq.) in anhydrous THF (20 mL), N-

ethoxycarbonylphthalimide (352 mg, 1.605 mmol, 1.05 eq.) was added portionwise 
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and the resulting solution was heated at 75°C for 2 h.  After removal of the solvent 

under reduced pressure, the residue was purified by column chromatography 

(hexanes:EtOAc 82:18) yielding 3.34 (540 mg, 88%) as a colourless solid. 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.96 (s, 9H, tert-butyl), 1.02 (s, 9H, tert-

butyl), 2.32 (ttd, 1H, J = 4.38, 8.69 and 10.58 Hz, -C(5’)H), 2.48 (dd, 1H, J  = 4.21 

and 8.71 Hz, -C(4’)CH2OH), 3.44 (dd, 1H, J = 8.48 and 14.20 Hz, -NCHa), 3.61 (dd, 

1H, J = 4.27 and 14.16 Hz, -NCHb), 3.71 (ddd, 1H, J = 4.24, 6.74 and 11.20 Hz, -

C(4’)CHa), 3.87 – 4.04 (m, 4H, -C(4’)CHb, -C(6’)H2 and -C(4’)H), 7.69 – 7.78 (m, 2H, 

arom. H), 7.81 – 7.89 (m, 2H, arom. H.).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 19.85, 22.70, 27.12, 27.45, 36.14, 40.85, 

65.58, 66.69, 77.13, 123.45, 131.92, 134.15, 168.23. 

Exact mass (ESI-MS) calculated for C21H32NO5Si [M+H]+: 406.2050, found: 

406.2050. 

 

Z-alkene intermediate 3.35: 
 

O O
Si

O

Phth

t-Bu t-Bu

H

O O
Si

Phth

t-Bu t-Bu

C13H27

3.34

3.35
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4'5'
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a) A solution of 3.34 (500 mg, 1.233 mmol) in CH2Cl2 (20 mL) was cooled in an ice-

bath and Dess-Martin periodinane (5.26 mL of a 15% (w/w) in CH2Cl2, 2.466 mmol, 2 

eq.) was added dropwise.  The resulting solution was stirred for 3.5 h at RT and 

subsequently cooled again to 0°C.  Sat. NaHCO3:Na2S2O3 (5:1, 50 mL) was added 

and the reaction was stirred until two clear phases were obtained (30’).  After 

separation of the phases, the aqueous layer was extracted with Et2O (3 x 50 mL) and 

the combined organic phase was washed with 0.1N HCl (3 x 10 mL) and brine (1 x 30 

mL).  Drying over Na2SO4 followed by removal of the solvent under reduced pressure 

yielded the intermediate aldehyde as a slightly yellow solid which was used without 

further purification. 
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b) To a solution of PhLi (3.0 mL of a 1M solution in THF, 3.0 mmol, 2.42 eq.) in Et2O 

(17 mL), LiBr (261 mg, 3 mmol, 2.42 eq.) was added under a N2 atmosphere and the 

resulting brown mixture was added to a cooled solution (-78°C) of 

tetradecylphosphoniumbromide (1.646 g, 3.05 mmol, 2.46 eq) in anhydrous THF (20 

mL).  The reaction mixture was stirred for 1 h at -78°C and 1 h at RT.  A cooled 

solution (-78°C) of the intermediate aldehyde was added dropwise the above 

prepared solution (20 mL).  After stirring for 10’ at – 78°C, another portion of the ylid 

solution (20 mL) was added dropwise to the reaction mixture.  After stirring at – 78°C 

for an additional 30’, the mixture was allowed to reach RT over 3 h and was 

subsequently cooled to 0°C.  Sat. NH4Cl (20 mL) was slowly added and the resulting 

slurry was stirred for 30’ at RT.  After addition of H2O (50 mL) and Et2O (50 mL), both 

phases were separated and the aqueous layer was extracted with Et2O (2 x 50 mL).  

The combined organic layer was washed with brine (50 mL) and dried over Na2SO4.  

After removal of the solvent in vacuo, the residue was purified by column 

chromatography (hexanes:EtOAc 98:2) yielding 3.35 (385 mg, 53%) as a colourless 

solid. 

 1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.87 (t, 3H, J = 6.63 Hz, -CH3 alkyl), 0.96 

(s, 9H, tert-butyl), 1.04 (s, 9H, tert-butyl), 1.20 – 1.42 (m, 22H, alkyl), 1.96 – 2.38 (m, 

3H, -C(5’)H and allyl –CH2), 3.31 (dd, 1H, J = 10.73 and 13.88 Hz, -NCHa), 3.57 (dd, 

1H, J = 4.29 and 13.90 Hz, -NCHb), 3.89 (dd, 1H, J = 4.12 and 11.31 Hz, -C(6’)Ha), 

3.98 (app. t, 1H, J = 11.12 Hz, -C(6’) Hb), 4.64 (app. t, 1H, J = 9.50 Hz, -C(4’)H), 5.51 

(app. t, J = 10.81 Hz, -C(4’)CH=CH), 5.63 (dt, 1H, J = 7.25 and 10.93 Hz, -

C(4’)CH=CH), 7.67 – 7.77 (m, 2H, arom. H), 7.80 – 7.87 (m, 2H, arom. H).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 14.10, 19.75, 22.67, 22.72, 27.09, 27.47, 

27.93, 29.31, 29.34, 29.51, 29.60, 29.65, 29.67, 31.90, 36.45, 43.59, 66.93, 72.44, 

123.30, 130.43, 131.90, 133.88, 134.04, 168.18. 

Exact mass (ESI-MS) calculated for C35H58NO4Si [M+H]+: 584.4135, found: 

584.4141. 

 

 

 

Z-N-homoceramide 3.22: 
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O O
Si

H2N

t-Bu t-Bu

C13H27 O O
Si

C15H31OCHN

t-Bu t-Bu

C13H27

OH

C15H31OCHN

C13H27

HO3.35

3.22

a b c

 
a) To a solution of 3.35 (373 mg, 0.639 mmol) in EtOH (15 mL) at 55°C, hydrazine 

(157 μL, 3.20 mmol, 5 eq.) was added and the solution was stirred for 3 h.  After 

filtration of the formed white precipitate and rinsing of the filter, the solvent was 

removed in vacuo.  The residue was covered with 1M K2CO3 (50 mL) and CH2Cl2 (50 

mL) and after separation of the phases, the aqueous layer was extracted with CH2Cl2 

(5 x 25 mL) until no product could be detected in the organic layer as judged by TLC.  

Removal of all volatiles under reduced pressure yielded the crude amine (325 mg, > 

100%) which was used without further purification. 

 

b) A cooled solution of the crude amine in CH2Cl2 (15 mL) was successively treated 

with Hünig’s base (556 μL, 3.194 mmol, 5 eq.) and palmitoylchloride (234 μL, 0.766 

mmol, 1.2 eq.).  After stirring for 1 h at RT, the solvent was removed under reduced 

pressure and the residue was purified by column chromatography (hexanes:EtOAc 

9:1) yielding the intermediate amide (289 mg, 65% from 3.35) as a slightly yellow oil. 
1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.87 (t, 6H, J = 6.70 Hz, -CH3 alkyl and 

acyl), 0.98 (s, 9H, tert-butyl), 1.03 (s, 9H, tert-butyl), 1.15 – 1.45 (m, 46H, alkyl), 1.52 

– 1.67 (m, 2H, -C(O)CH2CH2), 1.83 – 2.24 (m, 5H, -C(5’)H,  -C(O)CH2 and allyl –

CH2), 2.95 (app. td, 1H, J = 4.71 and 14.02 Hz, -NCHa), 3.57 (dd, 1H, J = 7.88 and 

14.07 Hz, -NCHb), 3.87 (app. t, 1H, J = 11.22 Hz, -C(6’)Ha), 3.98 (dd, 1H, J = 4.09 

and 11.21 Hz, -C(6’)CHb), 4.57 (app. t, 1H, J = 9.63 Hz, -C(4’)H), 5.35 – 5.50 (m, 2H, 

-NH and -C(4’)CH=CH), 5.63 (dt, 1H, J = 7.46 and 10.93 Hz, -C(4’)CH=CH). 
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 14.10, 19.80, 22.678, 25.71, 27.12, 27.445, 

27.95, 29.35, 29.51, 29.65, 29.68, 31.91, 36.81, 37.73, 45.38, 67.21, 72.68, 130.97, 

133.44, 173.05.  

Exact mass (ESI-MS) calculated for C43H86NO3Si [M+H]+: 692.6377, found: 

692.6372. 

 

c) To a solution of the intermediate amide (255 mg, 0.368 mmol) in THF (10 mL), 

TBAF (1.1 mL of a 1M solution in THF, 1.10 mmol, 3 eq.) was added and the resulting 
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solution was stirred for 3 h at RT.  After evaporation of all volatiles under reduced 

pressure, the residue was purified by column chromatography (hexanes:EtOAc 1:3) 

yielding 3.22 (186 mg, 91%) as a colourless solid. 

[α]D
20 = + 9.8° (c=0.45 in pyridine).  

1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.81 (t, 6H, J = 6.71 Hz, -CH3 alkyl and 

acyl), 1.15 – 1.45 (m, 46H, alkyl and acyl H), 1.50 – 1.63 (m, 3H, -C(2)H and -

C(O)CH2CH2), 1.86 – 2.08 (m, 2H, allyl –CH2), 2.14 (t, 2H, J = 7.60 Hz, -C(O)CH2), 

2.90 – 3.20 (m, 1H, -C(3)OH), 3.29 – 3.44 (m, 2H,  -C(1)CH2), 3.50 – 3.78 (m, 1H, -

C(2)CH2OH), 3.56 (dd, 1H, J = 3.61 and 11.69 Hz, -C(2)CHa), 3.82 (dd, 1H, J = 4.18 

and 11.63 Hz, -C(2)CHb), 4.45 (dd, 1H, J = 5.72 and 7.36 Hz, -C(3)H), 5.40 – 5.52 

(m, 2H, -C(4)H and –C(5)H), 5.96 (t, 1H, J = 6.39 Hz, -NH).  
1H NMR (300 MHz; [D5]pyridine, 25°C) δ: 0.88 (t, 6H, J = 6.42 Hz, -CH3 alkyl and 

acyl), 1.15 – 1.35 (m, 46H, alkyl and acyl H), 1.80 – 1.91 (m, 2H, -C(O)CH2CH2), 2.13 

– 2.42 (m, 3H, -C(2)H and allyl -CH2), 2.45 (t, 2H, J = 7.44 Hz, -C(O)CH2),  3.89 – 

4.01 (m, 2H,  -C(1)CH2), 4.26 (dd, 1H, J = 4.59 and 10.86 Hz, -C(2)CHa), 4.45 (dd, 

1H, J = 5.05 and 10.94 Hz, -C(2)CHb), 5.16 (dd, 1H, J = 6.61 and 8.51 Hz, -C(3)H), 

5.61 (td, 1H, J = 7.50 and 11.01 Hz,  –C(5)H), 5.80 – 6.20 (m, 1H, -C(3)OH), 5.95 

(dd, 1H, J = 9.18 and 10.83 Hz, -C(4)H), 6.40 – 6.65 (m, 1H, -C(2)CH2OH), 8.63 (t, 

1H, J = 5.55 Hz, -NH).  
13C NMR  (75 MHz, [D1]CDCl3, 25°C): δ= 14.08, 22.66, 25.83, 27.78, 29.34, 29.52, 

29.67, 31.90, 36.72, 38.46, 46.29, 60.22, 67.90, 130.37, 132.93, 174.94.  

Exact mass (ESI-MS) calculated for C35H70NO3 [M+H]+: 552.5356, found: 552.5352. 

 

E-N-homoceramide 3.23 and dihydro-N-homoceramide 3.24: 
 

OH

C15H31OCHN

HO C13H27

OH

C15H31

C15H31OCHN

HO 3.22
a

3.24 3.23

b

 
a) A solution of 3.22 (100 mg, 0.181 mmol) and diphenyl disulfide (8 mg, 36.25 μmol, 

0.2 eq.) in cyclohexane:dioxane (3:1) was degassed for 30’ with N2 in a Pyrex tube 

and subsequently irradiated with a high pressure mercury lamp (300 W) for 60’.  The 

slightly yellow solution was treated four times with diphenyl disulfide (4 x 8 mg, 4 x 
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36.25 μmol) and irradiated over a total period of 4 h (4 x 1 h).  After removal of the 

solvent under reduced pressure, the residue was purified by column chromatography 

(PE:EtOAc:Me2CO 70:15:15) yielding a mixture of 3.22 and 3.23 (80 mg, 80%, E/Z = 

69/31 as determined by 1H NMR) as a slightly yellow solid.  The mixture was 

subsequently dissolved in diisopropylether (5 mL) and heated (55°C) until all solids 

dissolved.  A white precipitate formed upon cooling to RT.  Filtration of the 

suspension and rinsing of the filter with ice-cold diisopropylether (2 x 1 mL) produced 

a mixture of 3.22 and 3.23 (48 mg, 48%, E/Z = 93/7).  Repeating of this procedure 

eventually gave isomerically pure 3.23 (38 mg, 38%, E/Z > 99.5/0.5). 

[α]D
20 = + 6.6° (c=0.45 in pyridine). 

1H NMR (300 MHz, [D1]CDCl3, 25°C): δ= 0.81 (t, 6H, J = 6.62 Hz, -CH3 alkyl and 

acyl), 1.15 – 1.45 (m, 46H, alkyl and acyl H), 1.50 – 1.66 (m, 3H, -C(2)H and -

C(O)CH2CH2), 1.98 (m, 2H, allyl –CH2), 2.14 (app. t, 2H, J = 7.58 Hz, -C(O)CH2), 

3.00 – 3.14 (br. s, 1H, -C(3)OH), 3.34 – 3.60 (m, 4H,  -C(1)CH2, -C(2)CHa and –

C(2)CH2OH), 3.74 – 3.87 (m, 1H, -C(2)CHb), 4.07 – 4.17 (m, 1H, -C(3)H), 5.44 (dd, 

1H, J = 6.16 and 15.38 Hz, -C(4)H), 5.67 (td, 1H, J = 6.48 and 15.36 Hz, -C(5)H), 

5.84 (t, 1H, J = 6.26 Hz, -NH).  
13C NMR (75 MHz, [D1]CDCl3, 25°C): δ= 14.10, 22.68, 25.78, 29.25, 29.29, 29.35, 

29.49, 29.65, 29.68, 31.91, 32.27, 36.71, 38.68, 45.72, 60.20, 73.12, 130.63, 132.84, 

174.96.  

Exact mass (ESI-MS) calculated for C35H70NO3 [M+H]+: 552.5356, found: 552.5352. 

 

b) Pd/C (45 mg, 100 w%, 10% Pd on carbon) was added to a solution of 3.22 (45 mg, 

81.53 μmol) in EtOAc (3 mL) and the resulting solution was stirred for 48 h. at RT.  

After filtration over celite, all volatiles were removed in vacuo yielding a slightly yellow 

solid.  Diisopropylether (2 mL) was added to the above residue and the mixture was 

heated (55°C) until a clear solution was obtained.  After cooling down to RT, the 

formed white precipitate was filtered and rinsed with ice-cold diisopropylether yielding 

3.24 (38 mg, 84%). 

[α]D
20 = + 7.2° (c=0.52 in pyridine). 

1H NMR (300 MHz, [D5]pyridine, 25°C): δ= 0.88 (t, 6H, J = 6.22 Hz, -CH3 alkyl and 

acyl), 1.15 – 1.60 (m, 50H, alkyl and acyl H), 1.72 – 1.94 (m, 4H, -C(4)H2 and -

C(O)CH2CH2), 2.20 – 2.30 (m, 1H, -C(2)H), 2.45 (t, 2H, J = 7.55 Hz, -C(O)CH2),  3.95 
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(app. td, 1H, J = 6.23 and 13.31 Hz, -C(1)Ha), 4.07 (app. td, 1H, J = 6.58 and 13.32 

Hz, -C(1)Hb), 4.15 – 4.35 (m, 3H, -C(2)CH2 and C(3)H), 8.67 (br. t, 1H, J = 5.57 Hz, -

NH).  
13C NMR (75 MHz, [D5]pyridine, 25°C): δ= 14.15, 22.79, 26.31, 26.80, 29.46, 29.53, 

29.61, 29.66, 29.72, 29.77, 29.83, 29.96, 30.02, 31.97, 35.28, 36.65, 39.49, 46.88, 

60.85, 70.98, 174.48.  

Exact mass (ESI-MS) calculated for C35H72NO3 [M+H]+: 554.5512, found: 554.5519. 
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12 EXPERIMENTAL PART 
General 

IUPAC names were generated with Chemdraw Ultra 8.0 (Chemoffice 2004, 

Cambridge Soft, Cambridge, USA). 

All reactions were carried out under inert (N2) atmosphere.  Precoated Macherey-

Nagel (Düren, Germany) silica gel F254 plates were used for TLC and spots were 

examined under UV light at 254 nm and/or revealed by sulphuric acid-anisaldehyde 

spray or phosphomolybdic acid spray.  Column chromatography was performed on 

ICN silica gel (63-200 μM, ICN, Asse Relegem, Belgium).  NMR spectra were 

obtained with a Varian Mercury 300 spectrometer (Varian, Palo Alto, California, 

USA).  Chemical shifts are given in parts per million (δ relative to residual solvent 

peak) and coupling constants are expressed in Hz.  Abbreviations used are: s = 

singlet, d = doublet, t = triplet, m = multiplet, br. s = broad signal.  All signals assigned 

to amino and hydroxyl groups were exchangeable with D2O.  Numbering for 1H 

assignment is based on the IUPAC name of the compounds unless stated otherwise.  

Structural assignment was confirmed with COSY, HMQC and/or NOEDIF/NOESY if 

necessary.  Exact mass measurements were performed on a quadrupole/orthogonal-

acceleration time-of-flight (Q/oaTOF) tandem mass spectrometer (qTof2, Micromass, 

Manchester, UK) equipped with a standard electrospray ionisation (ESI) interface.  

Samples were infused in a 2-propanol/water (1:1) mixture at 3 μL/min.  Optical 

rotations were measured with a Perkin-Elmer 241 polarimeter.  HPLC determination 

of the ee of 3.11 was performed on an Agilent 1100 series HPLC equipped with a 

DAD and Chiracel OD-H column (4.6 x 250 mm; hexanes:EtOH 96:4; 1 mL/min).   

Most chemicals were obtained from Sigma-Aldrich (Bornem, Belgium) or Acros 

Organics (Geel, Belgium) and were used without further purification.  Anhydrous THF 

was obtained by distillation from LiAlH4. 

 

4,6-O-benzylidene-α/β-D-galactose (3.1) 

A mixture of D-galactose (50.0 g, 0.278 mol), benzaldehyde (177 g, 1.67 mol, 6 eq.), 

and ZnCl2 (38.6 g, 0.283 mol, 1.02 eq.) were vigorously mechanically shaken for 14 

h.  Water (100 mL) was added and after separation of both phases, the aqueous 

layer was extracted with hexanes (200 mL).  The aqueous layer was subsequently 
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treated with Na2CO3 (300 mL of 15% solution) during which a white precipitate 

formed.  After filtration of over celite, the solvent was removed under reduced 

pressure.  The resulting white solid was recrystallized from EtOAc/EtOH affording 3.1 

(40.3 g, 54%) as a 1.8:1 mixture of the α/β anomers.  
1H NMR (300 MHz; DMSO-d6) α-3.1 δ: 3.59 (ddd, 1H, J = 3.44, 6.67 and 9.40 Hz, -

C(2)H), 3.70-3.77 (m, 2H, -C(3)H and –C(5)H), 3.96 (d, 1H, J = 1.44 and 12.21 Hz, -

C(6)Ha), 4.06 (d, 1H, J = 12.20 Hz, -C(6)Hb), 4.09 (d, 1H, J = 0.72 and 3.47 Hz, -

C(4)H), 4.42 (d, 1H, J = 6.67 Hz, -C(2)OH), 4.60 (d, 1H, J = 6.24 Hz, -C(3)OH), 5.03 

(app. t, 1H, J = 3.98 Hz, -C(1)H), 5.51 (s, 1H, -CH-Ph), 6.26 (d, 1H, J = 4.14 Hz, -

C(1)OH), 7.30 – 7.50 (m, 5H, arom. H).   
1H NMR (300 MHz; DMSO-d6) β-3.1 δ: 3.25 – 3.33 (m, 1H, -C(2)H), 3.37 - 3.35 (m, 

2H, -C(3)H and –C(5)H), 3.98 – 4.10 (m, 3H, -C(4)H and –C(6)H2), 4.31 (app. t, 1H, J 

= 7.22 Hz, -C(1)H), 4.77 (d, 1H, J = 5.92 Hz, -C(3)OH), 5.78 (d, 1H, J = 4.54 Hz, -

C(2)OH), 5.53 (s, 1H, -CH-Ph), 6.56 (d, 1H, J = 6.99 Hz, -C(1)OH), 7.30 - 7.50 (m, 5 

H, arom. H)     
13C NMR (75 MHz; DMSO-d6) α/β-3.1 δ: 62.00, 65.77, 67.77, 68.44, 68.84, 68.93, 

71.56, 72.06, 76.16, 76.73, 93.13, 97.26, 99.66, 99.70, 126.24, 126.27, 127.83, 

127.86, 128.53, 138.72, 137.79. 

Exact mass (ESI-MS) calculated for C13H17O6 [M+H+]: 257.0178, found: 257.0177 

 

 (2R,3R,4E)-1,3-benzylidene-4-octadecene-1,2,3-triol (3.3) 
a) Tetradecyltriphenylphosphonium bromide 

PPh3 (27.54 g, 0.105 mol, 1 eq.) was suspended in tetradecylbromide (29.11 g, 0.105 

mol) and the resulting mixture was heated for 60 h at 170°C.  After cooling to room 

temperature, Me2CO (100 mL) and Et2O (100 mL) were added and the resulting 

suspension was heated at 40°C until all solids dissolved.  The clear solution was 

placed in a refrigerator and allowed to crystallize overnight.  The resulting crystalline 

solid was subsequently subject to recrystallisation producing 

tetradecyltriphenylphoshoniumbromide (43.07 g, 76%) as white shiny flakes. 
1H NMR (300 MHz; DMSO-d6) δ: 0.92 (t, 3H, J = 6.45 Hz, -CH3), 1.15 – 1.35 (m, 

20H, alkyl), 1.38 – 1.60 (m, 4H, -C(2)H2 and –C(3)H2), 3.50 – 3.64 (m, 2H, -C(1)H2), 

7.60 – 8.00 (m, 15H, arom. H)  
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13C NMR (75 MHz; DMSO-d6) δ: 13.98, 19.80, 20.46, 21.78, 22.12, 28.14, 28.73, 

28.90, 29.00, 29.05, 29.71, 29.93, 31.31, 118.04, 119.17, 130.16, 130.32, 133.55, 

133.68, 134.90. 
31P NMR (121 MHz; DMSO-d6) δ: 25.16. 

 

b) Threose 3.2 

A solution of 3.1 (13.19 g, 49.2 mmol) in phosphate buffer (0.067M, 300 mL, pH 7.8) 

was vigorously stirred while NaIO4 (24.19 g, 0.113 mol, 2.3 eq.) was added 

portionwise.  The pH of the reaction mixture was kept at 7.8 by dropwise addition of 1 

N NaOH.  After stirring for 30’, the mixture was frozen and lyophilized.  The solid 

residue was subsequently treated with anhydrous THF, filtered over celite and the 

resulting filtrate was concentrated under reduced pressure yielding crude 3.2 (10.24 

g, 100%), which was used without further purification.   

 

c) E-alkene 3.3 

A cooled solution (- 30°C) of tetradecyltriphenylphosphoniumbromide (58.3 g, 0.108 

mol, 2.5 eq.) in anhydrous toluene (450 mL) was treated over 1 h with phenyllithium 

(99.4 mL of a 1M solution in THF, 99.4 mmol, 2.3 eq.), obtained from bromobenzene 

(10.5 mL, 100 mmol) and lithium wire (694 mg, 100 mmol, 1 eq.).  After stirring for 60’ 

at -30°C, a solution of 3.2 (9.0 g, 43.22 mmol) in anhydrous THF (100 mL) was 

added dropwise over 45’.  The reaction mixture was stirred for an additional 30’ at -30 

°C and subsequently quenched by addition of MeOH (25 mL) and H2O (150 mL).  

After stirring for 3 h at room temperature, both layers were separated and the 

aqueous layer was extracted with Et2O (4 x 100 mL) and subsequently dried over 

Na2SO4.  Removal of the solvent followed by flash chromatography of the brown oily 

residue afforded 3.3 (7.81 g, 47 %) as a white solid. 
1H NMR (300 MHz; DMSO-d6) δ: 0.83 (t, 3H, J = 6.45 Hz, -CH3 alkyl), 1.14 – 1.36 

(m, 22H, alkyl H), 1.98 (dt, 2H, J = 6.45 and 6.74 Hz, -C(6)H2), 3.36 (m, 1H, -C(2)H), 

3.96 (dd, 1H, J = 1.76 and 12.02 Hz, -C(1)Ha), 3.96 (dd, 1H, J = 1.76 and 12.02 Hz, -

C(1)Hb), 4.32 (br. d, 1H, J = 5.86 Hz, -C(3)H), 4.77 (d, 1H, J = 6.75 Hz, -C(2)OH), 

5.56 (s, 1H, -CH-Ph), 5.57 (dd, 1H, J = 6.45 and 15.83 Hz, -C(4)H), 5.69 (dt, 1H, J = 

6.45 and 15.84 Hz, -C(5)H), 7.30 – 7.37 (m, 3H, arom. H), 7.40 – 7.48 (m, 2H, arom. 

H).  
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13C NMR (75 MHz; DMSO-d6) δ: 13.99, 22.15, 28.58, 28.68, 28.77, 28.96, 29.07, 

29.11, 31.35, 31.87, 65.15, 72.09, 80.04, 100.22, 126.38, 127.83, 127.88, 128.56, 

132.79, 138.86. 

Exact mass (ESI-MS) calculated for C25H41O3 [M+H]+: 389.3056, found: 389.3057. 

 

(2R,3R,4E)-1,3-benzylidene-2-methanesulfonyl-4-octadecene-1,2,3-triol (3.4) 

To a cooled solution (0°C) of 3.4 (100 mg, 0.257 mmol) and TEA (179 μL, 1.29 mmol, 

5 eq.) in anhydrous THF (5 mL), MsCl (40 μL, 0.515 mmol, 2 eq.) was added 

dropwise.  After stirring for 1 h at 0°C, the crude mixture was concentrated and 

chromatographed (hexanes:EtOAc:TEA 70:30:0.1) yielding mesylate 3.4 (84 mg, 70 

%) as a white solid. 
1H NMR (300 MHz; DMSO-d6) δ: 0.82 (t, 3H, J = 6.45 Hz, -CH3 alkyl), 1.10 – 1.38 

(m, 22H, alkyl H), 2.00 (dt, 2H, J = 6.45 and 6.74 Hz, -C(6)H2), 3.16 (s, 3H, mesyl -

CH3), 4.19 (d, 1H, J = 12.90 Hz, -C(1)Ha), 4.25 (d, 1H, J = 12.90 Hz, -C(1)Hb), 4.60 – 

4.67 (m, 2H, -C(3)H and –C(2)H), 5.50 (dd, 1H, J = 5.86 and 15.83 Hz, -C(4)H), 5.70 

(s, 1H, -CH-Ph), 5.78 (dt, 1H, J = 6.45 and 15.83 Hz, -C(5)H), 7.31 – 7.44 (m, 5H, 

arom. H)  
13C NMR (75 MHz; DMSO-d6) δ: 14.02, 22.16, 28.40, 28.64, 28.76, 28.95, 29.07, 

29.10, 31.34, 31.68, 37.86, 69.05, 75.10, 77.34, 99.83, 125.59, 126.14, 128.11, 

128.87, 134.27, 138.08. 

Exact mass (ESI-MS) calculated for C26H43O5S [M+H]+: 467.2831, found: 467.2829. 

 

 (2R,3R,4E)-2-methanesulfonyl-4-octadecene-1,2,3-triol (3.6) 
 A catalytical amount of p-TsOH was added to a solution of 3.4 (185 mg, 0.396 mmol) 

in THF:MeOH (1:1, 10 mL) and the resulting reaction mixture was stirred until TLC 

indicated complete consumption of the starting material (8 h).  The solution was 

subsequently neutralized by addition of TEA (0.5 mL) and after removal of the solvent 

in vacuo, the resulting residue was purified by column chromatography 

(hexanes:EtOAc:TEA 65:35:1) yielding diol 3.6 (137 mg, 100%) as a slightly yellow 

oil. 
1H NMR (300 MHz; DMSO-d6) δ: 0.83 (t, 3H, J = 6.45 Hz, -CH3 alkyl), 1.15 – 1.39 

(m, 22H, alkyl H), 1.97 (dt, 2H, J = 6.45 and 6.75 Hz, -C(6)H), 3.12 (s, 3H, mesyl -

CH3), 3.48 (m, 1H, -C(1)Ha), 3.64 (ddd, 1H, J = 3.52, 4.98 and 12.02 Hz, -C(1)Hb), 
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4.14 (m, 1H, -C(3)H), 4.32 (ddd, 1H, J = 3.52, 5.57 and 6.74 Hz, -C(2)H),  4.99 (t, 1H, 

J = 5.42 Hz, -C(1)OH), 5.23 (d, 1H, J = 5.28 Hz, -C(3)OH), 5.41 (dd, 1H, J = 6.15 and 

15.53 Hz, -C(4)H), 5.65 (dt, 1H, J = 6.45 and 15.54 Hz, -C(5)H).  

Exact mass (ESI-MS) calculated for C19H39O5S [M+H]+: 379.2518, found: 379.2518. 

 

E-4-(benzyloxy)but-2-en-1-ol (3.7) 
A solution of E-4-(benzyloxy)but-2-en-1-ol (5.0 g, 28.05 mmol) in anhydrous CH2Cl2 

(10 mL) was added over 10 min to a suspension of PCC (9.07 g, 42.08 mmol, 1.5 

eq.) and celite (28.05 g, 1 g/mmol) in anhydrous CH2Cl2  (100 mL), and the reaction 

mixture was stirred for 18 h at RT.  Et2O (250 mL) was added and after stirring for 30 

min, the mixture was filtered.  The filter cake was repeatedly rinsed with Et2O (100 

mL each time) and the combined filtrates were concentrated under reduced pressure 

to afford a brown oily mass which was suspended in Et2O and passed through a 

small pad of silica gel to yield the aldehyde intermediate as a slightly yellow oil which 

was used without further purification.  To a solution of this aldehyde in anhydrous 

Et2O (50 mL), DiBAlH (34 mL of 1M in toluene, 34.0 mmol, 1.2 eq.) was added 

dropwise at -78°C over 10 min and after stirring for 15 min at -78°C, the mixture was 

allowed to reach room temperature over 1 h.  The mixture was subsequently cooled 

to 0°C and MeOH was added dropwise until evolution of H2 ceased.  After addition of 

a saturated solution of disodiumtartrate (100 mL), the mixture was stirred for 10 min 

and subsequently transferred to a separatory funnel.  The water phase was extracted 

with Et2O (2 x 100 mL) and the combined organic phase was dried over MgSO4.  

After removal of all volatiles under reduced pressure, the residue was purified by 

column chromatography (hexanes:EtOAc 7:3) to afford 3.7 (3.067 g, 61%). 
1H NMR (300 MHz; CDCl3-d1) δ: 2.05 (br s, 1H, -C(1)OH),  4.01 – 4.20 (m, 4H, -

C(1)H2 and –C(4)H2), 4.50 (s, 2H, benzyl H), 5.75 - 5.92 (m, 2H, -C(2)H  and -C(3)H), 

7.31 (m, 5H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 62.77, 70.02, 72.21, 127.57, 127.62, 127.68, 

128.31, 132.25, 138.11. 

Exact mass (ESI-MS) calculated for C11H15O2 [M+H]+: 179.1072, found: 179.1074. 

 

((2R,3R)-3-((benzyloxy)methyl)oxiran-2-yl)methanol (3.8) 
A mixture of Ti(OiPr)4 (1.52 mL, 5.13 mmol, 0.35 eq.), D-(-)-diethyltartrate (1.03 mL, 

6.02 mmol, 0.30 eq.) and molecular sieves (17 g; 1 g/mmol) in CH2Cl2 (80 mL) was 
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cooled to -20°C (CCl4-CO2) and stirred for 30 min.  After addition of TBHP (6.22 mL 

of 5.5M in nonane, 34.19 mmol, 2 eq.) and aging for 30 min, 3.7 (3.047 g, 17.1 mmol) 

in CH2Cl2 (6 mL) was added dropwise over 10 min.  The resulting mixture was stirred 

for 2 h at -20°C before being placed in a -20°C freezer overnight.  The reaction was 

quenched by dropwise addition of 30% NaOH in brine (20 mL) under vigorous stirring 

at -20°C and allowed to reach room temperature over 1 h.  The resulting suspension 

was filtered over celite and the filtrate was transferred to a separatory funnel.  After 

separation of both phases, the organic layer was washed with brine (2 x 30 mL) and 

subsequently dried over MgSO4.  After removal of all volatiles under reduced 

pressure, the resulting oil was purified by column chromatography (hexanes:EtOAc 

3:2) yielding 3.8 (2.66 g, 80%) as a colourless oil. 

[α]D
25= + 19.6° (c=1.0 in CHCl3)  

1H NMR (300 MHz; CDCl3-d1) δ: 1.80 – 2.00 (br. s, 1H, -C(1)OH), 3.05 – 3.12 (m, 

1H, C(2)H), 3.19 – 3.26 (m, 1H, C(3)H), 3.53 (dd, 1H, J = 5.28 and 11.44 Hz, 

C(4)Ha), 3.64 (dd, 1H, J = 4.10 and 12.61 Hz, C(1)Ha), 3.76 (dd, 1H, J = 2.64 and 

11.43 Hz, C(4)Hb), 3.92 (dd, 1H, J = 2.34 and 12.61 Hz, C(1)Hb), 4.57(ABq, 2H, J = 

12.02 Hz, benzyl H), 7.25 – 7.38 (m, 5H, arom. H). 
13C NMR (75 MHz; CDCl3-d1) δ: 54.25, 55.72, 61.15, 69.62, 73.34, 127.73, 127.78, 

128.41, 137.78 

Exact mass (ESI-MS) calculated for C11H15O3 [M+H]+: 195.1021, found: 195.1023. 

 

E-butene-1,4-diol (3.9) 
To a well-stirred solution of LiAlH4 (56 mL of a 3.5 M solution in THF, 0.196 mol, 1.2 

eq.) in anhydrous THF (700 mL), butyne-1,4-diol (14.0 g, 0.163 mol) in THF (250 mL) 

was added dropwise at 0°C over 30 min.  The suspension was subsequently heated 

under reflux cooling until TLC indicated complete consumption of the starting material 

(3 h).  After cooling the white suspension to 0°C, 3N NaOH (41 mL) was added slowly 

until evolution of H2-gas ceased.  After adjusting the pH of the reaction mixture to 

pH=8, celite (90 g) was added and the heterogeneous mixture was stirred for 10 min.  

After filtration, the solvent was reduced in vacuo (~100 mL), silica gel (130 g) was 

added and the remaining solvent was removed under reduced pressure.  The free 

flowing product/silica gel mixture was then loaded on a column and flashed 

(hexanes:EtOAc 1:4) yielding E-butene-1,4-diol (11.445 g, 80%) as a colourless oil. 
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1H NMR (300 MHz; CDCl3-d1) δ: 1.60 (m, 2H, 2 x -OH), 4.14 – 4.18 (m, 4H, 2 x -

CH2), 5.86 – 5.91 (m, 2H, 2 x alkene H). 
13C NMR (75 MHz; CDCl3-d1) δ: 62.93, 130.55. 

Exact mass (ESI-MS) calculated for C4H9O2 [M+H]+: 89.0602, found: 89.0605. 

 

E-4-(4-bromobenzyloxy)but-2-en-1-ol (3.10) 
To a solution of diol 3.9 (4.96 g, 56.30 mmol) in CH2Cl2 (200 mL), Ag2O (13.05 g, 

56.30 mmol, 1 eq.) and 4-bromobenzyl bromide (15.48 g, 91.93 mmol, 1.1 eq.) were 

added and the heterogeneous mixture was stirred for 15 h at room temperature.  

After addition of celite (40 g), the mixture was filtered and the solvent was removed 

under reduced pressure.  The resulting oil was purified by column chromatography 

(hexanes:EtOAc 7:3  3:2) yielding the title compound (11.74 g, 81%) as a 

colourless oil. 
1H NMR (300 MHz; DMSO-d6) δ: 3.92 – 3.98 (m, 4H, -C(1)H2 and –C(4)H2), 4.41 (s, 

2H, benzyl H), 4.71 (t, 1H, J = 5.57 Hz, -C(1)OH), 5.64 – 5.83 (m, 2H, -C(2)H and –

C(3)H), 7.26 (d, 2H, J = 8.80 Hz, arom. H), 7.51 (d, 2H, J = 8.21 Hz, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 60.84, 69.77, 70.22, 120.36, 125.52, 129.51, 

131.13, 133.51, 138.01 

Exact mass (ESI-MS) calculated for C11H14O2Br [M+H]+: 257.0177, found: 257.0177 

 

((2R,3R)-3-((4-bromobenzyloxy)methyl)oxiran-2-yl)methanol (3.11) 
A mixture of Ti(OiPr)4 (4.72 mL, 20 mol%, 15.93 mmol), D-(-)-diethyltartrate (3.75 mL, 

27.5 mol%, 21.9 mmol) and molecular sieves (6 g) in CH2Cl2  (400 mL) was cooled to 

-23°C (CCl4-CO2) and stirred for 30 min.  After addition of THBP (28.96 mL of 5.5M in 

decane, 2 eq., 159.3 mmol) and additional stirring for 15 min, 3.10 (20.48 g, 79.65 

mmol) in CH2Cl2 (200 mL) was added dropwise over 60 min at -20°C.  The resulting 

mixture was stirred for 2 h at -20°C and then placed in a -20°C freezer overnight.  

The mixture was subsequently cooled in an ice-bath and 30% NaOH in brine (20 mL) 

was slowly added under vigorous stirring.  The resulting suspension was filtered over 

celite and the resulting filtrate was extracted with brine (2 x 30 mL).  After drying over 

MgSO4 and removal of all volatiles under reduced pressure, the resulting oil was 

purified by column chromatography (hexanes:EtOAc 1:1) yielding 3.11 (21.32 g, 

98%) as a white powder.  The product was suspended in hexanes (100 mL) followed 
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by slow addition of Et2O until a clear solution was obtained which was refrigerated (-

20°C) for 3 h.  The formed white needles were filtered, rinsed with hexane (2 x 20 

mL) and subsequently dried in vacuo yielding enantiomerically pure 3.11 (14.2 g, 

65%).  Repeating of this procedure produced a second crop of 3.11 (4.78 g, 22%).  

The resulting filtrate was purified by column chromatography affording a third crop of 

3.11 (1.96 g, 9%). 

[α]D
25 = + 21.8° (c=1 in CHCl3) 

1H NMR (300 MHz; DMSO-d6) δ: 1.89 (br. s, 1H, -C(1)OH), 3.06 – 3.13 (m, 1H, 

C(2)H), 3.21 – 3.27 (m, 1H, C(3)H), 3.49 (dd, 1H, J = 5.53 and 11.68 Hz, C(4)Ha), 

3.65 (br. d, 1H, J = 12.60 Hz, C(1)Ha), 3.78 (dd, 1H, J = 2.77 and 11.68 Hz, C(4)Hb), 

3.94 (br. d, 1H, J = 12.91 Hz, C(1)Hb), 4.52 (ABq, 2H, J = 12.29 Hz, benzyl H), 7.21 

(d, 2H, J = 8.30 Hz, arom. H), 7.46 (d, 2H, J = 8.30 Hz, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 54.10, 55.54, 60.99, 69.67, 72.49, 121.63, 129.30, 

131.52, 136.74 

Exact mass (ESI-MS) calculated for C11H14BrO3Na [M+Na]+: 294.9946, found: 

294.9951 

 

(2S,3S)-4-(4-bromobenzyloxy)-3-hydroxy-2-(hydroxymethyl)butanenitrile (3.12) 
To a solution of 3.11 (13.5 g, 49.42 mmol) and NaCN (9.69 g, 198 mmol, 4 eq.) in 

anhydrous DMF (400 mL), B(OEt)3 (25.23 mL, 148 mmol, 3 eq.) was added at room 

temperature and the resulting solution was heated at 70°C for 15 h.  After cooling to 

0°C, a saturated solution of NaHCO3 (400 mL) was added and the mixture was 

stirred for 30 min.  The resulting mixture was extracted with EtOAc (5 x 200 mL) and 

the combined organic phase was washed with water (100 mL) and brine (100 mL) 

and dried over Na2SO4.  After removal of the solvent in vacuo, the residue was 

purified by column chromatography (hexanes:EtOAC 1:1) yielding a mixture of 

regioisomers (9:1) (7.587 g, 51%) and a faster eluting compound which was identified 

as 4-bromobenzyl alcohol (3.42 g, 37%)  Treatment of the mixture of regioisomers 

with NaIO4 (5.4 g, excess) in acetone/water (1:1; 300 mL) followed by column 

chromatography with an identical solvent system as mentioned above afforded the 

title compound as a slightly yellow oil (5.207 g, 35%). 
1H NMR (300 MHz; DMSO-d6) δ: 2.87 – 2.93 (m, 2H, -C(2)H), 3.48 (dd, 1H, J = 5.57 

and 10.26 Hz, -C(4)Ha), 3.54 (dd, 1H, J = 4.10 and 10.26 Hz,  -C(4)Hb), 3.58 – 3.70 
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(m, 2H, -C(2)CH2), 3.82 – 3.92 (m, 1H, -C(3)H), 4.48 (qAB, 2H, J = 12.31 Hz, benzyl 

H), 5.19 (br s., 1H, -C(2)CH2OH), 5.48 (d, 1H, J = 5.28 Hz, - C(3)OH), 7.31 (d, 2H, J 

= 8.21 Hz, arom. H), 7.53 (d, 2H, J = 8.21 Hz, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 38.82, 58.10, 66.77, 71.60, 72.42, 120.42, 120.51, 

129.64, 131.16, 137.79. 

Exact mass (ESI-MS) calculated for C12H15BrNO3 [M+H]+: 300.0235, found: 

300.0235. 

 

(2S,3S)-4-(4-bromobenzyloxy)-3-tert-butyldimethylsilyloxy-2-(tert-
butyldimethylsilyloxy methyl)butanenitrile (3.13) 
To a solution of 3.12 (6.49 g, 21.62 mmol) and imidazole (8.83 g, 130 mmol, 6 eq.) in 

DMF (100 mL), TBDMSCl (9.78 g, 65 mmol, 3 eq.) was added at 0°C and the mixture 

was stirred overnight at room temperature.  After removal of the solvent under 

reduced pressure, the residue was purified by column chromatography 

(hexanes:EtOAc 93:7) affording nitrile 3.13 (10.60 g, 93%) as a colourless oil. 
1H NMR (300 MHz; CDCl3-d1) δ: 0.06 (s, 3H, -SiCH3), 0.08 (s, 3H, -SiCH3), 0.09 (s, 

3H, -SiCH3), 0.10 (s, 3H, -SiCH3), 0.85 (s, 9H, tert-butyl), 0.87 (s, 9H, tert-butyl), 3.00 

(dd, 1H, J = 5.57 and 11.73 Hz, -C(2)H), 3.59 (dd, 2H, J = 1.47 and 4.98 Hz, -

C(4)H2), 3.86 (d, 2H, J = 5.57 Hz, -C(2)CH2), 4.13 (dd, 1H, J = 4.69 and 10.85 Hz, -

C(3)H), 4.59 (app. s, 2H, benzyl H), 7.28 – 7.38 (4H, m, arom. H) 
13C NMR (75 MHz; CDCl3-d1) δ: -5.54, -5.41, -5.07, -4.48, 18.02, 18.22, 25.70, 25.80, 

39.35, 59.66, 68.85, 72.65, 72.78, 119.35, 127.59, 129.30, 131.49, 136.79.  

Exact mass (ESI-MS) calculated for C24H43BrNO3Si2 [M+H]+: 528.1965, found: 

528.1965. 

 

((2R,3R)-3-((4-bromobenzyloxy)methyl)oxiran-2-yl)methyl acetate (3.14) 
To a solution of 3.11 (40 mg, 0.146 mmol) and 4-DMAP (cat.) in CH2Cl2 (2 mL), Ac2O 

(28 μL, 0.293 mmol, 2 eq.) was added and the resulting mixture was stirred at room 

temperature until TLC indicated complete consumption of the starting material.  After 

removal of the solvent under reduced pressure, EtOAc (10 mL) was added to the 

residue which was subsequently washed with 0.1N HCl (10 mL), saturated NaHCO3 

(10 mL) and brine (10 mL).  After drying over MgSO4, the solvent was removed in 
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vacuo and the resulting colourless oil (46 mg, 100%) showed to be pure enough for 

analytical purposes. 
1H NMR (300 MHz; C6D6-d6) δ: 1.56 (s, 3H, -COCH3), 2.65 -2.68 (m, 1H, -C(2)H), 

2.76 (ddd, 1H, J = 2.93, 5.28 and 5.57 Hz, -C(3)H), 2.97 (dd, 1H, J = 5.57 and 11.73 

Hz, -C(4)Ha), 3.22 (dd, 1H, J = 2.93 and 11.73 Hz, -C(4)Hb), 3.62 (dd, 1H, J = 6.16 

and 12.31 Hz, -C(1)Ha), 4.04 (ABq, 2H, J = 12.31 Hz, benzyl H), 4.09 (dd, 1H, J = 

3.08 and 12.32 Hz, -C(1)Hb), 6.81 (d, 2H, J = 8.50 Hz, arom. H), 7.22 (d, 2H, J = 8.21 

Hz, arom. H). 
13C NMR (75 MHz; C6D6-d6) δ: 20.19, 52.46, 54.65, 64.30, 69.74, 72.25, 121.73, 

129.44, 131.70, 137.54, 169.93. 

Exact mass (ESI-MS) calculated for C13H17BrO4 [M+H]+: 315.0232, found: 315.0232. 

 

 (2R)-((2R,3R)-3-((4-bromobenzyloxy)methyl)oxiran-2-yl)methyl 3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (3.15) 

To a solution of 3.11 (40 mg, 0.146 mmol), diisopropylethylamine (48 μL, 0.293 

mmol, 2 eq.) and 4-DMAP (cat.) in CH2Cl2 (2 mL), (+)-Mosher’s chloride (41 μL, 

0.220 mmol, 1.5 eq.) was added and the mixture was stirred for 1 h at room 

temperature.  After removal of the solvent under reduced pressure, the residue was 

purified by column chromatography (hexanes:EtOAc 8:2) producing Mosher ester 

3.15 (68 mg, 95%) as a colourless oil. 
1H NMR (300 MHz; C6D6-d6) δ: 2.64 - 2.70 (m, 2H, -C(2’)H and -C(3’)H), 2.90 (dd, 

1H, J = 5.28 and 11.73 Hz, -C(4’)Ha), 3.13 (dd, 1H, J = 2.64 and 11.73 Hz, -C(4’)Hb), 

3.36 (s, 3H, -OCH3), 3.62 (dd, 1H, J = 5.57 and 12.32 Hz, -C(1’)Ha), 4.00 (ABq, 2H, J 

= 12.32 Hz, benzyl -CH2), 4.17 (dd, 1H, J = 2.48 and 12.31 Hz, -C(1’)Hb), 6.81 (d, 2H, 

J = 8.21 Hz, arom. H), 6.98 – 7.08 (m, 3H, arom. H), 7.21 (d, 2H, J = 8.51 Hz, arom. 

H), 7.63 (d, 2H, J = 7.63 Hz, arom. H). 
13C NMR (75 MHz; C6D6-d6) δ: 51.77, 54.58, 55.43, 65.10, 69.36, 72.29, 121.81, 

127.73, 128.05, 128.38, 128.74, 129.43, 129.91, 131.73, 132.68, 137.41, 166.49. 
19F NMR (282 MHz; C6D6-d6)  δ: -72.137, -72.105. 

 

Hydrogenation of 3.13: 
Pd (10% on carbon, 2.14 g, 2.01 mmol, 10 mol%) was added to a solution of 3.13 

(10.6 g, 20.11 mmol) in EtOH (100 mL) and the resulting reaction mixture was stirred 
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under an H2 atmosphere until TLC indicated complete consumption of the starting 

material.  The reaction mixture was subsequently filtered over celite and after 

removal of all volatiles in vacuo, the residue was purified by column chromatography 

(hexanes:EtOAc 4:1) affording, a mixture of 3.16 and 3.17 (2.33 g, 32%), 3.18 (0.95 

g, 10%) and 3.19 (2.47 g, 50%) as colourless oils. 

 

(2S,3S)-3,4-bis(tert-butyldimethylsilyloxy)-2-(hydroxymethyl)butanenitrile (3.16) 
and (2S,3S)-3-(tert-butyldimethylsilyloxy)-2-((tert-butyldimethylsilyloxy)methyl)-
4-hydroxybutanenitrile (3.17) (1:1.1) 
1H NMR (300 MHz; DMSO-d6) δ: 0.00 (s, 6H, 2 x -SiCH3), 0.01 (s, 3H, -SiCH3), 0.019 

(s, 6H, 2 x -SiCH3), 0.024 (s, 3H, -SiCH3), 0.03 (s, 6H, 2 x -SiCH3), 0.81 (s, 18H, 2 x  

tert-butyl), 0.822 (s, 9H, tert-butyl), 0.824 (s, 9H, tert-butyl), 2.90 (ddd, 1H, J = 5.13, 

5.88 and 6.89 Hz, -C(2)H 3.16), 2.97 (dt, 1H, J = 5.06 and 6.22 Hz, -C(2)H 3.17), 

3.37 (td, 1H, J = 5.53 and 11.27 Hz, -C(4)Ha 3.17), 3.45 (td, 1H, J = 4.92 and 11.26 

Hz, -C(4)Hb 3.17), 3.50 – 3.66 (m, 4H, -C(1)H2 3.16 and -C(1)H2 3.17), 3.75 (dd, 1H¸ 

J = 5.75 and 9.47 Hz, -C(4)Ha 3.16), 3.80 (dd, 1H¸ J = 4.35 and 9.45 Hz, -C(4)Hb 

3.16), 3.85 – 3.93 (m, 2H, -C(3)H 3.16 & 3.17), 4.85 (t, 1H, J = 5.28 Hz, -C(1)OH 

3.16), 5.16 (t, 1H, J = 5.26 Hz, -C(4)OH 3.17). 

Exact mass (ESI-MS) calculated for C17H38NO3Si2 [M+H]+: 360.239, found: 

360.2398. 

 

(2S,3S)-3,4-bis(tert-butyldimethylsilyloxy)-2-((tert-butyldimethylsilyloxy)methyl) 
butanenitrile (3.18) 
1H NMR (300 MHz; DMSO-d6) δ: 0.12 (s, 6H, 2 x -SiCH3), 0.13 (s, 3H, -SiCH3), 0.140 

(s, 3H, -SiCH3), 0.146 (s, 3H, -SiCH3), 0.15 (s, 3H, -SiCH3), 0.93 (s, 9H, tert-butyl), 

0.94 (s, 18H, 2 x tert-butyl), 3.09 (m, 1H, -C(2)H), 3.70 (dd, 1H, J = 4.99 and 11.14 

Hz, -C(4)Ha), 3.78 (dd, 1H, J = 4.10 and 11.14 Hz, -C(4)Hb), 3.87 (dd, 1H, J = 6.16 

and 10.27 Hz, -C(1)Ha), 3.93 (dd, 1H, J = 4.98 and 10.26 Hz, -C(1)Hb), 4.05 (m, 1H, -

C(3)H). 
13C NMR (75 MHz; DMSO-d6) δ: -5.57, -5.48, -5.37, -5.24, -5.02, -4.63, 17.90, 18.11, 

18.22, 25.61, 25.72, 25.96, 38.68, 60.03, 63.84, 70.14, 119.22. 

Exact mass (ESI-MS) calculated for C23H52NO3Si3 [M+H]+: 474.3255, found: 

474.3258. 
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(2S,3S)-3-(tert-butyldimethylsilyloxy)-4-hydroxy-2-(hydroxymethyl)butanenitrile 
(3.19) 
1H NMR (300 MHz; DMSO-d6) δ: 0.06 (s, 3H, -SiCH3), 0.08 (s, 3H, -SiCH3), 0.85 (s, 

9H, tert-butyl), 2.96 (dt, 1H, J = 5.28 and 7.33 Hz, -C(2)H), 3.40 (dd, 1H, J = 5.57 and 

11.14 Hz, -C(4)Ha), 3.46 (dd, 1H, J = 5.57 and 11.14 Hz, -C(4)Hb), 3.54 – 3.70 (m, 

2H, -C(1)H2), 3.90 (dt, 1H, J = 5.28 and 5.57 Hz, -C(3)H), 4.88 (t, 1H, J = 5.28 Hz, -

C(1)OH), 5.17 (dd, 1H, J = 4.99 and 5.87 Hz, C(4)OH)  
13C NMR (75 MHz; DMSO-d6) δ: -5.18, -4.43, 17.79, 25.71, 38.91, 57.64, 63.21, 

70.93, 120.55. 

Exact mass (ESI-MS) calculated for C11H25NO3Si [M+H]+: 246.1525, found: 

246.1525. 

 

Opening of 3.11 with 1,3-dithiane: 
To a solution of 1,3-dithiane (6.26 g, 52.1 mmol, 5 eq.) in anhydrous THF (70 mL) at -

78°C, nBuLi (26 mL of a 1.6M solution in hexanes, 41.67 mmol, 4 eq.) was added 

and the mixture was allowed to reach 0°C over 2 h.  After cooling to -78°C, DMPU 

(12.6 mL, 104.2 mmol, 10 eq.) and 3.11 (2.846 g, 10.42 mmol) in anhydrous THF (20 

mL) were added dropwise over 30 min.  After stirring for 1 h at -78°C, TLC indicated 

complete consumption of the starting material.  The mixture was subsequently 

allowed to reach -20°C and saturated NH4Cl solution (50 mL) was added in one 

portion.  After stirring for 30 min at room temperature, EtOAc (200 mL) was added 

and the layers were separated.  The aqueous layer was extracted with EtOAc (2 x 

200 mL) and the combined organic fractions were dried over MgSO4.  After removal 

of the solvent in vacuo, the residue was purified by column chromatography affording 

a mixture of 3.20 and 3.21 (3.88 g, 95% in a 2:1 ratio).  A fraction of this mixture (250 

mg) was purified by preparative HPLC (hexanes:EtOAc 1:1, isocratic at 35 mL/min) 

providing pure 3.20 (114 mg) and 3.21 (89 mg).  

 

(2S,3S)-4-(4-bromobenzyloxy)-2-(1,3-dithian-2-yl)butane-1,3-diol (3.20) 
1H NMR (300 MHz; DMSO-d6) δ: 1.58 – 1.74 (m, 1H, -C(5’)Ha), 1.86 – 1.96 (m, 1H, -

C(2)H), 1.98 – 2.09 (m, 1H, -C(5’)Hb), 2.73 – 2.93 (m, 4H, -C(4’)H2 and -C(6’)H2), 

3.48 (dd, 1H, J = 6.45 and 9.97 Hz, -C(4)Ha), 3.52 (dd, 1H, J = 5.28 and 9.97 Hz, -
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C(4)Hb), 3.62 (dd, 1H, J = 5.28 and 10.85 Hz, -C(1)Ha), 3.67 (dd, 1H, J = 5.28 and 

10.85 Hz, -C(1)Hb), 3.97- 4.06 (m, 1H, -C(3)H), 4.42 (d, 1H, J = 4.69 Hz, -C(2’)H), 

4.48 (s, 2H, benzyl H), 4.51 (t, 1H, J  = 5.28 Hz, -C(1)OH), 4.82 (d, 1H, J = 5.28 Hz, -

C(3)OH), 7.31 (d, 2H, J = 8.50 Hz, arom. H), 7.54 (d, 2H, J = 8.50 Hz, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 25.99, 30.09, 30.19, 48.08, 48.43, 68.19, 71.18, 

73.15, 120.33, 129.52, 131.06, 138.08. 

Exact mass (ESI-MS) calculated for C15H22BrO3S2 [M+H]+: 393,0194, found: 

393,0192. 

 

(2S,3S)-4-(4-bromobenzyloxy)-3-(1,3-dithian-2-yl)butane-1,2-diol (3.21) 
1H NMR (300 MHz; DMSO-d6) δ: 1.58 – 1.74 (m, 1H, -C(5’)Ha), 1.94 – 2.11 (m, 2H, -

C(3)H and -C(5’)Hb), 2.73 – 2.94 (m, 4H, -C(4’)H2 and -C(6’)H2), 3.36 (app. t, 2H, J = 

5.57 Hz, -C(1)H2),  3.58 (dd, 1H, J = 6.45 and 9.97 Hz, -C(4)Ha), 3.62 (dd, 1H, J = 

4.69 and 9.97 Hz, -C(4)Hb), 3.79 (ddd, 1H, J = 3.52, 5.87 and 9.68 Hz, -C(2)H), 4.37 

(d, 1H, J = 4.98 Hz, -C(2’)H), 4.41 (s, 2H, benzyl H), 4.55 (t, 1H, J = 5.57 Hz, -

C(1)OH), 4.57 (d, 1H, J = 5.27 Hz, -C(2)OH), 7.31 (d, 2H, J = 8.50 Hz, arom. H), 7.54 

(d, 2H, J = 8.50 Hz, arom. H). 
13C NMR (75 MHz; DMSO-d6) δ: 26.00, 30.13, 45.46, 49.43, 64.08, 67.31, 69.84, 

71.22, 120.31, 129.51, 131.07, 138.09. 

Exact mass (ESI-MS) calculated for C15H22BrO3S2 [M+H]+: 393,0194, found: 

393,0192. 
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