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Abstract—Recently, an efficient stochastic modeling method
for interconnects with inherent variability in their physical
parameters was proposed, based on applying the so-called poly-
nomial chaos (PC) approach in conjunction with a Stochastic
Galerkin Method (SGM) onto telegrapher’s equations. Although
this approach was already very successful from a numerical
point of view, the novel technique could not be conveniently
integrated into SPICE-like solvers, limiting the applicability of
the method. In this letter, the PC-SGM scheme for telegrapher’s
equations is revisited, pinpointing the origin of this inconvenience
and immediately allowing to mitigate the issue. By adapting the
traditional discretization of the stochastic telegrapher’s equations
approach, an augmented, yet deterministic, set of ordinary
differential equations is obtained that turns out to be of the
same type as the telegrapher’s equations, and hence, the physical
property of reciprocity is preserved. Consequently, it can be
directly and more efficiently handled using SPICE-like solvers,
which usually assume matrix symmetries. As an application
example, the variability analysis of a state-of-the-art on-chip line
for millimeter-wave applications is performed in a SPICE solver.

Index Terms—Discretization scheme, polynomial chaos, reci-
procity, stochastic analysis, transmission lines, uncertainty.

I. INTRODUCTION

In recent years, great attention has been drawn to the
availability of models for the efficient inclusion of inherent pa-
rameter variability in the early-stage simulation of microwave
and millimeter-wave electronic circuits and interconnections.
As the technology is pushing towards further miniaturization,
the impact of manufacturing process tolerances on high-
frequency designs is becoming increasingly critical. However,
the traditional Monte Carlo analysis is often computationally
prohibitive due to the complex nature of the structures under
investigation. Therefore, a novel methodology to efficiently
include variations of on-chip interconnects into the standard
framework of transmission-line theory was developed [1]. The
approach is based on the so-called polynomial chaos (PC)
expansion in conjunction with the Stochastic Galerkin Method
(SGM) [2]. The stochastic problem was discretized by first
projecting it onto a finite set of suitable multivariate orthogonal
polynomials and next testing the result with the same set.
This Galerkin discretization scheme yielded a new set of
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deterministic ordinary differential equations (ODE), albeit of
a larger size. However, it was demonstrated to provide a
considerable speed-up with respect to Monte Carlo, e.g., for
design purposes.

Although the aforementioned method turned out to be very
successful from a numerical point of view, its applicability
was limited. In fact, an ad hoc MATLAB implementation
needed to be developed for every different circuit topology
to be analyzed. For reasons explained below, the application
of the standard PC-SGM hindered the convenient integration
of the technique into standard design environments, except
for lossless and dispersion-free lines [3]. Hence, so far, a
SPICE-compatible PC-based variability analysis of on-chip
lines, exhibiting dispersion and slow-wave effects, has never
been presented.

In this letter, the PC-SGM framework is revisited from
an altogether different point of view. By focusing on the
discretization scheme, the nature of the aforementioned in-
convenience is discovered and mitigated. For the first time
in literature, the practical implications of the traditional PC-
SGM-discretization are exposed, and it is shown that better
choices are available, allowing a more efficient implementation
in commercial circuit-analysis tools as well as the inclusion of
losses and dispersion. As an application example, the stochas-
tic analysis of an on-chip differential line for millimeter-wave
applications is performed with HSPICE.

II. DISCRETIZATION OF STOCHASTIC TELEGRAPHER’S
EQUATIONS

Variations in the interconnect properties, due for instance
to uncertainties in the geometry and/or material parameters,
reflect into a variability of the p.u.l. parameters. Therefore,
the frequency-domain telegrapher’s equations [4] of a mul-
ticonductor transmission line (MTL) consisting of N signal
conductors and a reference conductor can be written as

d

dz
V(z, s, ξ) = −Z(s, ξ) · I(z, s, ξ), (1a)

d

dz
I(z, s, ξ) = −Y(s, ξ) ·V(z, s, ξ), (1b)

where the N -vectors V and I contain the voltages and
currents along the line and with Z and Y the (N × N )-
p.u.l. impedance and admittance matrices, respectively. The
vector ξ encompasses d random variables (RVs), describing
the uncertainties, and s is the Laplace variable.

The original PC-SGM approach [2], conceived to deal with
randomness in differential equations such as (1), is now first
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briefly revisited from a computational point of view, displaying
the nature of the above mentioned limitations. Thereto, we
start by constructing a finite-dimensional Hilbert space V over
the real numbers R having domain Ω ⊂ Rd, containing the
d-vectors of RVs ξ. We equip V with an inner product:

<f(ξ), g(ξ)>=

∫
Ω

f(ξ)g(ξ)W (ξ) dξ, (2)

where the weighting function W (ξ) coincides with the mul-
tivariate probability density function of ξ in the domain Ω.
Consider further the set of linearly independent basis functions
{ϕk(ξ)}Pk=0 that span V , where P + 1 = dim(V). All
stochastic quantities of (1) are now projected onto this basis:

X (ξ) ≈
P∑

k=0

Xkϕk(ξ), (3)

where X (ξ) stands for V(z, s, ξ), I(z, s, ξ), Z(s, ξ),
and Y(s, ξ), and with corresponding expansion coeffi-
cients Xk, k = 0, . . . , P . Discretization of the stochastic tele-
grapher’s equations (1), i.e. inserting (3) into (1), and testing
the result using the inner product (2) and a set of P+1 testing
functions {ψk(ξ)}Pk=0, yields:

D · d
dz

Ṽ(z, s) = −Z̃(s) · Ĩ(z, s), (4a)

D · d
dz

Ĩ(z, s) = −Ỹ(s) · Ṽ(z, s). (4b)

In (4), the new N(P +1)-vectors Ṽ and Ĩ contain the sought-
for coefficients for the voltage and current variables, and
the N(P + 1) × N(P + 1)-matrices Z̃ and Ỹ consist of
(P + 1) × (P + 1) block matrices of size N × N , each
block given by: Z̃ml =

∑P
k=0 Zk < ϕk(ξ)ϕl(ξ), ψm(ξ) >

(m, l = 0, . . . , P ), and similarly for Ỹ. The matrix D consists
of (P +1)× (P +1) blocks of size N ×N , where each block
is diagonal with N entries <ϕk(ξ), ψm(ξ)>. The matrix D is
of course symmetrical. In short, (4) constitutes a new pair of
coupled ordinary differential equations (ODE), which is P +1
times larger than the original one (1), but the dependence on ξ
has vanished.

In the standard PC-SGM-approach, as always adopted in
(electrical) engineering applications (see e.g. [5]), the Wiener-
Askey scheme is used, meaning that the basis functions
are chosen to be polynomials that are orthogonal w.r.t. the
probability density function W (ξ), i.e. <ϕk(ξ), ϕl(ξ)> =
<ϕk(ξ), ϕk(ξ)> δkl, where the Kronecker delta was used. For
many engineering problems, this guarantees rapid convergence
of the series (3). As already anticipated by its name, the
SGM leverages a set of testing functions that are identical
to the basis functions, i.e. ψk(ξ) ≡ ϕk(ξ). At this point it is
important to mention that the matrices Z̃ and Ỹ so obtained are
also symmetrical matrices, as is usually the case with Galerkin
testing schemes in computational problems. Additionally, the
inner product matrix D becomes a diagonal Gramian matrix
with only N(P + 1) non-zero entries. The augmented set
of ODEs can be solved with great accuracy using standard
techniques in, e.g., MATLAB, as explained in [1]. However,
the question now arises whether:

1) the set of ODEs (4) can be interpreted again as a set of
augmented telegrapher’s equations;

2) and consequently, implemented as such by integration
into standard SPICE-like circuit solvers.

Unfortunately, using the traditional PC-SGM discretization
scheme and despite the symmetry of the matrices Z̃ and Ỹ,
this turns out not to be entirely the case, due to the presence
of the (diagonal) matrix D. This can be understood as follows.
When rewriting (4) using Z̃a = D

−1 · Z̃ and Ỹa = D
−1 · Ỹ,

then indeed a pair of telegrapher’s equations is obtained, but
the new augmented p.u.l. impedance and admittance matri-
ces Z̃a and Ỹa are no longer symmetrical, leading to a non-
reciprocal system [6]. Whereas the lack of reciprocity has
never been a problem in the numerical solution of (4) before, it
does impede the integration into standard SPICE-like solvers,
which usually do not support non-reciprocal MTLs.

In order to mitigate this issue, a better discretization scheme
has to be chosen, rendering symmetrical matrices Z̃a and Ỹa.
An, in hindsight, straightforward choice is to retain the basis
functions ϕk(ξ), k = 0, . . . , P , and changing the testing
functions as follows: ψk(ξ) = ϕk(ξ)/< ϕk(ξ), ϕk(ξ) >
(k = 0, . . . , P ), yielding an inner product matrix D equal
to the identity matrix. It is worth noting that this scheme
is equivalent to choosing a set of identical basis and testing
functions ϕ′k(ξ) = ψ′

k(ξ) = ϕk(ξ)/
√
<ϕk(ξ), ϕk(ξ)>, i.e.

using only orthonormal polynomials. Other choices of basis
and testing functions can maybe be found that would also yield
symmetrical augmented p.u.l. matrices. However, the proposed
choice of orthonormal polynomials comes from the fact that,
according to the Wiener-Askey scheme, a good convergence
of the series (3) can still be expected.

We like to stress here again that the original PC-SGM
discretization, adopted in all engineering problems so far, is
flawless and sound, leading to very accurate and efficient
numerical computation schemes. However, the discretization
scheme needs to be altered to conveniently allow the PC-
SGM technique to be integrated into commercial, SPICE-like
software. Thus, the above presented finding has important
consequences in the circuit design, and by extension maybe
also in other engineering domains where PC-modeling is used.

III. PRACTICAL IMPLICATIONS: APPLICATION EXAMPLE

As a practical advantage of the modified formulation in-
troduced in this letter, the new p.u.l. matrices can be directly
supplied as an input to MTL elements available in commer-
cial solvers, such as the W-element in HSPICE or Agilent’s
Advanced Design System (ADS). In fact, this inherently
assumes symmetric matrices, as it is for physical reciprocal
lines. Since the W-element can manage lossy and dispersive
lines, it is now possible to conveniently model the effect
of stochastic frequency-dependent line parameters within the
design environment.

As a validation of the proposed important improvement
of the PC-SGM-formulation, we analyze the response of the
differential transmission line depicted in Fig. 1. This is a
differential on-chip line exhibiting strong dispersive behavior
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Fig. 1. Cross-section of the differential line considered for the application.

and also slow-wave effects, due to the presence of the semi-
conductor. The geometric dimensions and material properties
are shown in the figure and a length of 1 mm is assumed.
This interconnect provides connectivity among components
in integrated millimeter-wave applications [7]. The line is
excited at the near ends by low-impedance voltage sources,
having an internal impedance of 1 Ω, and terminated by 1 pF
capacitive loads. In order to model the variability arising from
the fabrication process (e.g., etching and photolithography),
the gap s between the lines and their widths w are consid-
ered as independent Gaussian variables with relative standard
deviations of 8% and 10%, respectively.
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Fig. 2. Bode plot of the differential response.

Fig. 2 shows the Bode plot of the differential response.
The black lines represent the average response and the ±3σ
bounds, estimated after 10000 Monte Carlo simulations. The
markers indicate the same statistical information obtained with
the PC-SGM technique. The good agreement between the two
approaches can be appreciated. Finally, a subset of 100 random
responses is plotted (gray area) to provide a qualitative idea
of their fluctuation.

Stochastic functions such as probability density functions
(PDFs) can be obtained via the PC-SGM as well. Fig. 3
compares the PDF of the response at the 9-GHz resonance,
obtained with both Monte Carlo and the PC-SGM. The accu-
racy of the proposed implementation is established also for
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Fig. 3. Probability density functions of the differential response at 9 GHz.

this case. For this analysis up to 170 GHz, the dispersive
p.u.l. parameters were supplied to HSPICE as frequency-
dependent tabulated data for a W-element. The Monte Carlo
circuit simulation required about 4 hours, while the simulation
of the PC-SGM-augmented line took 21.3 s. An impressive
speed-up of 700× is thus achieved. We stress here again that
it is not possible to implement this example in SPICE with
previously presented techniques.

IV. CONCLUSIONS

This letter presents a considerable improvement of the PC-
SGM discretization scheme, which allows for the first time the
stochastic simulation of state-of-the-art on-chip interconnects
for microwave and millimeter-wave applications into com-
mercial SPICE-like solvers. Thanks to a formal study of the
discretization scheme, it was discovered that by normalization
of basis and testing functions, augmented, but deterministic,
reciprocal telegrapher’s equations are obtained. This allows
the augmented p.u.l. matrices to be supplied as standard
input parameters to MTL models available in commercial
software. The augmented problem can then be solved as a
classical lossy and dispersive MTL. This in an important
finding for the community active in the development of PC-
based high-frequency design techniques. The advocated PC-
SGM technique shows good agreement and a large speed-up
with respect to the conventional Monte Carlo approach in the
statistical assessment of a millimeter-wave on-chip differential
line with uncertain gap and line width.
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