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Abstract

In recent years, telecom operators have been moving away from traditional
broadcast-driven television, towards IP-based interactive and on-demand mul-
timedia services. Consequently, multicast is no longer sufficient to limit the
amount of generated traffic in the network. In order to prevent an explosive
growth in traffic, caches can be strategically placed throughout the content de-
livery infrastructure. As the size of caches is usually limited to only a small
fraction of the total size of all content items, it is important to accurately pre-
dict future content popularity. Traditional caching strategies only take into
account the past when deciding what content to cache. Recently, a trend to-
wards novel strategies that actually try to predict future content popularity
has arisen. In this article, we ascertain the viability of using popularity pre-
diction in realistic multimedia content caching scenarios. The proposed generic
popularity prediction algorithm is capable of predicting future content popular-
ity, independent of specific content and service characteristics. Additionally, a
novel cache replacement strategy, which employs the popularity prediction algo-
rithm when making its decisions, is introduced. A detailed evaluation, based on
simulation results using trace files from an actual deployed Video on Demand
service, was performed. The evaluation results are used to determine the merits
of popularity-based caching compared to traditional strategies. Additionally,
the synergy between several parameters, such as cache size and prediction win-
dow, is investigated. Results show that the proposed prediction-based caching
strategy has the potential to significantly outperform state-of-the-art traditional
strategies. Specifically, the evaluated Video on Demand scenario showed a per-
formance increase of up to 20% in terms of cache hit rate.
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1. Introduction

The proliferation of interactive, personalized and on-demand television ser-
vices is causing an increasing need for bandwidth in telecom operator networks.
Obviously, broadcasting or multicasting cannot sufficiently reduce bandwidth
consumption of on-demand multimedia services. Proxy caching, which had al-
ready been widely employed in the delivery of web content, has been proposed
as a way of offloading bottleneck links [1] in on-demand scenarios. Caches are
strategically placed throughout the network and store a subset of the available
content. However, the size of such caches is usually limited, so they are only
capable of storing a fraction of available content. Therefore, it is very important
to accurately predict the future popularity of content, so that the most popular
items, or item segments, can be offered closer to the end-users.

Over the years, many caching strategies have been proposed. Traditional
strategies, such as Least Recently Used (LRU) and Least Frequently Used
(LFU), assume that what was most popular in the past, will also be most popu-
lar in the future. However, the popularity of multimedia content is known to be
highly dynamic [2]. Consequently, caching efficiency can be further increased by
taking these dynamics into account and actually try to predict future popularity
instead of directly applying historical information.

Predicting the future popularity of individual multimedia content items can
be reduced to a time series prediction problem [3]. Several efforts have been
made to apply this theory to the prediction of multimedia content popularity [4,
5]. However, to our knowledge, these predictions have never been integrated
into an actual cache replacement strategy. Additionally, the effect of important
parameters, such as the prediction window size, has not yet been thoroughly
evaluated.

This article presents a generic popularity prediction algorithm. In contrast
to existing algorithms, it is not tailored to a specific service. The prediction
algorithm fits a set of functions to the cumulative request pattern of content
items. These fitted curves are then used as an approximated model of the
request pattern. Through extrapolation the future of the request pattern can
then be estimated. Subsequently, we present a novel prediction-based cache
replacement strategy. It uses the predicted request patterns to determine the
subset of all available content to store in the cache. Additionally, to assess
the theoretical maximal gain in caching efficiency that can be achieved using
predictions, a theoretical variant is also presented. It assumes the future can be
perfectly predicted.

The proposed cache replacement strategies are thoroughly evaluated and
compared to traditional strategies that directly employ historical information.
The goal of this evaluation is to determine both the theoretical and practical gain
in caching efficiency that can be achieved using popularity prediction. More-
over, the effect of the prediction window parameter is assessed. This parameter
is defined as the future time-frame that is predicted (i.e., the counterpart of the
history window parameter of LFU). The effect of this parameter is influenced by
the cache size. Therefore, the synergy between these parameters is thoroughly
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evaluated. In order to increase the applicability and validity of the presented re-
sults, all evaluations are performed using a trace of an actual deployed Video on
Demand (VoD) service of a leading European telecom operator. This gives our
evaluations more leverage and credibility than those performed on synthetically
generated datasets. The ultimate goal of this study is to show that popular-
ity prediction indeed improves caching efficiency and to determine under what
circumstances it achieves the most optimal result.

The remainder of this article is structured as follows. Section 2 gives a more
in depth description of existing work on popularity prediction of multimedia
content. Section 3 presents our proposed generic popularity prediction algorithm
and cache replacement strategy that uses it. Subsequently, Section 4 evaluates
the proposed cache replacement strategy using simulation results. Finally, the
paper is concluded in Section 5.

2. Related work

The large size and stringent sequential delivery demands of multimedia con-
tent have caused a push towards novel caching strategies. Traditional caching
strategies have been adapted to operate on individual content segments instead
of entire items [6, 7]. This allows the caches to better utilize the sequential
nature of multimedia content demand patterns. Additionally, such techniques
better map to the skewed internal popularity of multimedia content. Yu et
al. [8] argue that selecting a suitable segment size is a complex problem and
therefore propose an alternative solution that models the internal popularity of
multimedia streams independent of segment size. Kim and Das [9] further ex-
tended the work on segment-based caching, by way of an analytical model that
exploits the temporal locality and popularity of content. Guo et al. [10] studied
a prefix caching method that exploits the fact that the beginning of a movie is
more popular than the ending. Their algorithm automatically determines the
optimal number of segments from the beginning of each movie that should be
cached, based on the internal popularity distribution of the movie. Certain IP-
TV services have specific properties that can be exploited by caching strategies.
For example, the use of sliding-window caches has been proposed in the context
of time-shifted TV services [11]. In line with our work, these techniques aim to
improve caching efficiency. Nevertheless, they focus on a different aspect, which
falls outside the scope of this article.

In the field of time series prediction, a wide range of techniques have been
developed for forecasting all sorts of time series. Recently, machine learning
techniques, such as support vector machines and artificial neural networks have
been applied to this problem [12, 13]. Recently, wyffels et al. [14] have used
reservoir computing, a form of recurrent neural networks, for time series pre-
diction. Additionally, time series often exhibit repeating trends and periodical
effects. For example, multimedia content request patterns often show repeat-
ing effects on a daily and weekly basis. The use of wavelet decomposition has
been proposed to decompose time series into signals with dynamics in different
scales. This has been shown to simplify prediction with neural network based
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techniques [15]. This approach was also successfully combined with reservoir
computing [16].

Recently, several studies have been conducted on modelling the popularity
of multimedia content. These studies can be split into two types. A first type
focuses on characterizing the popularity distribution among different multimedia
objects, while the second type focuses on modelling the popularity evolution of
individual multimedia files.

A popularity distribution among multiple multimedia objects models the
static popularity relationship between the content items offered by a multime-
dia service. It can be used to derive the probability that the content item with
a specific popularity index (e.g., the Xth most popular item) will be requested.
Many models have been proposed for modelling the popularity distribution of
a multimedia service, including Zipf [17], Zipf-Mandelbrot [18], stretched expo-
nential [19], Zipf with exponential cut-off tail [20], power-law with exponential
cut-off tail [21], log-logistic [22] and Weibull [22].

Other research has focused on modelling the dynamic popularity evolution
of individual content items. It thus allows the request evolution of content to
be estimated, based on historical request information. This latter type of re-
search is also the focus of our work. Most work on this topic was performed
in the context of video-sharing services such as YouTube. Cha et al. [20, 23]
found that there is a strong correlation between the popularity of a video after
two days and after ninety days. These observations were supported by a study
performed by Szabo et al. [5]. More recently, Chatzopoulou et al. [24] studied
the correlation between popularity and a wider range of metrics. They found
that the popularity of a video is highly correlated with the amount of posted
comments, ratings and favourites. Figueiredo et al. [25] characterised the popu-
larity evolution of YouTube videos. They found that several different categories
exist that exhibit distinct popularity evolutions. For example, copyright pro-
tected videos got most of their views early in their lifetime. Additionally, they
identified and quantified the main referrers that lead users to videos, as they
are key mechanisms in attracting users and thus highly influence popularity
evolutions. An alternative approach was proposed by Avramova et al. [4]. They
found that YouTube video popularity traces follow several different distribu-
tions, such as power-law or exponential. An analytical model is devised that
predicts the distribution associated with specific popularity traces. Jamali and
Rangwala [26] studied the evolution of popularity on the social news website
Digg. Based on comment data and the co-participation network, they are able
to accurately predict the future popularity of any news item shortly after it has
been posted. In the context of VoD services, De Vleeschauwer & Laevens [2]
propose a prediction method based on a generic user-demand model derived
from traces of VoD and catch-up TV services. Wu et al. [27] adapted the pre-
viously mentioned reservoir computing approach to the popularity prediction
of multimedia content. Niu et al. [28] employ time-series analysis techniques
to predict future content popularity, online population, peer upload and server
bandwidth consumption in peer-to-peer VoD streaming systems. Specifically,
they use an algorithm based on the Box-Jenkins approach [29] to predict fu-
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ture popularity and regression methods to infer initial popularity evolutions of
flash-crowds. In summary, some work has been done on the modelling and pre-
diction of content popularity evolution. However, these previous studies have
not applied this work to content caching. This application is the focus of our
work.

This article extends previous work by ourselves [30], where the theoretical
variant of the predictive cache replacement strategy was presented. Here, a
practical prediction algorithm is proposed and combined with the previously
introduced strategy. This additionally allows us to characterise the influence on
performance of prediction errors.

3. Prediction-based caching

This section describes the proposed generic prediction-based caching strat-
egy. The strategy consists of two parts; an algorithm to predict content popu-
larity (cf. Section 3.1) and a caching strategy that determines what content to
cache based on these predictions (cf. Section 3.2). The remainder of this section
gives an in-depth overview of these two parts.

3.1. Predicting content popularity

This section presents a generic algorithm to predict the content popularity
evolution of multimedia content. Concretely, the prediction algorithm estimates
the evolution of the content’s cumulative request pattern, based on historical
information. It uses non-linear optimization techniques to fit a given set of
models to the historical input data. These fitted models can subsequently be
used to extrapolate the request pattern’s future evolution. The remainder of
this section provides a more in depth and formal overview of the algorithm.

Given is a cumulative request pattern Rc (t), which is a function of time rep-
resenting the total number of perceived requests of content object c up to time
t. The goal of the popularity prediction algorithm is to estimate the value of
Rc (t1) at some future point in time t1 > t, given the value of Rc (t2) for (a rep-
resentative sample of) all moments in time t2 ≤ t. The algorithm approximates
the request history up to time t2 with a set of popularity distribution models
D. A popularity distribution D (t) ∈ D is a function of time that mathemat-
ically models request patterns. It is characterized by a set of parameters PD.
The presented algorithm supports an arbitrary set of popularity distributions.
However, we have identified four that cover a wide range of request patterns:

• Constant: This distribution is capable of modelling unpopular content
that receives no or very few requests over long periods of time. Addition-
ally, it supports the modelling of a constant request rate. Its parameter
set PD consists of two parameters a and b, which respectively represent
the slope and intercept. The associated cumulative distribution represents
the linear function and is expressed as follows:

D (t, a, b) = a× t+ b (1)
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• Power-law: Allows the modelling of steep changes in popularity. It has
been previously proposed in literature as a model for cumulative request
patterns of multimedia content [4]. It is characterized by two parameters,
C and α, which respectively represent the normalization constant and
scaling factor. The cumulative distribution function is defined as follows:

D (t, C, α) = C × tα (2)

• Exponential: In contrast to power-law, this distribution is used to model
more rounded and slow changes in popularity. Its parameter set consists
of the scale parameter α and rate parameter λ. The scale parameter α
specifies the value that the distribution asymptotically approaches, while
the rate parameter λ influences the steepness of the slope (and thus pop-
ularity increase). The cumulative distribution function is expressed as
follows:

D (t, α, λ) = α
(
1− e−λt

)
(3)

• Gaussian: This distribution represents an S-shaped pattern: a steep
increase in popularity pre- and succeeded by a constant request rate. It is
characterized by the mean µ and standard deviation σ. The cumulative
distribution function is expressed as follows:

D (t, µ, σ) =
1√
2πσ2

∫ t

−∞
e−

(x−µ)2

2σ2 dx (4)

Subsequently, every distribution D (t) is fitted to Rc (t) using an uncon-
strained non-linear optimization algorithm [31, 32, 33], which is capable of find-
ing the parameter values that minimize the error between D (t) and Rc (t).
Throughout the rest of this article the Levenberg-Marquardt algorithm [31] is
used, as it has been shown to be faster and more robust than other existing
approaches [34]. The optimization algorithm is used to find the optimal values
P opt
D,c for the parameters PD that allow D (t) to best approximate Rc (t) accord-

ing to some metric. We call this metric the fitting metric. In this article, we
use the mean squared error (MSE) as a fitting metric. It measures the average
of the squares of the errors. Using this metric, the fitting algorithm minimizes
the following function when finding the optimal parameter values P opt

D,c:

f (PD) =

∑t
t2=0 (Rc (t2)−D (t2, PD))

2

t
(5)

Based on the optimal parameter values P opt
D,c of every distribution D (t) ∈ D,

a distribution Dopt
c (t) needs to be selected for predicting the future request

evolution of object c. This selection is made based on the quality of the fit to
the historical trace. The metric used to assess this quality is called the selection
metric. The MSE metric could for example be used. However, as our goal is
to determine the theoretical performance gain that can be achieved, we define
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the optimal (OPT) selection metric. It selects the distribution that results in
the best absolute prediction within the prediction interval. This is obviously a
theoretical metric as it uses information only available in the future. As such,
it provides the theoretical upper performance limit of the presented prediction
algorithm (i.e. it assumes the best candidate distribution is always chosen). It
is calculated using the following formula:∣∣∣Rc (t1)−Rc (t)−

(
D

(
t1, P

opt
D,c

)
−D

(
t, P opt

D,c

))∣∣∣ (6)

Finally, the selected distribution Dopt
c (t) and its optimal parameters P opt

D,c are
used to predict the future. More specifically, the estimated value of Rc (t1) is

defined as Dopt
c

(
t1, P

opt
D,c

)
.

Note that time is a continuous variable. To reduce the total number of
data points in the historical request pattern, we introduce the concept time
granularity. The time granularity θ defines the interval of the sampled data
points in the request pattern. Concretely, the historical request pattern Rc (t)
contains a sampled value for time instants {0, θ, 2θ, ..., t}. On one hand, reducing
the granularity will allow the algorithm to make more fine-grained predictions.
On the other hand, this will also increase its execution time. Throughout the
rest of this article, a value of 1 hour is used for θ.

The algorithm is graphically illustrated by way of an example in Figure 1.
It shows the request trace of an actual video in a deployed VoD system over
the course of 448 hours. The prediction algorithm was applied to the first 400
hours of the trace (the known history) using the exponential and gaussian dis-
tributions. The parts of the curves before the vertical line represent the fits
to known history, while the parts after the line represent the predictions. The
actual number of requests that occur in the interval [400, 448[ is 15. The expo-
nential distribution predicts 14.55 requests within that interval, which is very
close to the real value. On the other hand, the gaussian distribution predicts
only 1.25. This is also reflected in the figure, which show that the gaussian dis-
tribution poorly approximates the start and end of the request pattern. Note
that when using the prediction algorithm in combination with a cache replace-
ment strategy (cf. Section 3.2), the absolute prediction errors are not always
a good indicator for the caching performance. Instead, the relative ordering of
content items implied by the prediction algorithm’s output will determine the
eventual caching efficiency.

3.2. Predictive cache replacement strategy

The predicted future popularity of content can be used as input for a pre-
dictive cache replacement strategy. This section describes a cache replacement
strategy that uses predicted popularity to make more efficient replacement deci-
sions. In contrast to traditional strategies, it uses the expected future popularity
of content as a measure instead of the known historical popularity.

The proposed strategy is called Predictive Least Frequently Used (P-LFU).
It is a predictive version of the LFU caching strategy. LFU keeps track of the
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Figure 1: Optimal fit of the exponential and gaussian distributions to an example cumulative
request pattern; the vertical line represents the current point in time t, on its left is the
400-hour known history, on its right the 48-hour predicted future

number of times that every object is requested. The objects that receive the
highest number of requests within a specified time frame (i.e., the history win-
dow) are kept in cache [35]. In contrast, the P-LFU strategy uses the predicted
number of requests for each object, instead of the known number of requests
in the past. The objects with the most predicted number of requests in the
prediction window W , are kept in cache. The prediction window is a config-
urable parameter. A larger value will allow the algorithm to take into account
longer term popularity variations, but is also more prone to prediction errors.
We introduce two variants of the strategy. The first assumes the future can
be perfectly predicted. The other uses the prediction algorithm presented in
Section 3.1. Throughout the rest of this article they are referred to as Perfect
Predictive Least Frequently Used (PP-LFU) and Optimal-Selection Predictive
Least Frequently Used (OP-LFU) respectively. Using the notations introduced
in Section 3.1, we can define the number of estimated requests for object c at
time t up to time t+W as follows for PP-LFU:

r (t,W, c) = Rc (t+W )−Rc (t) (7)

The PP-LFU strategy thus uses the actual request pattern Rc to achieve a
perfect estimation. On the other hand, OP-LFU uses the optimal estimator
Dopt

c :

r (t,W, c) = Dopt
c

(
t+W,P opt

D,c

)
−Dopt

c

(
t, P opt

D,c

)
(8)

Whenever a request arrives for object ci that is not currently cached, it
replaces the cached object cj if and only if r(W, cj) < r(W, ci) and ∀c ∈ C :
r(W, cj) ≤ r(W, c), with C the set of all cached objects. Or in other words, at
every time t, the cache contains the subset of objects with the highest estimated
request count within the interval [t, t+W ].
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Figure 2: A graphical representation of the Video on Demand dataset

4. Results & discussion

This section evaluates the presented popularity prediction algorithm (cf.
Section 3.1) and predictive caching strategies (cf. Section 3.2). More specifi-
cally, the prediction algorithm is evaluated in terms of accuracy and execution
time. Additionally, the effect of the prediction window parameter W on caching
efficiency is studied in more detail. Finally, the predictive cache replacement
strategies are compared to the traditional LFU caching strategy [35], as well as
the theoretical optimal caching strategy MIN [36]. The MIN strategy replaces
the object in the cache whose next request occurs furthest in the future. It
has been proven to be optimal in terms of cache hit rate [37]. It thus gives
a theoretical upper bound on performance. However, it has no practical use,
as the time of the next request cannot be known in advance. Throughout this
evaluation a history window of 12 hours is used for LFU. We have previously
shown this to be a near optimal value for small cache sizes in combination with
the dataset used in this article [30]. The cache hit rate is used as an evaluation
metric. It is defined as the percentage of requests that can be served from a
cache, as opposed to from the origin content server.

4.1. Evaluation scenario

The dataset employed in the evaluation consists of a request trace of the
VoD service of a leading European telecom operator, measured over a period of
32 days between Friday February 5 2010 and Monday March 8 2010. Within
this period, a total of 75013 requests were sent by 8392 unique users for 4971
different movies. Figure 2 graphically depicts the properties of the dataset. The
popularity distribution over the movies is shown in Figure 2a. The popularity
distribution is highly skewed. A total of 691 requests were measured for the
most popular movie, while 10 or less requests were received for over 72% of all
movies. Figure 2b depicts the request count per day. The figure clearly shows
the weekly trend in the dataset. The five peaks represent the five weekends
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part of the trace, with increased activity on Friday, Saturday and Sunday. In
addition to the weekly pattern, there is a daily pattern (not depicted in the
figure). On weekdays, two peaks are observed. A first, smaller, peak starts as
early as 1 pm and lasts until about 5 pm. The second peak occurs during the
evening from approximately 8 pm until midnight. On Saturday and Sunday,
high request rates persist from 9 am until midnight.

The evaluation scenario considers a single content server and proxy cache.
The topology thus consists of a content server directly connected to the proxy
cache. This cache is then directly connected to all end-users. The content server
is assumed to have enough disk space to host all content. The available disk
space of the proxy varies throughout the experiments and is expressed in terms
of number of cached content items. The depicted cache hit rate results were
measured in the intermediary proxy cache.

4.2. Prediction algorithm evaluation

This section evaluates the accuracy and performance of the prediction al-
gorithm presented in Section 3.1. All results are depicted as a function of the
history length. This is the length (i.e., number of data points) of the historical
request trace used for the curve fitting step of the algorithm.

4.2.1. Prediction accuracy

The prediction accuracy represents the error of the predicted future request
frequency compared to the actual future request frequency. As a metric for
accuracy, the absolute prediction error is used. For a popularity distribution
D ∈ D, prediction window W and distribution parameters P , it is calculated as
follows:

|Rc (t+W )−Rc (t)− (D (t+W,P )−D (t, P ))| (9)

In other words, the absolute prediction error is defined as the difference between
the actual number of requests and the predicted number of requests in the
interval [t, t+W ]. The goal of this section is to assess the effect of the history
length and prediction window W parameters on the prediction error. Figure 3
depicts the absolute prediction error as a function of the history length for
the four different popularity distributions. Figure 4 depicts the same for the
exponential distribution only, but for multiple values of the prediction window
W .

Figure 3a plots the prediction error as a function of the number of historical
datapoints used in the curve fitting step of the prediction algorithm, averaged
over all movies in the trace. On the other hand, Figure 3b depicts the prediction
error, averaged over the 250 most popular movies only. As expected, the predic-
tion error decreases significantly as the number of historical datapoints grows.
For a small history size (i.e., a few hours), the prediction error is very large.
However, it quickly converges to the optimum. More specifically, there is no
significant difference between the prediction after 20 hours and after 100 hours.
This is obviously expected to influence performance of a predictive cache re-
placement strategy, as its predictions will be less accurate for newly introduced
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Figure 3: The absolute prediction error averaged over all objects as a function of the history
request pattern length for W = 1 hour

content. Additionally, comparing the two figures shows a significant different
in prediction error averaged over all movies as compared to averaged over the
most popular movies. This proves that it is more difficult to predict the future
of popular content than that of unpopular content. Finally, the linear and power
law distributions result in the worst overall predictions. Although the difference
between the four distributions is insignificant when averaged over all movies, it
is much clearer when looking at the 250 most popular movies only. In the latter
case, the exponential and gaussian distributions clearly outperform the other
two, resulting in much more accurate predictions (for a large enough history).

In addition to the history length, the prediction window is also expected to
influence prediction accuracy. More specifically, a bigger prediction window is
assumed to lead to larger errors, as it is easier to predict the nearby future.
Figure 4a depicts the prediction error of the exponential fit as a function of
the history length for different prediction window sizes W , averaged over all
movies. Figure 4b depicts the same, but averaged over the 250 most popular
movies only. The figures confirm our assumptions and clearly shows the direct
linear connection between the prediction error and window W . However, for a
request history of more than 100 datapoints, the prediction error averaged over
all movies is less than 1 request even for a prediction window of 24 hours. For
popular content the error increases and a prediction window of 24 hours results
in an average error of less than 6 requests for a history window of 100 datapoints
or more.

In summary, the above results lead to several pertinent conclusions. First,
predicting the future is very difficult if the size of the known history is small.
This makes popularity prediction of newly introduced content highly error prone.
However, results showed that a short history trace (e.g., 20 hours) already re-
duces the error to a near optimal value. Additionally, there is a direct linear
relationship between the prediction error and the prediction window W . Nev-
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Figure 4: The absolute prediction error of the exponential fit for different prediction windows
(in hours) as a function of the history request pattern length

ertheless, even for a prediction window as large as 24 hours, the error can be
reduced to less than 1 request on average as long as the historical trace is large
enough.

4.2.2. Execution time

A deployed proxy cache usually operates in an online fashion. It decides
whether to cache an object or not on-the-fly as requests arrive. The proposed
predictive caching strategies need to execute the prediction algorithm once per
time granularity interval θ for every content item that was requested during
the interval. As such, it is important that the algorithm executes in a feasible
time in order to support online popularity prediction. Figure 5 depicts the
execution time of the curve fitting step of the prediction algorithm for the four
employed distributions. As the curve fitting step of the algorithm is by far
the most computationally intensive, its execution time is representative for the
entire algorithm. The presented results were obtained using a test machine with
a dual-core AMD OpteronTM 2212 processor and 4 GiB of memory.

The figure plots execution time as a function of the historical trace length.
As expected, there is a linear correlation between execution time and history
length. Additionally, the curve fitting algorithm’s execution time is significantly
different depending on the popularity distribution. The linear and power law
distributions have a very low fitting time compared to the exponential and gaus-
sian distributions. Concretely, for a trace of 400 datapoints, the fitting takes 16,
26, 188 and 1007 milliseconds for the linear, power law, exponential and gaussian
distribution respectively. This is in line with the complexity of each distribu-
tion. The linear and power law distributions contain only two variables. The
exponential and gaussian distributions have three variables each. Additionally,
the gaussian distribution is more difficult to calculate as it contains an integral.
Nevertheless, the combined execution time of all distributions for a long trace
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of up to 400 hours long, is only about 1.2 seconds. This allows up to 3000 pop-
ularity distribution updates in a one hour interval. Under more stringent time
constraints, this time can be further reduced by either limiting the historical
data that is taken into account, or limiting the maximum amount of iterations
the fitting algorithm may perform. Additionally, the algorithm’s execution time
is significantly impacted by the number of variables in the popularity distribu-
tions. Limiting the amount of variables in the employed distributions would
therefore greatly increase efficiency.

4.3. Predictive cache replacement strategy evaluation

This section evaluates the caching performance of the proposed predictive
cache replacement strategies. The MIN, PP-LFU and OP-LFU cache replace-
ment strategies all give an upper bound on performance. The MIN strategy
achieves the optimal cache hit rate and represents the absolute upper bound
on caching efficiency. The PP-LFU strategy provides the upper bound for
frequency-based prediction strategies, as it assumes the future is perfectly pre-
dicted. Finally, OP-LFU uses a real prediction algorithm (and thus introduces
prediction errors), but assumes the best popularity distribution is always cho-
sen. It thus represents the upper bound on performance that can be achieved
using the prediction algorithm presented in Section 3.1. This section consists
of two parts. First, the optimal value of the prediction window parameter W is
determined. Second, PP-LFU and OP-LFU are compared to to the traditional
LFU and optimal MIN strategies.

4.3.1. Prediction window parameter

The prediction window parameter allows the predictive cache replacement
strategy to adapt the future time frame that is taken into account. If this time
frame is too short the strategy runs the risk of ignoring important future pop-
ularity fluctuations. However, if it becomes too long the prediction accuracy
significantly decreases and the strategy might take into account expected popu-
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Figure 6: The cache hit rate as a function of the prediction window W for different cache sizes
C

larity changes that are not yet relevant. The results in Figure 6 depict the cache
hit rate as a function of the prediction window W for different cache sizes C.

The figure shows that there is indeed a peak in cache hitrate. Additionally,
the location of this peak is directly proportional to the cache size. Compar-
ing Figures 6a and 6b also proves that this is the case for both PP-LFU and
OP-LFU. More specifically, for a very small cache of 25 objects, the optimal
prediction window is 1 hour. As the cache size increases to 100 objects, the op-
timum increases to 6 hours. Finally, for a larger cache of 200 objects, the optimal
prediction window is 12 hours. The results additionally show that estimating
the prediction window parameter value both too large or too small results in
decreased performance. In the depicted results, the optimal prediction window
value performs up to 33% better than the worst. As such, a practical implemen-
tation should intelligently adapt its prediction window parameter to the size of
the cache, in order to prevent significant drops in performance. Throughout
the remainder of this section, a prediction window of 12 hours is chosen, as it
achieves good performance for caches of 50 or more objects.

4.3.2. Comparison with traditional strategies

This section compares the cache hit rate of the PP-LFU and OP-LFU with
that of LFU and MIN. This provides us with insights of how well predictive
caching can perform compared to a good traditional strategy (i.e., LFU) and
the theoretical optimum (i.e., MIN). Figure 7 depicts these results. As expected,
MIN performs best, closely followed by PP-LFU, OP-LFU and finally LFU.

The results for PP-LFU represent the theoretical upper bound that can be
achieved using a frequency-based predictive cache replacement strategy. As
the cache size increases, its results approach the optimum more closely. For
a cache size of 50 objects, PP-LFU performs 17% worse (i.e., a cache hit rate
difference of 8.5%) than MIN, while for a cache size of 200 objects it only
performs 3% worse (i.e., a cache hit rate difference of 2.5%). Additionally, PP-

14



 0

 20

 40

 60

 80

 0  50  100  150  200
ca

ch
e 

hi
tr

at
e 

(%
)

cache size

LFU
OP-LFU
PP-LFU

MIN

Figure 7: Comparison of the different cache replacement strategies in terms of cache hit rate,
as a function of cache size for W = 12 hours

LFU’s caching efficiency is considerably better than that of the traditional LFU
strategy, performing around 20% better for all depicted cache sizes.

The OP-LFU strategy gives a theoretical upper bound on cache efficiency
when using the prediction algorithm presented in Section 3.1. In contrast to
PP-LFU, it is thus subject to prediction errors, which explain the reduced per-
formance of OP-LFU. For all depicted cache sizes, its caching efficiency is about
10% worse than that of PP-LFU. Compared to MIN, its efficiency increases as
the cache size grows. For a small cache of 50 objects, it is up to 25% worse, while
for a larger cache of 200 objects it is only 11% worse. Additionally, OP-LFU
performs considerably better than LFU. Its gain in efficiency even increases as
the cache size grows, with a 5% improvement for small caches up to 50 objects
and over 10% for a larger cache of 200 objects.

In summary, the presented results show that applying popularity prediction
to cache replacement has the potential of significantly improving the cache hit
ratio compared to traditional strategies such as LFU. Theoretically, employing
the perfect prediction allowed the algorithm to improve up to 20% compared to
LFU. The prediction errors introduced by an actual prediction algorithm based
on curve fitting reduced the maximum performance gain to 10%.

5. Conclusion

The goal of this article was to investigate the merits of using popularity pre-
diction techniques in cache replacement strategies. To this end, we proposed a
novel generic popularity prediction algorithm. It estimates the future popularity
of multimedia content by fitting a set of popularity distributions to the known
request history. The set of popularity distributions can be adapted to fit the
characteristics of the multimedia service to which it is applied. Additionally,
a predictive variant of the Least Frequently Used cache replacement strategy,
called P-LFU, is proposed. It uses the predicted future request frequency to
determine what content to cache. Two theoretical versions of P-LFU are con-
sidered. PP-LFU assumes the future can be perfectly predicted. It thus gives
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an upper bound on performance that can be achieved using P-LFU. OP-LFU
instead employs the presented popularity prediction algorithm, but assumes the
popularity distribution that best predicts the future is selected. It thus gives
an upper bound on performance that can be achieved using P-LFU, when used
in combination with the presented prediction algorithm.

A detailed simulation study, using an actual Video on Demand trace file, was
performed in order to evaluate the merits of prediction-based cache replacement.
The evaluation consists of two main components. First, the popularity predic-
tion algorithm was validated. Second, PP-LFU and OP-LFU were compared, in
terms to cache hit rate, to LFU and the theoretical optimum. This evaluation
lead to several pertinent conclusions. First, the prediction accuracy is severely
impacted by the number of available historical datapoints. This is especially true
for very short history lengths of less than 10 datapoints. This makes predicting
the popularity of newly introduced content highly error prone. Additionally,
there is a direct linear relationship between the prediction window parameter
and the prediction error. Nevertheless, even for a prediction window as large as
1 day, the error can be reduced to on average less than 1 request as long as the
known history is large enough. For the predictive cache replacement strategies
it was shown that the optimal value of the prediction window parameter is di-
rectly proportional to the cache size. Choosing a suboptimal prediction window
was shown to lead to performance drops of up to 33%. A practical predictive
cache replacement strategy could thus automatically adapt its prediction win-
dow according to changes in cache size in order to further optimize performance.
Moreover, applying popularity prediction to cache replacement has the potential
of significantly improving the cache hit rate compared to traditional strategies,
such as LFU. Under the assumption that the future can be perfectly predicted
(i.e., PP-LFU) an improvement of up to 20% can be achieved. However, when
instead using the actual prediction algorithm, this improvement is reduced to
at most 10%.

The presented OP-LFU strategy uses information about the future popu-
larity of content to select the best popularity distribution for prediction. As
this approach is infeasible in a practical deployment, our future work consists of
finding a good estimator for the selection of the optimal popularity distribution
based on historical information.
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