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Abstract

The reduction of a left-invariant Lagrangian system on a Lie group is usually ap-
proached from the viewpoint of the calculus of variations (see e.g. the standard
reference [7]). In this paper, we will explain the reduction process in terms of a
suitable choice of coordinates. We show in detail how in the presence of symmetry
the Euler-Lagrange equations of a left-invariant Lagrangian reduce to the so-called
Euler-Poincaré equations and give some illustrative examples. Next, we consider
the case of a bi-invariant Lagrangian and we discuss briefly its relation to the in-
verse problem of the canonical connection on a Lie group [8]. In section 6, we give
different characterizations of the notion of a geodesic vector (relative equilibrium)
and extend a criterion about their stability (in Arnold’s ‘Riemannian’ paper [1]) to
arbitrary invariant Lagrangians. Along the way, we rediscover results that can also
be found in the papers [6,11,10]. At the end of the paper we use one of the examples
to test the stability criterium.

1 Basic machinery for Lie groups

Throughout the paper, G will be a connected Lie group and g its Lie algebra.
λg and ρg will denote left and right multiplication, respectively. Both maps
can be extended to actions Tλg and Tρg of G on TG. By left translating a

basis {Ei} of the Lie algebra, we obtain a left invariant basis {Êi} of X (G).
Similarly, {Ẽi} will denote the right-invariant basis of X (G) obtained via
right translation. We will use the following convention: if Ck

ij are the structure
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constants of the Lie algebra, then [Êi, Êj] = Ck
ijÊk and [Ẽi, Ẽj] = −Ck

ijẼk

(This is e.g. the convention in [7]).

In the following, a vector vg in TgG will have coordinates (wi) w.r.t. {Êi}, i.e.

vg = wiÊi(g). Each vector vg can be left translated to an element Tλg−1vg in
the Lie algebra and (wi) are the coordinates of this element w.r.t. the basis
{Ei}.

The coefficients (Ai
j) ∈ C∞(G) will denote the relation between the two bases

on X (G),

Êi(g) = Aj
i (g)Ẽj(g), (1)

and we will suppose that the two bases coincide at the identity e of the group,
Êi(e) = Ẽi(e) = Ei ∈ TeG ' g, and thus Aj

i (e) = δj
i . A more geometric

interpretation of the matrix (Ai
j) is the following: let’s right translate both

sides of expression (1) by means of Tρg−1 . Then, taking the left-invariance of

the vector field Êi into account, the left-hand side is in fact Tρg−1TλgEi =
Adg(Ei). On the other hand, due to the right invariance of the vector fields
Ẽj, the right hand side is Aj

i (g)Ej. To conclude, (Aj
i (g)) are the components

of the adjoint map Adg. We will use (Āj
i ) for the inverse of (Aj

i ).

The following property is true for any action of a connected Lie group on
a manifold: a tensor field is invariant under an action if and only if its Lie
derivative under any fundamental vector field vanishes. Here, in the case where
the manifold is the Lie group, we will always assume that the action of interest
is given by left multiplication. In that case, the fundamental vector fields are
exactly the right-invariant vector fields, for which {Ẽi} is a basis. A function
f on G is left-invariant if and only if all Ẽi(f) = 0 and a vector field X on G is
left-invariant if and only if all [Ẽi, X] = 0. In particular, for the left-invariant
Êj, [Ẽi, Êk] = 0. This has some immediate consequences for the coefficients
Aj

i , in view of the bracket relations in both bases:

Ẽj(A
k
i ) + Al

iC
k
lj = 0 and Ai

jA
k
l C

m
ik = Am

n Cn
jl. (2)

A (Riemannian) metric k on G is left-invariant if LẼi
k = 0. So, if kjl =

k(Êj, Êl) are its coefficients w.r.t. the left-invariant basis,

0 = (LẼi
k)(Êj, Êl) = Ẽi(k(Êj, Êl))− k([Ẽi, Êj], Êl)− k(Êj, [Ẽi, Êl])

= Ẽi(kjl).

From this, kjl are constants and, as a consequence, left-invariant metrics can
be interpreted as symmetric bilinear products on the Lie algebra.
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In this paper, most of the objects of interest live in fact on the tangent man-
ifold TG and therefore we will often use the infinitesimal generators of the
induced action Tλg of G on TG. They are exactly the complete lifts {ẼC

i }
of the infinitesimal generators of the action λg of G on G. So, a function
F ∈ C∞(TG) is left-invariant if ẼC

i (F ) = 0. Left-invariant functions are in 1
to 1 correspondence with functions on the Lie algebra: we can always look at
the restriction of such a function to vectors in the fibre TeG ' g. In the other
direction, any function on the Lie algebra can be extended to a left-invariant
function on the whole tangent manifold by claiming it to be constant along
an orbit.

A vector field Z = ZjÊC
j + F jÊV

j ∈ X (TG) is left-invariant if and only if

[ẼC
i , Z] = 0. That is, if ẼC

i (Zj) = 0 and ẼC
i (F j) = 0, so if all Zj and F j

are invariant functions. In particular, for an invariant second order field Γ =
wiÊC

j + F jÊV
j ∈ X (TG), we find that, next to ẼC

i (wj) = 0, also ẼC
i (F j) = 0.

So, all coefficients F j can be interpreted as functions on the Lie algebra and

therefore Γ reduces to a vector field F = F i ∂

∂wi
on the Lie algebra g. If w(t)

is an integral curve of F , then we can recover an base integral curve of Γ by
integrating g−1(t)ġ(t) = w(t).

2 The Euler-Poincaré equations

Let L ∈ C∞(TG) be a left-invariant regular Lagrangian with Lagrangian sec-
ond order vector field Γ. This vector field can be characterized by the equation

LΓθL − dL = 0, where θL = S(dL). (3)

We will show that if L is left-invariant, then so is also Γ, and we will compute
its reduced vector field F on g.

First, recall the following general statement concerning the Lagrangian field
Γ ∈ X (TM) of a Lagrangian L on a manifold M . If Z is a vector field on
TM which is such that Z(L) = 0, [∆, Z] = 0 and LZS = 0, then Z must
be a symmetry, that is [Z, Γ] = 0 (∆ is the Liouville vector field, S is the
vertical endomorphism). In our case where M = G, left-invariance of the
Lagrangian means that ẼC

i L = 0. It is not difficult to see that the vector fields
Z = ẼC

i also satisfy all the other conditions in the statement. For example,
LẼC

i
S(ÊC

j ) = [ẼC
i , S(ÊC

j )] − S([ẼC
i , ÊC

j ]) = [Ẽi, Êj]
V − S([Ẽi, Êj]

C) = 0 and

LẼC
i
S(ÊV

j ) = −S([ẼC
i , ÊV

j ]) = −S([Ẽi, Êj]
V) = 0. We can therefore conclude

that also the Lagrangian field Γ is left-invariant, [ẼC
i , Γ] = 0.
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We will apply (3) to all ẼC
i . Alternatively, we could equally use ÊC

i . Indeed,
with the help of (2), the difference between the complete and vertical lifts of
elements in both bases is given by

ÊC

i = Aj
i Ẽ

C

j + wkCj
kiÊ

V

j and ÊV

i = Aj
i Ẽ

V

j . (4)

Given that the left-hand side of (3) is a semi-basic form, it is clear from (4)
that the application of (3) to elements of the basis {ÊC

i } will only add a factor
Aj

i to the result of doing the same for the basis {ẼC
j }.

Because of the invariance of L and Γ,

0 = (LΓθL − dL)(ẼC

i ) = Γ(ẼV

i (L)), (5)

so, as a consequence of the symmetry of the problem, the ‘momenta’ ẼV
i L are

constants of motion. By means of expression (4), Γ can be rewritten as

Γ = wkÊC

k + fkÊV

k = wkAj
kẼ

C

j + wkwmAj
l C

l
jmÊV

j + fkÊV

k

= wkAj
kẼ

C

j + fkÊV

k .

Both terms of Γ give a term in (5). By taking again the invariance of L into
account, we get for the first term

wkAj
kẼ

C

j ẼV

i (L) = wkAj
kẼ

V

i ẼC

j (L) + wkAj
k[Ẽ

C

j , ẼV

i ](L) = wkAj
kC

l
ijẼ

V

l (L)

= wkAj
kC

l
ijĀ

m
l ÊV

m(L).

The last term is

fkÊV

k ẼV

i (L) = fkẼV

i ÊV

k (L) = fkĀl
iÊ

V

l ÊV

k (L) = fkĀl
iÊ

V

k ÊV

l (L).

Let l ∈ C∞(g) be the restriction of the left-invariant Lagrangian L ∈ C∞(TG)

to the Lie algebra. Then, in the current coordinate system, ÊV
k (L) is

∂l

∂wk
,

when we restrict it to a function on g. The defining relation for the reduced

vector field F = F i ∂

∂wi
∈ X (g) of Γ in (5) is (deleting the factor Āb

a)

F
( ∂l

∂wl

)
= Cj

mlw
m ∂l

∂wj
. (6)

These are the so-called Euler-Poincaré equations [7] and they should be in-
terpreted as differential equations with solution w(t) in the Lie algebra. As

4



was mentioned before, we can find the corresponding solution g(t) ∈ G of the
Euler-Lagrange equations by integrating also g−1ġ(t) = w(t).

3 Examples

Euler’s equations for the free rigid body. Consider a rigid body that
can rotate freely around a fixed point. If L is its angular momentum, then the
equation of motion is L̇ = 0. If (e) = (e1, e1, e1) is a basis that moves along
with the body and if ω is the angular velocity of that basis, then this equation
can be rewritten as

L̇(e) = ω × L, (7)

where L̇(e) stands for relative derivative of L w.r.t. the moving basis. Without
loss of generality, we can suppose that the 3 unit vectors of the basis (e) are
axes of inertia of the body. Then L = I1ω1e1 + I2ω2e2 + I3ω3e3 and equation
(7) should determine the components of ω along the moving basis:

I1ω̇1 = (I2 − I3)ω2ω3,

I2ω̇2 = (I3 − I1)ω1ω3,

I3ω̇3 = (I1 − I2)ω1ω2.

The above equations are sometimes referred to as the ‘dynamical equations
of Euler’. They are of Euler-Poincaré type in the following way. Recall the
identification

ω '


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3).

The basis (e) = (e1, e2, e3) can then be identified with the basis
e1 =


0 0 0

0 0 −1

0 1 0

 , e2 =


0 0 1

0 0 0

−1 0 0

 , e3 =


0 −1 0

1 0 0

0 0 0




,
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satisfying [e1, e2] = e3, [e1, e3] = −e2 and [e2, e3] = e1. It is easy to see that
the above equations are Euler-Poincaré equations on the Lie algebra so(3) for
the Lagrangian l(ω) = 1

2
〈ω, Iω〉 = 1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) ∈ C∞(g).

The corresponding Lagrangian L ∈ C∞(TG) at the level of the Lie group
SO(3) can be found by left-translating the Lagrangian l. Having solved the
dynamical equations, one still needs to integrate the relation ω = R−1Ṙ, to
find the corresponding solution R(t) ∈ SO(3) of the Euler-Lagrange equations.
This last relation is known as the ‘kinematical equations of Euler’.

The ‘Bloch-Iserles’-equations [3]. The space of interest is Sym(n), the
linear space of symmetric n× n matrices. The equation is

Ẋ = [X2, N ], X ∈ Sym(n), (8)

where N ∈ so(n) is a skew-symmetric n×n matrix. Any such N gives Sym(n)
the structure of a Lie algebra with bracket

[X, Y ]N = XNY − Y NX, X, Y ∈ Sym(n).

Can we find a Lagrangian l ∈ C∞(Sym(n)) for which these equations are of
Euler-Poincaré type w.r.t. the above Lie algebra? The answer is given in [4]:
the corresponding Lagrangian is

l(X) =
1

2
trace(X2). (9)

To make things more accessible, we will only consider the easiest case of
Sym(2). Then, a basis is given by the matrices

e1 =

 1 0

0 0

 , e2 =

 0 1

1 0

 and e3 =

 0 0

0 1

 ,

and, without any problem we can take N to be

 0 1

−1 0

. The Lie algebra

brackets are [e1, e2]N = 2e1, [e1, e3]N = e2 and [e2, e3]N = 2e3. An arbitrary

element of the Lie algebra is of the form X = xe1 + ye2 + ze3 =

x y

y z

 and
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the equations take the form ẋ ẏ

ẏ ż

 =

−2y(x + z) x2 − z2

x2 − z2 2y(x + z)

 . (10)

It can easily be verified that the Euler-Poincaré equations (6) for the La-
grangian l(x, y, z) = 1

2
(x2 + 2y2 + z2) on the above Lie algebra are exactly

equations (10).

The Lie algebra (Sym(n), [·, ·]N) is not so unfamiliar as it may seem at first.
In [4] it shown to be isomorphic to sp(n,R), by means of (for n = 2)

X =

x y

y z

 7→ NX =

 y z

−x −y

 .

However, the Euler-Poincaré-structure of the equations and the Lagrangian
are most clear in the Lie algebra (Sym(n), [·, ·]N).

4 Bi-invariant Lagrangians

In this section, we will suppose that the Lagrangian L is both left- and right-
invariant. If Ad : G × g → g : (g, w) 7→ Tρg−1Tλgw is the adjoint action,
then L’s restriction l to g is obviously Ad-invariant. Also the converse is true:
By means of left translation, we can obtain a bi-invariant Lagrangian from an
Ad-invariant function on the Lie algebra.

An equivalent condition for bi-invariance is that both ẼC
i L = 0 and ÊC

j L = 0.
Relation (4) then shows that bi-invariance of a left-invariant Lagrangian is
equivalent with

wkCj
kiÊ

V

j L = 0 or wkCj
ki

∂l

∂wj
= 0. (11)

The condition (11) appears also in the context of the inverse problem for
invariant Lagrangians on a Lie group [8]. It is the necessary and sufficient
condition for the existence of a left-invariant Lagrangian whose Lagrangian
field coincides with that of the spray associated to the canonical connection.
This is easy to see as follows. The canonical connection is given by

∇XY =
1

2
[X, Y ], X, Y left-invariant vector fields on G.
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In the basis {Êi}, the connection coefficients are Γk
ij = 1

2
Ck

ij and therefore is

the associated second order field simply Γ = wiÊC
i and the reduced vector field

on g, F = 0. On the other hand, from (6) it is clear that the reduced vector
field vanishes in the Euler-Poincaré equations if and only if (11) is satisfied.

The integral curves of the vector field F = 0 on the Lie algebra are of the
form w(t) = w0. Recall that the relation between solutions w(t) of the Euler-
Poincaré equations (at the Lie algebra level) and the corresponding solutions
of the Euler-Lagrange equations (at the group level) was w = g−1ġ. So, the
solutions through e at t = 0 are of the form g(t) = exp(tw0)e. Therefore, all
solutions of the Euler-Lagrange equations are exponentials if and only if L is
bi-invariant. This property is well-known for Riemann metrics on a Lie group:
The two notions of the exponential map coincide if and only if the metric is
bi-invariant.

Let’s come back to the condition (11). After a first derivation by wl, we find

Cj
li

∂l

∂wj
+ wkCj

kikjl = 0, kij =
∂2l

∂wi∂wj
,

and by taking the linear combination with wl, the above becomes (taking into
account (11))

wkwlCj
kikjl = 0. (12)

After two derivations of (11) by wl and wm, we find

Ck
ilkkm + Ck

imklk + Ck
ijw

j ∂klk

∂wm
= 0, (13)

(
∂klk

∂wm
is the (totally symmetric) ‘Cartan torsion’ of l on g). In the case that L

is a Finsler function, l is a so-called ‘Minkowski function’ on the vector space

g (in the terminology of [2]) and wk ∂l

∂wk
= 2l and thus wk ∂2l

∂wk∂wm
=

∂l

∂wm
.

The conditions (12) and (13) are then both equivalent with (11): you just have
to take a suitable linear combination with w’s. This observation can also be
found in [6], where a k satisfying (13) is called a ‘Minkowski Lie algebra’ on
g.
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5 Geodesic vectors, relative equilibria and their stability

For a bi-invariant Lagrangian, all solutions of the Euler-Lagrange equations are
exponentials. But when do we have an exponential solution for a left-invariant
Lagrangian? The papers [10,11] by J. Szenthe and the paper [1] by V. Arnold
deal with this question. Such solutions are usually called ‘relative equilibria’
in a ‘mechanics’ context [1,9] and ‘geodesic vectors’ in a more ‘geometric’
context [10,11]. A solution γ(t) is called stationary if there is a w0 ∈ g such
that γ(t) = exp(tw0)γ(0). w0 ∈ g is a geodesic vector or relative equilibrium
if the solution through w0 ∈ TeG at t = 0 (and thus with e = γ(0) ∈ G)
is stationary. The group element where the solution starts does not really
play a role: if γ is stationary for some w0 and γ(0) = g ∈ G (i.e. if γ(t) =
exp(tw0)g), then Adg−1w0 is a geodesic vector with corresponding solution
γ̄(t) = exp(Ad(g−1)w0)e, through e at t = 0.

If w0 is a geodesic vector for L, then its corresponding solution γ(t) = exp(tw0)
satisfies γ−1(t) = exp(−tw0) and γ̇(t) = Tλexp(tw0)w0 (λ denotes left-translation
as before). So γ−1(t)γ̇(t) = Tλexp(−tw0) ◦Tλexp(tw0)w0 = w0 is constant. So, the
search for geodesic vectors is equivalent with the search for constant solutions
of the Euler-Poincaré equations (6) and that explains the name relative ‘equi-
libria’. From the Euler-Poincaré equations, we see that w0 = (wk

0) is such a
solution if and only if

wk
0C

j
ki

∂l

∂wj
(w0) = 0. (14)

In the case that L is Finslerian or Riemannian, we find equivalent characteri-
zations by taking derivatives (as in the previous section). For example in the
case that the Lagrangian comes from a Riemannian metric, condition (14) for
l = 1

2
kijw

iwj is equivalent with

wk
0w

l
0C

j
kikjl = 0 or k(w0, [w0, w]) = 0,∀w ∈ g.

If we identify a geodesic vector w0 as an element in TeG ⊂ TG, then - next
to the supposed left-invariance of the Lagrangian ẼC

i L(v) = 0, for all v ∈ TG
- also

ÊC

i L(w0) = 0. (15)

The two characterizations (14) and (15) can also be found in [11], in a somehow
disguised form. The characterization (15) is, in Szenthe’s particular coordinate

system, the condition
∂L

∂xi
|w0= 0 in his proposition 2.2. However, the proof of
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this proposition in [11] is wrong, and the assumption that the Lagrangian is a
first integral of its Lagrangian field is unnecessary, as indeed are the assump-
tions that the group is compact and that the basis of TeG is orthonormal.

The curve γ̇(t) = TLexp(tw0)w0 is also an integral curve through w0 ∈ TeG
of the vector field w̃C

0 (w̃0 is the fundamental vector field associated to left
translations and is thus right-invariant). So, if γ is a base integral curve of the
Lagrangian field Γ then γ̈(t) = Γ(γ̇(t)) = w̃C

0 (γ̇). Due to the invariance, this
property is equivalent with Γ(w0) = w̃C

0 (w0). In general, Γ = yiẼC
i + f iÊV

i . So,
w0 is a geodesic vector if the functions f i vanish at w0 and geodesic vectors

(relative equilibria) are equilibria of the reduced vector field F = f i ∂

∂wi
on g.

Finally, condition (14) can be interpreted as the condition for the critical points
of the restriction of the Lagrangian (quadratic function in the Riemannian
case) to some orbit. There are even two interpretations: the orbit of w0 under
Ad as in [11], or a dynamical orbit as in [1].

In the first case, let lw0 be the restriction of the Lagrangian l to only elements
in the Ad-orbit of w0. A point is critical if v(lw0) = 0 for all tangent vectors v
to the orbit of w0. Any such tangent vector can be constructed in the following
way. For any w ∈ g, the curve

cw : t 7→ Adexp(tw)w0

lies in the orbit of w0 and its tangent vector at t = 0 is in fact

ċw(0) = [w, w0], (16)

(regarding a tangent vector in Tw0g as an element in g). Since any tangent
vector to the orbit of w0 can be written in this way, a point is critical if for
all w = (wi),

0 = ċw(0)(lw0) = [w, w0]l = wiCk
ijw

j
0

∂l

∂wk
(w0),

which is exactly condition (14).

Szenthe uses the above characterization, in the case that G is compact, to prove
that there exists at least one stationary geodesic. Let ad : G×G → G, (g, h) 7→
g−1hg and Ad : G × g → g, (g, x) 7→ Tadg(x) be the two notions of adjoint
actions. Let G(x) ⊂ g be the orbit of x ∈ g under Ad and Gx ⊂ G the (closed)
isotropy group of x. Then, there is a bijection ρ : G/Gx → G(x), [h]Gx 7→
Adhx. In the case that G is compact, so is also G/Gx and thus has the function
L ◦ ρ at least one critical point.
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The characterization in [1] is a bit different from the above. Although Arnold
only deals with the case when L is Riemannian, we can extend it to the more
general case.

Recall that we could write the Euler-Poincaré equations in the form Γ(ẼV
i L) =

0. So, due to the symmetry of the equations we have conservation of the
momenta, and all ẼV

i L ∈ C∞(TG) are first integrals of our system. These
functions are not left-invariant: ẼC

j (ẼV
i (L)) = Ck

jiẼ
V
k L 6= 0 (they are also not

right-invariant), although their restriction to the Lie algebra g is
∂l

∂wi
. The

left-invariant function on TG that corresponds to
∂l

∂wi
on the Lie algebra is

in fact ÊV
i L = Aj

i Ẽ
V
j L (recall that Ai

j was δi
j at e).

Let g(t) be a solution of the Euler-Lagrange equations, going through g(0) = e
and ġ(0) = w0 ∈ TeG = g. Then, w(t) = g−1(t)ġ(t) is a solution of the Euler-
Poincaré equations (with w(0) = w0). The conservation law is then

ẼV

i L(ġ(t)) = ẼV

i L(w0).

The right-hand side is
∂l

∂wi
(w0). The left-hand side is Āj

i (g(t))Êv
j L(g(t)w(t)) =

Āj
i (g(t))Êv

j L(w(t)) = Āj
i (g(t))

∂l

∂wj
(w(t)). Since the matrix (Aj

i (g)) corresponds

to the operator Adg (see section 1), Āj
i (g) corresponds with Adg−1 . To con-

clude, the conservation of momentum can be written as

((Adg−1(t)x)l)(w(t)) = (x(l))(w0), (17)

for all x ∈ g, here interpreted as tangent vectors in Twg.

The rest of the reasoning will be more clear if we take first a step backwards
and suppose that the Lagrangian is Riemannian. Then l(w) = 1

2
k(w, w), for

some symmetric bilinear form k on g and (17) is

k(Adg−1(t)x, w(t)) = k(x, w0), ∀x ∈ g. (18)

We will use the first integrals to establish an equivalence relation on g. Two
elements w and w̄ of the Lie algebra are said to be equivalent if there exists a
g ∈ G such that

k(w, Adgx) = k(w̄, x), ∀x ∈ g. (19)

In general k(w, Adgx) 6= k(Adgw, x). There is only equality when k is Ad-
invariant, and this is only the case when L ∈ C∞(TG) is bi-invariant (and

11



thus when all w ∈ g are relative equilibria). From this, an orbit under the
above equivalence relation is different form an Ad-orbit, where two vectors w
and w̄ are equivalent if there is a g ∈ G such that Adgw = w̄ and thus

k(Adgw, x) = k(w̄, x), ∀x ∈ g.

The advantage of the above equivalence relation is that it is ‘invariant’ (and
we will use this for checking stability later), that is to say: each solution w(t)
of the Euler-Poincaré equations stays in one and the same equivalence class.

In the Riemannian case we can define B such that

k([w, x], y) = k(B(y, w), x), ∀x, y, w ∈ g,

with coefficients Bm
jk = klmkijC

i
kl. The Euler-Poincaré equations for l = 1

2
kijw

iwj

can then be rewritten in the form

ẇm = klmkijC
i
klw

jwm or ẇ = B(w, w).

From this, w0 is a relative equilibrium if and only if B(w0, w0) = 0.

A tangent vector to the equivalence class (19) of w0 can be constructed as
follows. For any given w, define a curve t 7→ cw(t) by means of

k(c(t), x) = k(w0, Adexp(tw)x), ∀x ∈ g.

Its tangent vector at t = 0 is

ċw(0) = B(w0, w) (20)

(any fibre of Tg is interpreted as g), because all coefficients kij are constants
in the Riemanian case and therefore k(ċw(0), x) = k(w0,

d
dt
|0 (Adexp(wt)x)) =

k(w0, [w, x]). Remark again that the two approaches (16) and (20) do not co-
incide: B(w0, x) = [x, w0] if and only if the metric (Lagrangian) is bi-invariant.

The function lw0 is now the restriction of l to the equivalence class (19) of
w0 ∈ g. A point w0 is critical if for all w, ċw(0)(lw0) = B(w0, w)l = 0. In the
current case where l(ξ) = 1

2
k(ξ, ξ) is Riemannian, this relation is simply

0 = k(w0, B(w0, w)) = −k(B(w0, w0), w) ⇔ B(w0, w0) = 0,

which is the condition for w0 to be a relative equilibrium.
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Still continuing the Riemannian case, Arnold [1] uses the following argument to
say something about stability. Let l be a first integral of a first-order dynamical
system ẇ = f(w); let the system have an invariant equivalence relation and let
w0 be an extremum of l on an equivalence class, then, if the second derivatives
of l on the equivalence class of w0 form a positive-definite or a negative-definite
quadratic form, the point w0 is stable.

In the Riemannian case, the Lagrangian l is of course a first integral and the
second derivatives of the restricted Lagrangian lw0 give us the quadratic form
Q of interest. Here, for w0 = (wi

0) and w = (wi), the tangent vector ċw(0) is

locally vw = Bk
ijw

i
0w

j ∂

∂wk
|w0 . An easy calculation shows that the quadratic

form that should be positive- or negative-definite is

Q(w) = vw(vwlw0) = B(w0, w)(B(w0, w)l)

= k(B(w0, w), B(w0, w)) + k([w,w0], B(w0, w)). (21)

This observation is Théorème 4 of [1].

Let’s see now how we can extend all this to the case of a non-Riemannian
Lagrangian. Then l is not a first integral anymore, but (the Hamiltonian)

El =
∂l

∂wi
wi − l ∈ C∞(g) is! So, we will need to look at the restriction of El

to some equivalence class. As before, this equivalence class comes from the
conservation of momentum (17): two vectors w and w̄ are in the same class if
there exist a g ∈ G such that

((Adgx)l)(w) = (x(l))(w̄), ∀x ∈ g.

It is easy to see that this does indeed define an equivalence relation. By (17),
the curve w(t) = g−1(t)ġ(t) of a solution g(t) of the Euler-Lagrange equations
stays in the same class for all t. As before, for every given w̄ in g, we can define
a curve cw̄(t) by means of

((Adexp(w̄t)x)l)(w0) = (x(l))(cw̄(t)), ∀x ∈ g.

This curve lies in the equivalence class of w0 (and is well-defined if we suppose
that l is regular). Its tangent vector at t = 0 satisfies

Ck
ijw̄

ixj ∂l

∂wk
= xj ∂2l

∂wj∂wm
(ċw)m(0)

(all functions are evaluated at cw̄(t = 0) = w0), or, a tangent vector to the

13



equivalence class at w0 is given by

ċw̄(0) = kjmCk
ijw̄

i ∂l

∂wk

∂

∂wm
|w0 .

The restriction of El =
∂l

∂ws
ws − l to the equivalence class of w0 has a critical

point at w0 if for all w̄,

0 = ċw̄(0)(El)(w0) = kjmCk
ijw̄

i ∂l

∂wk

(
∂2l

∂wm∂ws
ws +

∂l

∂wm
− ∂l

∂wm

)
(w0)

= wj
0C

k
ijw̄

i ∂l

∂wk
(w0).

Not surprisingly, this means that w0 is a relative equilibrium. We can also
apply the stability theorem. By means of the second derivatives, we find that
the quadratic form

Q(w̄) = vw̄(vw̄El)(w0)

=
(
klnCm

hlC
k
ij

∂l

∂wm
(w0)

∂l

∂wk
(w0) + Cm

hkC
k
ijw

j
0

∂l

∂wm
(w0)

)
w̄hw̄i

should be either positive or negative definite in order for w0 to be stable.

6 Coming back to the examples

Let’s consider the example of the Bloch-Iserles equations (10) again. The rel-
ative equilibria lie either on the line (λ, 0, λ) or on the plane (λ, ρ,−λ). In this
example, the Lagrangian l(x, y, z) = 1

2
(x2 + 2y2 + z2) is clearly Riemannian.

The only non-zero coefficients of B are

B1
12 = −2, B2

11 = 1, B3
21 = 2,

B1
23 = 2, B2

33 = −1, B2
32 = 2,

and the coefficient matrix of the quadratic form (21) is, for w0 = (x, y, z)

Q =


2x2 + 4y2 − 2xz 2xy + 2yz x2 + 4y2 + z2 − 2xz

2xy + 2yz 0 2xy + 2yz

x2 + 4y2 + z2 − 2xz 2xy + 2yz 4y2 + z2 − 2zx
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In the points (λ, ρ,−λ), the quadratic form Q(w) in w = (wx, wy, wz) is

Q(w) = (4λ2 + 4ρ2)(w2
x + 2w2

y + w2
z),

which is clearly positive definite. We can therefore conclude that these geodesic
vectors must be stable. For (λ, 0, λ), however, we get

Q(w) = 0,

so we can not draw a conclusion from the analysis of the previous section. For
this particular example, however, the behaviour of all solutions can easily be
analyzed analytically (see figure 1). Treating the configuration space locally as

Fig. 1. Some solutions with initial conditions (0, 0, i/10) for i = −4 . . . 4.

R3, it is easy to see that all non-equilibrium solutions lie in a plane x+z = C,
for some constant C. In each such plane, these solutions are closed (they are
in fact circles) and centered around the equilibrium (C

2
, 0, C

2
). Therefore all

relative equilibria are stable.

7 Outlook

It should be possible to extend the above results and methods to Lagrangian
systems on a manifold M , invariant under an action G × M → M of a Lie
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group G on M . Some immediate questions are the following ones: If L is
an invariant Lagrangian (Finsler function/Riemannian metric) on M , when
does it have a stationary geodesic (relative equilibria), i.e. a solution of the
form γ(t) = exp(tξ)m, for some m ∈ M and ξ ∈ g? In particular, is there a
similar characterization for these solutions as critical points of some function?
It is well-known that the equations of motion for such invariant Lagrangian
systems reduce to the so-called Lagrange-Poincaré equations (see [5]). These
equations can be decomposed into a vertical and horizontal component. In this
more general set-up, the vertical equation represents in fact conservation of
momentum Γ(ẼV

i L) = 0. A standard reference for the Hamiltonian approach
to relative equilibria is [9].
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