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ABSTRACT: Density matrix embedding theory (DMET)
(Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404)
provides a theoretical framework to treat finite fragments in
the presence of a surrounding molecular or bulk environment,
even when there is significant correlation or entanglement
between the two. In this work, we give a practically oriented
and explicit description of the numerical and theoretical
formulation of DMET. We also describe in detail how to
perform self-consistent DMET optimizations. We explore
different embedding strategies with and without a self-
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consistency condition in hydrogen rings, beryllium rings, and a sample Sy2 reaction. The source code for the calculations in
this work can be obtained from https://github.com/sebwouters/qc-dmet.

1. INTRODUCTION

Many quantum systems require a treatment beyond mean-field
theory to adequately capture properties of interest. A long-
standing problem in quantum many-body theory has therefore
been the development of computationally feasible and accurate
correlated methods. This problem has been explored in the
contexts of nuclear structure, condensed matter, and quantum
chemistry, quite often with significant cross-fertilization.
Methods such as coupled-cluster theory,' ™ the density-matrix
renormalization group (DMRG),*® and dynamical mean-field
theory (DMFT) " are examples of techniques now employed
across different branches of physics and chemistry.

Densit?r matrix embedding theory (DMET) is another
example. '? Its foundation lies on the border between tensor
network states (TNS) and DMFT. TNS provide a versatile
framework for reasoning about the quantum entanglement of
local fragments with their surrounding neighbors in terms of
the Schmidt decomposition of quantum many-body states,'
while DMFT self-consistently embeds the Green’s function of
local fragments in a fluctuating environment.'* While TNS are
able to capture the low-lying eigenstates to high accuracy, they
require an explicit representation of the entire quantum many-
body system at the same level of approximation; even with
translational invariance, accurate contractions of the environ-
ment have to be performed. DMFT circumvents this problem
by treating only the local fragment at an explicit self-consistent
many-body Green’s function level, with the environment
represented only by its hybridization function. However,
nonlocal interactions between the fragment and its environ-
ment become more difficult to include in DMFT, and the
formulation in terms of frequency-dependent quantities
engenders additional numerical effort over ordinary ground-
state calculations.

DMET attempts to combine the best of the two worlds, and
in doing so, introduces an approximation of its own. Similar to
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DMFT, DMET embeds a local fragment, treated at a high level,
in an environment, treated at a low level, thus circumventing
the need to represent the entire system with uniform accuracy.
However, in contrast to DMFT which embeds the Green’s
function, the embedding of DMET uses only the ground-state
density matrix and thus does not require a frequency-
dependent formulation. The accuracy of DMET depends on
the low-level and high-level methods that enter into the
formulation. The low-level method is used to provide an
approximate ground-state wave function, from which a bath
space for the local fragment is obtained by a Schmidt
decomposition. The high-level method computes a wave
function in the space of the local fragment with the small
number of bath states, to high accuracy. DMET is thus a kind of
wave function in wave function embedding method, and there
can be a rich variety of combinations of low-level and high-level
methods. For example, some low-level methods that have been
used in DMET are Hartree—Fock (HF) theory,""'* Hartree—
Fock-Bogoliubov theory,"” antisymmetrized geminal power
(AGP) wave functions,'® coherent state wave functions for
phonons,'” and block product states for spins.'® Some examples
of high-level methods that have been used are exact
diagonalization (also known as full configuration interaction
(ECID)),"""> DMRG,">"” and coupled-cluster theory.*

So far, the ground-state formulation of DMET has been the
most widely applied. In condensed matter systems, it has been
used to study the one-dimensional Hubbard model,""*! the
one-dimensional Hubbard—Anderson model,'® the one-dimen-
sional Hubbard—Holstein model,’” the two-dimensional
Hubbard model on the square,'">** as well as the honeycomb

lattice'” and the two-dimensional spin-é J,—J, model."?
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Quantum chemistry applications have been fewer, but it has
been used to study hydrogen rings and sheets,'” as well as
carbon polymers, two-dimensional boron—nitride sheets, and
crystalline diamond.”® We also want to mention that the
DMET bath orbital construction can be used to define optimal
QM/MM boundaries,23 as well as to construct atomic basis set
contractions which are adapted to their chemical environ-
ment.”* While DMET has mainly been used for ground states,
though, the formalism is not limited to ground-state properties.
By augmenting the ground-state bath space with additional
correlated many-body states from a Schmidt decomposition of
the response wave function, accurate spectral functions have
been obtained.'””’

Despite this growing body of work on DMET from several
workers, our own group’s presentation of the numerical
implementation and theoretical formulation of DMET has
been limited to the two short original articles'”'” and the
Supporting Information of ref 15. The discussion of our
implementation for quantum chemistry problems has been
particularly brief. This work therefore attempts to provide a
more explicit explanation of DMET from our perspective,
which we believe will be particularly useful for those seeking to
implement the method for their own chemistry applications.
Together with this work, we provide a code QC-DMET?® that
may be used in real calculations. For simplicity, we focus
exclusively on the ground-state formulation of DMET.

In Section 2, we begin by discussing the DMET bath
construction. The DMET low-level and high-level embedding
Hamiltonians and their connection through self-consistency are
then introduced, and their construction is explained in Section
3. We explain how to compute expectation values (such as the
energy) from the one- and two-particle reduced density
matrices of the ground states of the embedding Hamiltonians
in different fragments in Section 4. The numerical aspects of
the self-consistency of DMET are treated in Section 5. Various
algorithmic choices are tested, and their implications are
discussed in Section 6. In Section 7, we summarize our results.

2. DMET BATH CONSTRUCTION

Imagine a system composed of two parts, a fragment (typically
called an impurity in lattice applications) A and an environment
B as shown in Figure 1. In general, any wave function |¥) of the
full system can be expressed in the Hilbert space of the states of
Aand B, ie, {lA) ® IB))}, of dimension N, X Ng. However, if
the %) of interest is known a priori, its Schmidt decomposition

for the local fragment A and its environment B allows us to
reduce the number of required many-body states for the
environment B significantly

Ny Np

1¥) = 3 > ¥JA)IB)
j

i

N, Ny min(N,,Np)

Y2 D UAViA)B)
i j a

min(N,,Np)

Z AJA VB,

a

(1)

We remind the reader that the singular value decomposition of
the coefficient tensor '¥; yields two unitary basis trans-
formations U, and V3 = V;, which transform the many-body
bases for the local fragment A and its environment B separately.
If Ny is larger than N, this Schmidt decomposition shows that
we only need to retain at most N, many-body states for the
environment B in order to express our desired |¥).

The N, many-body Schmidt states IB,) define an exact
DMET bath for the fragment A. If '¥') is the ground state of a
Hamiltonian H in the full system, then it is also the ground state
of the embedding Hamiltonian

H,

€

b = PHP @
where P = ZaﬂIAaBﬁXAaEﬁI. This is the heart of the DMET
construction: The solution of a small embedded problem,
consisting of a fragment plus its bath, is the same as the
solution of the full system.

In practice, DMET approximations must enter, however,
because the bath construction itself requires the solution state
[¥). DMET is thus formulated in a boot-strap manner, where
an approximate low-level |®@) for the full system is first used to
derive the DMET bath and then improved self-consistently
from the high-level solution of the small embedded problem,
which yields a high-level [¥). Different DMET approximations
in the literature use different states |®) and impose different
forms of self-consistency between ¥) and |®).

In a general DMET calculation, the total system can be
divided into multiple local fragments (Figure 2). In this case,
each local fragment A, is associated with its own embedded
problem and high-level wave function |¥,). Consistency
between the different [¥,) must then be enforced. This is

B

Figure 1. Local fragment A and its environment B.
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Figure 2. Division of the universe into local fragments.
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carried out via self-consistency with a single low-level |®) used
to describe the total system.

Various kinds of low-level wave functions have been explored
in the literature. These include wave functions with correlation,
such as configuration interaction wave functions in ref 25, block
product states for spins in ref 18, and AGP wave functions in ref
16. These forms of |®) yield correlated many-body Schmidt
states, whose matrix elements must be explicitly computed in
the embedding Hamiltonian. However, although there are real
benefits to using the most accurate feasible |®) in the bath
construction, it is also convenient to recycle the large number
of existing quantum many-body solvers when solving the
embedded problem. When a low-level wave function of mean-
field form is used, such as a Slater determinant, the N, many-
body states for the environment B are spanned by a Fock space
of single-particle states, equal in number to the number of
single-particle states of the local fragment A.'> This orbital
representation of the bath then allows us to reuse existing
quantum many-body solvers with little modification. In this
work, we focus therefore on low-level Slater determinant wave
functions.

2.1. Bath Orbitals from a Slater Determinant. Consider
a Slater determinant approximation |®,) for the ground state of
the full system. In second quantization, it can be written as

o) = [T afl-)
HEocc (3)
Here, s denotes occupied spin—orbitals, and |—) denotes the
true vacuum. In lattice model language, the spin—orbital indices
combine the lattice site and spin indices into one index. A
spin—orbital therefore has two possible occupations. Spatial
orbitals correspond to the lattice sites which have four possible
occupations. In what follows, we always assume orthonormal
spin—orbitals for the local fragment and its environment. They
are denoted by k, |, m, and n, and there are L of them. The
occupied orbitals are of course always orthonormal. They are
denoted by p and v, and there are N, of them. The
orthonormal local fragment and bath orbitals are denoted by p,
g, 1, and s. There are L, orbitals in the local fragment A.
The occupied orbitals can be written in terms of the local
fragment and environment orbitals

Z ﬁ;j Ckﬂ

keAB

AT=

(4)

The physical wave function represented by eq 3 does not
change when the occupied orbitals are rotated among each
other.”””® Reference 12 discusses how this freedom can be used
to split the occupied orbital space into two parts: orbitals with
and without overlap on the local fragment. This construction
can be understood by means of a singular value decomposition.
Consider the occupied orbital coefficient block with indices on
the local fragment: k € A. The singular value decomposition of
the L, X N, coefficient block Cy, yields an occupied orbital
rotation matrix V,,

Ly
Clk € 4) = D YAV,
) (%)

which can be made square by adding N, .. — L, extra columns:
W = [V V ]. The occupied orbital space can now be rotated
with the N . X N, matrix W

occ occ
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(6)

Of the rotated occupied orbitals, only L, have nonzero overlap
with the local fragment

=

Uy, ifp <L,
0

Cylk € 4) = Z Z Uk-z/lq oW = ,
otherwise
™)
This construction assumes that L, < N, .. This assumption can
fail when we use large basis sets in quantum chemistry. We
return to this issue in Section 2.2.
The Schmidt eigenstates {IB,)} in eq 1 can be found by
diagonalizing the reduced density matrix of the environment B

Ny min(N,,Ng)

Z <Ai|lP0><‘PO|Ai> = 2

i a

Py = Ty [%) (Fol = /Lf'ga)(Ba'

(8)
Consider {(A, |®)}, the overlap of the Slater determinant with
the many-body basis states of the local fragment A. The Slater
determinant can be factorized into two parts: one part which
contains the orbitals with overlap on the local fragment and a
second part which contains the orbitals without overlap on the
local fragment:

) = ([T ahc JT a)-)

p<L, L,<p<N,

©)

The N, states {IB,)} are therefore spanned by the direct
product space of (a) the N,.. — L, occupied orbitals without
overlap on the local fragment and (b) the Fock space consisting
of the L, entangled orbitals with overlap on the local fragment,
after they have been projected onto the environment. The
construction in eq 5 of ref 12 is based on the overlap of the
occupied orbitals with the local fragment

Ly
Sw = 2 C;kckv = Z |4
P (10)

keA
It is immediately clear from the discussion above that at most
L, eigenvalues of S, are nonzero. The L, corresponding
eigenvectors yield the bath orbitals (r < L,)
Ck/A ur

= Ck’ AT
Z JZZGBIC,,IZ %; N (11)

keB
The bath orbitals in eq 11 are exactly those from eq 6, after the
latter have been projected onto the environment.

From the above, we see that the DMET construction yields
four kinds of orbitals: local fragment orbitals, bath orbitals,
unentangled occupied environment orbitals, and unentangled
unoccupied environment orbitals. The bath orbitals and local
fragment orbitals will, in general, be partially occupied in the
DMET high-level wave function ¥); thus, the bath plus local
fragment space is a quantum chemistry active space. In active
space language, the unentangled occupied environment orbitals
are external core orbitals, and the unentangled unoccupied
environment orbitals are external virtual orbitals. Figure 3
illustrates the relationship of the original basis to the active
space representation generated by the transformation to bath
orbitals. Because there are N, .. — L, core orbitals, the active

occ

space of the 2L, local fragment and bath orbitals will contain

occ
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Figure 3. Bath orbital transformation generates an active space. Note
that the depicted ordering of the orbitals is arbitrary.

precisely L, electrons. The N,. — L, core orbitals can
contribute direct and exchange terms to the embedded
Hamiltonian, as discussed in Section 3.

2.2. Bath Orbital Construction in Practice. We now
present a second and completely equivalent construction of the
bath orbitals. In this formulation, only the mean-field density
matrix in the local fragment and environment orbital basis is
required

Nocc Nocc .
Dy = <q)0|alTﬁqu)o> = Z CkuC;l = Z Ckpcpl
(12)

The eigenvalues of this idempotent density matrix are all either
0 or 1. Consider the (L — L,) X (L — L,) subblock where k
and [ belong to the environment B only. We have hence
removed the L, rows and columns corresponding to the local
fragment. Due to MacDonald’s theorem,”” at most, L,
eigenvalues of the (L — L,) X (L — L,) subblock will lie
between 0 and 1. The corresponding eigenvectors are the
orthonormal bath orbitals from eq 11. The N,. — L,
eigenvectors with eigenvalue 1 are the unentangled occupied
environment orbitals, which give direct and exchange
contributions to the active space Hamiltonian (see Section 3).

The overlap matrix S, in eq 10 is a projector of the occupied
orbitals onto the local fragment. Analogously, Dy,(kl € B) is a
projector of the environment orbitals onto the occupied
orbitals. Any eigenvectors with partial weight signal occupied
orbitals with support on both the local fragment and the
environment, i.e., the entangled occupied orbitals.

In practical calculations in quantum chemistry, the selection
of bath orbitals is intimately tied to the localization procedure
used to determine how orbitals define fragments. One
possibility is to localize orbitals using some standard procedure
(Léwdin orthogonalization, Boys localization, etc.) and defining
the fragments accordingly. It is important to note, however, that
the localization must mix particle and hole states so that at least
some of the fragment orbitals become entangled. If this strategy
is followed, some of the L, fractional eigenvalues of Dy,(k! € B)
can lie arbitrarily close to 0 or 1 (or to 0 or 2 when a spin-
summed restricted Slater determinant is used as the low-level
wave function). It can happen for very large basis sets (N, <
L,) or when the occupied core orbitals of neighboring atoms
are in practice unentangled. This makes it difficult to
distinguish between true bath orbitals and unentangled
environment orbitals. In such cases, one approach is to use
an eigenvalue cutoff (e.g, 107") to discard the corresponding
eigenvectors from the bath orbital space. However, in chemical
applications, this truncation can lead to problems, for example,

2709

if different sets of bath orbitals enter at different points on a
potential energy surface. A practical fix is then to keep only one
bath orbital per broken chemical bond, as was first presented in
ref 23.

In this work, we have considered a more elaborate
localization strategy using the ideas expressed in ref 30. In a
typical calculation, we determine fragment core orbitals by
projecting the occupied MO set into core-like AOs. In the
valence space, we use the intrinsic atomic orbital (IAO)
construction described in ref 30. This yields a set of localized,
atomic-like orbitals that exactly span the occupied MO space.
Localized, atomic-like virtual orbitals are then determined by a
projection into a set of corresponding atomic-like orbitals
(appropriately orthogonalizing with respect to the previous
sets). If this strategy is followed, entangled orbitals in the
fragment are restricted to the valence IAO set, while core (and
virtual) orbitals keep this character within the fragment. We
find this strategy closer to the spirit of DMET and can avoid
some of the arbitrariness in choosing an eigenvalue cutoff to
determine entangled orbitals. It can also provide more
consistent results as the atomic basis set is increased toward
completeness.

Due to the possibility of truncation, we henceforth denote
the number of bath orbitals by L, where Ly < L,. Once the
bath orbitals are determined by diagonalizing Dy (kI € B), all
other environment orbitals are restricted to be fully occupied or
empty. Thus, with truncation, the deficit in electron number
between the fully occupied environment orbitals and N, is the
number of electrons N, in the active space.

OCC

3. DMET HAMILTONIANS AND SELF-CONSISTENCY

We now introduce the low-level and high-level DMET
Hamiltonians, which are connected by the DMET correlation
potential and self-consistency. In lattice applications of DMET,
the low-level Hamiltonian is termed the lattice Hamiltonian,
and the high-level embedding Hamiltonian is termed the
impurity Hamiltonian. As the quantities are all related, we
discuss in general terms their role in the theory before we give
their precise definition.

We first start with the Hamiltonian for the total system. For a
general chemical problem, it takes the form

A=E, + Z tkl“kal + 5 Z (klmn)akaTA a
ki

(13)

klmn

where t; and (kllmn) are diagonal in the spin indices of spin—
orbitals k and [, and (kllmn) is diagonal in the spin indices of m
and n as well. Throughout this work, four-fold permutation
symmetry (kllmn) = (mnlkl) = (Iklnm) is assumed.

Here, H yields [¥,) as its exact ground state, as appears in eq
1. However, in DMET, the determination of [¥y) is replaced by
the determination of a low-level wave function I®) and a set of
high-level wave functions I'¥,). Also, |®) is the ground state of
the DMET low-level Hamiltonian h’ (vide infra), and I¥,) is
the ground state of the DMET high-level (embedding)
Hamiltonian F*,, for fragment A,. Both are derived from H,
and are connected by the correlation potential C. The
correlation potential C is adjusted to match observables in
I®) and V) through a self-consistency cycle. As we see, the
form of C depends on the observables we choose to match and

the type of I®) we are using.
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In the formulation we focus on here, the low-level |®) is a
Slater determinant. Thus, h’ is a one-particle Hamiltonian of
the form

"=h+ ) C,
; (14)

where C is a sum of one-particle operators acting on each of the
blocks of fragment orbitals

-3

kleA,

XATA

G U 4y

(13)

and the ujj matrix elements are adjusted to match single-particle
density matrices (a}, a,) between the high-level wave function
I¥,) and the global low-level wave function |®). We delay the
precise description of the matching until Section S but note
that unless there is translational invariance or other symmetries
to relate the fragments, C, will be different for each fragment.
Here, h is a single-particle Hamiltonian, which may be held
fixed along the DMET optimization. The simplest choice for h
is the one-particle part of the total Hamiltonian H, and in this
case, one relies on the correlation potential C to produce the
mean-field Fock-like Coulomb and exchange contributions on
the fragments, as the correlation potential is adjusted by the
self-consistency. Alternatively, one can choose the initial h to be
the Fock operator F derived from H. In thls case, however, the
Coulomb and exchange potentials of F that act in each
fragment A, will be redundant with C, during the self-
consistency, although the components that act outside of the
fragments are not. If H only has Coulomb terms which act in
each fragment separately (as in the Hubbard model), choosing
h to be the Fock operator or the hopping Hamiltonian
Zil tkl&,j dy is exactly equivalent. Thus, in applications of DMET
to the Hubbard model, the simpler hopping Hamiltonian 4 has
been commonly used.

We now discuss the high-level embedding Hamiltonians.
There are two choices: an interacting bath high-level
Hamiltonian and a noninteracting bath high-level Hamiltonian.

3.1. Interacting Bath Formulation. The high-level
embedding Hamiltonian ., is an interacting Hamiltonian
for the active space of local fragment A,. The conceptually
simplest construction of H,, is to project the total
Hamiltonian H into the active space representation of fragment

A, asin eq 2. We can do this by writing the one-particle part of
H:mb as

= Y [ty + ) [(kllmn) — (knlml)IDE™]4/4,

mn

(16)

(note the inclusion of the Coulomb and exchange terms from
the unentangled occupied environment), then transforming the
one-particle part to the active representation of fragment A,
and adding the active space two-electron integrals, yielding

Ly +Ly, Ly +Lg,
X A T,\ A /\
A,,=PAP= Y h.aa + Z (pqirs)a;
rs pqrs

(17)
where P denotes the transformation and projection into the
active space of fragment A,. Note that the correlation potential
does not actually appear in Y, as this would double-count
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the effects of the interactions already included in the active
space. The correlation potential appears only indirectly through
its effect on the form of the bath and core orbitals. However, to
ensure that the total number of electrons in all local fragments
adds up to N, it becomes necessary to introduce a global
chemical potential for the local fragment orbitals, thus giving

glob Z a,

r€A,

A emb emb

H <« H

X X

(18)

Note that fiy, does not depend on orbital (r) or fragment (x)
indices.

3.2. Noninteracting Bath Formulation. A simpler
construction, motivated by the impurity formulation of
dynamical mean-field theory, can also be used. Here, Coulomb
interactions are only included on the fragment orbitals while
the correlation potential C is used to mimic the Coulomb
interactions elsewhere. This is known as the noninteracting bath
formulation of DMET. Here, we first define the single-particle
part of the high-level Hamiltonian as

W=h+ )G,

x#A (19)
where we observe that the correlation potential appears on all
sites outside of the fragment. We then transform this to the
fragment plus bath representation of fragment A, and include
the two-particle interactions only on the fragment orbitals, giving
(including a chemical potential)

X x LAX
o EPEN A
H, ., = Z hysd/ 4, = Hyg Z a'a, + Z (kllmn)
rs reA, klmn
alala.a (20)

Because the correlation potential appears directly in the high-
level Hamiltonian through its contribution to eq 19, the
correlation potential can itself be used control the total particle
number in all the local fragments. Thus, if matching the particle
number between |®) and the union of all I¥,) is achieved
perfectly in the DMET self-consistency cycle, the chemical
potential i, appearing in eq 20 is redundant and can be
omitted. Alternatively, C (i.e,, uj;) can be constrained to be
traceless, and then j,;, takes on the meaning of the diagonal
part of C. We typically use the latter strategy.

While the noninteracting bath formulation only includes two-
particle interactions on the fragment orbitals, it nonetheless
converges to the exact result as the fragment size increases.
Thus, either the noninteracting bath or interacting bath
formulation can be used and may be convenient for different
purposes. For example, the first studies of the Hubbard model
with DMET used the noninteracting bath formulation because
many quantum Monte Carlo methods used in this problem
have difficulty with the nonlocal two-electron interactions that
appear in the interacting bath formulation of DMET. However,
for quantum chemical solvers such as configuration interaction
or coupled cluster theory, the only benefit to omitting the bath
two-particle interactions is to reduce the number of two-
electron integrals to compute. This is not a large advantage in
practice when weighed against neglecting the bath correlations.
For this reason, we focus on the interacting bath formulation in
the calculations in this work.

DOI: 10.1021/acs.jctc.6b00316
J. Chem. Theory Comput. 2016, 12, 2706—2719


http://dx.doi.org/10.1021/acs.jctc.6b00316

Journal of Chemical Theory and Computation

4. DMET EXPECTATION VALUES

The ground state of each fragment DMET high-level
Hamiltonian yields a high-level wave function I¥,). These
high-level wave functions are used to assemble the DMET
expectation values of interest. Note that if the fragments are
nonoverlapping as is typical in DMET each fragment wave
function defines the expectation values for operators that act
locally on each fragment. For example, from each local
fragment’s |¥,), we obtain the one-particle and two-particle
density matrices (1- and 2-RDM) on the fragments

D; = (a/a) (21)
PN PN PNIN
qo;lsr <apar asaq> (22)

with pgrs € A,. We refer to this as a “democratic” evaluation of
the local expectation values.

For nonlocal operators that act on multiple fragments,
different fragments’ high-level wave functions will, in general,
yield different values for the nonlocal expectation values.
Clearly, it is desirable to combine the expectation values from
different fragments in an optimal way. The solution used in the
original DMET was to partition the expectation value of a
Hermitian sum of nonlocal operators, such as aja,. + &2'?11-, in a
similarly democratic fashion as

<‘iiT‘ij + ‘ijT‘i) = <lPx(i)|&iTﬁjlqlx(i)> + ("Px(j)mjﬁillyx(j)> (23)
where x(i) denotes the fragment containing orbital i, ie., the
first index of the operator determined the fragment wave
function to use. Following this rule, the total energy
corresponding to the Hamiltonian H in eq 13 is evaluated as

Et = Eque + Z E,
x (24)

L
tot
Z tuDi
1 (25)

However, there are some cases where this “democratic”
partitioning of nonlocal expectation values is suboptimal. This
can be observed when a single fragment (labeled by A) is
treated with a high-level method, while other fragments are
treated at a lower level of theory. In this case, the nonlocal
expectation values associated with the high-level wave function
of fragment A are more accurate than the expectation values
associated with the low-level wave function of other fragments.
Then, it is more accurate to define

(6a, + ala) = (B,la[aI¥,) + (P)la/a)¥,)

L
1
+ — kllmn)P"
2 2( mn) Iklnm

Imn

E =)

keA,

(26)

In the extreme case where a single fragment is treated at a
high level of theory while other fragments are treated at the
same level of theory as that used to obtain the Slater
determinant |®), then it is more accurate to define all
expectation values using the high-level wave function for
fragment A. In this case, the energy expression becomes

Etot = Enuc + EA (27)

We see an example of this in the applications section.

It is important to note that not only the fragment and bath
orbitals but also the core (unentangled occupied environment)
orbitals in |¥,) contribute to nonlocal expectation values. For
example, in eq 25, the density matrices are total density
matrices including the core contributions. Not including the
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core contributions leads to inaccurate values for nonlocal
expectation values. This can be seen in ref 21, where the
nonlocal correlation functions did not use the core contribu-
tions. For the interacting bath formulation with democratic
partitioning, the fragment energies, eq 25, become

Exzz

PEA, q

1 Ly +Lp,
D;p + E Z (pqlrs)P;plsr

qrs

e by + E;q
2
(28)

with fl;q the rotated one-electron integrals from eq 16. The one-
electron integrals in eq 28 avoid the double counting of
Coulomb and exchange contributions of the core (unentangled

occupied environment) orbitals. The factor % is similar to the

difference between the Fock operator and energy expressions in
HF theory.

5. OPTIMIZATION OF THE LOW-LEVEL HAMILTONIAN
AND CORRELATION POTENTIAL

The final component in the DMET algorithm is to determine
the correlation potential C. As introduced above, in the
interacting bath formulation, the correlation potential appears
in the low-level Hamiltonian h’, while in the noninteracting
bath formulation, it appears in both the low-level Hamiltonian
h' and high-level Hamiltonian .

Optimizing the correlation potential requires choosing
observables to match between the low-level and high-level
wave functions, which defines an associated cost function.
Different cost functions lead to different DMET functional
constructions, with different properties. For example, matching
the density matrices of the fragments makes the DMET
observables a functional of the self-consistently converged
density matrices: DMET is then a local density matrix
functional theory. Matching only the diagonal elements of the
density matrices in DMET similarly provides a lattice density
functional interpretation of DMET.

Some of the cost functions and correlation potential forms
that have been used in DMET calculations include matching
the full density matrix of the fragment plus bath orbitals (but
using correlation potentials defined in the usual way on the
fragments only, uf; for kI € A, in eq 15), which we term
fragment (impurity) plus bath fitting,""'* matching the density
matrix of the fragments only using correlation potentials on the
fragments, which we term fragment (impurity) only fitting,'""*
matching the diagonals of the fragment density matrices, usin%
diagonal correlation potentials on the fragments (1] = 15y,
and using no correlation potential (#f; = 0) and only matching
the total number of electrons with a global chemical potential
,uglob,zo which we refer to as single-shot embedding. Written
explicitly, these cost functions are, respectively, for the fragment
plus bath density matrices''

Ly +Lg,
CEiy(u) = Z z (D — DY (w))?
X rs (29)
the fragment only density matrices'>'°
CFfrag(u) = Z Z (Dr’sc - D:snf(u))z
x rs€A, (30)

the fragment only densities”'
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CEns(w) = X > (D} — D (w))*

x rE€EA, (31)
and for the total electron number®’
2
CFelec(”glob) = ( Z Z D::(l'%lob) - Nocc)
x r€A, (32)

The latter corresponds to a global chemical potential
optimization. As discussed extensively in ref 16, trying to
mimic (parts of) a high-level correlated density matrix by (parts
of) a mean-field density matrix is not always possible because
the latter is idempotent, while the former does not have to be.
This is analogous to certain densities not being noninteracting
v-representable in Kohn—Sham density functional theory. In
such cases, the cost functions will not minimize to zero, and
this is in fact always the case for the first cost function eq 29. In
the calculations in this work, we focus primarily on the local
fragment (“impurity only”) density matrix matching, as in the
original quantum chemistry DMET."

The cost function optimization algorithm in refs 11 and 12
optimized the correlation potential uf; for each local fragment
A, independently. The disadvantage is that it is prone to limit
cycles and slow convergence due to overshooting when there
are multiple fragments. Instead, we recommend to optimize the
correlation potential for all local fragments simultaneously; the
stationary points of the two procedures are the same. We
further fix the high-level density matrix when optimizing the
cost function since then the gradient with respect to the
correlation potential can be expressed in terms of the gradient
of the low-level density matrix. This is easily computed, as
shown in the Appendix. We then use this gradient in a standard
least-squares optimizer such as provided by MINPACK. Once
the new u is determined the high-level density matrix is
updated. [This iterative strategy is common to all previous
DMET works. For certain problems, it may not be an optimal
numerical strategy similar to how fixed-point iterations in
standard HF theory may fail in certain molecules.] The full
algorithm is described in Section S.1.

If there exists no low-level wave function that exactly matches
the given (fixed) high-level density matrix fragments, the best
matching low-level density matrix D™(u) may be undetermined
during the cost-function optimization. This is because for any
nonzero value of the cost function and fixed high-level density
matrix, there is clearly a manifold of low-level density matrices
D™ (not necessarily parametrized by u), which yield the same
(nonzero) cost. Indeterminacy occurs when there is a
continuous intersection between D™ and D™(u) (ie, the
density matrices parametrized by u), which is increasingly likely
as the fragment size increases, and there is more freedom in u.
It is therefore useful to consider an alternative formulation
where this indeterminacy does not arise.

First, consider minimizing (®lh |®) under a set of
Lagrangian constraints similar to the Kohn—Sham scheme in
density functional theory. If the local fragment density matrices
are to be matched (cf. eq 30), this corresponds to the
optimization

. N x mf x
min[(@IFI®) + > Y wi(Dri(@) - D)

x rs€A,

(33)

In eq 33, the correlation potential appears as the matrix of
Lagrange multipliers that enforces the constraints. Imposing the
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orthonormality constraint on the orbitals ¢; leads to a set of
eigenequations satisfied at the minimum

Z (ﬁ + Z ﬁx)i;‘ﬁé = €i¢,‘
j x

(34)

where g; is the set of Lagrange multipliers enforcing
orthonormality. This eigenvalue problem is identical to the
ground state DMET low-level problem, where the orbitals that
define |®) are obtained from the single-particle Hamiltonian h'.
To eliminate the indeterminacy when the density matrix
constraint cannot be satisfied, we consider the dual of eq 33,
replacing the constrained optimization by an unconstrained
maximization over the potential u, following Lieb.*"** This
gives the new cost function

CEipg(u) = rrgn[@lﬁICI)) + Z Z (D™ (@) — DY)]

X rs€A,
(35)

In the above |®) uses the aufbau occupations. When an exact
match of the density matrix can be found, maximizing eq 35 is
equivalent to minimizing eq 33 or the original cost function eq
30. However, the unconstrained maximization can be
performed even when no exact match exists, and then the
presence of the energy term breaks the degeneracy of
imperfectly matched solutions, removing the indeterminacy in
u.

To maximize eq 35, we use a standard BFGS optimization
(using the analytical gradients of the cost function). For all
calculations presented later using fragment density matrix
matching, it was possible to perfectly match the density
matrices; thus, the cost functions eqs 30 or 35 gave identical
results. We also use the mean-field Fock operator of the initial
low-level wave function |®) (in practice, the restricted
Hartree—Fock determinant) to define h in eq 35. This still
ties the DMET optimization problem to the original Hartree—
Fock solution. This dependence could be eliminated if the
mean-field Fock operator is also determined self-consistently.
However, in the few cases where we tried the latter, we
observed no noticeable difference with respect to using the
initial Fock operator.

5.1. The DMET algorithm. Now that all the pieces of the
DMET algorithm have been introduced, the total DMET
algorithm can be described. At the start, the system
Hamiltonian (eq 13) should be known, as well as the
partitioning of the system into local fragments (Figure 2).
The pseudocode for the total DMET algorithm is given in
algorithm 1. On lines 4—6 the low-level density matrix for the
total system is computed for a given correlation potential. On
line 9, the DMET bath orbitals for local fragment A, are
computed according to Section 2.2. On line 10, the high-level
embedding Hamiltonian for local fragment A, is calculated
according to Section 3. Together with a global chemical
potential which only acts on the local fragment orbitals but not
on the bath orbitals, the high-level ground state 1-RDM and 2-
RDM on line 11 are determined from the embedding
Hamiltonian. The contribution of local fragment A, to the
total energy is computed according to eq 25 on line 12. On line
14, these local energy contributions are summed to yield the
total DMET system energy. On line 15, the total number of
electrons in all local fragments is obtained as a sum of local
fragment traces of the high-level 1-RDMs. When this number is
different from the desired particle number, the chemical
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potential needs to be adjusted. Line 16 is realized in our code
by the secant root-finding method to solve for

Nfragments(ﬂglc.b) - Nocc =0 (36)
And finally, once gy, is found, the optimization of the
correlation potential on line 18 is performed with the methods
described in Section S.

Algorithm 1 Pseudocode for the DMET algorithm
1u«0
2 figiob < 0
3: do

Uprevious <~ U R
[@o(w)) = '+ 3 C

B
Dy e [Bo(u))
do
for A, € system do
Compute bath orbitals: af « DR’
Eo; by (palrs) < D™ « Diyf

11: Di; P+ Eo; b (palrs); pgob
12: E. « D; PL,
13: end for

Eiot < Eae + 2 B
z
Nivagments < 2 > Df,
= reA:
Hglob <= Hglob; Niragments — Noce
while Ngagments # Noce
u; DI min CF(u)

19: while 4 # Uprevious

6. APPLICATIONS

The calculations in this work have been performed with QC-
DMET.*® The integrals in atomic and molecular orbital spaces
were obtained with PySCF.* As high-level methods, we have
used the coupled-cluster solver with singles and doubles
(CCSD) from PySCF and the FCI (DMRG) solver from
CHEMPS2.** In this work, we use the CCSD response density
matrices®>*® obtained using the solution to the corresponding
A equations.

6.1. Hydrogen Rings. We present interacting bath DMET
results for the symmetric stretch of a hydrogen ring with 10
atoms in the STO-6G basis in Figure 4. A Léwdin symmetric
orthogonalization was used to define the localized orthonormal
orbitals. Restricted HF was used as the low-level method and
FCI as the high-level method. Results for fragments with one or
two orbitals (one or two hydrogen atoms) are shown. Note that
due to the periodic character of the system, only a single
fragment problem needs to be solved. The fully symmetric HF
solution was used to define the DMET low-level Hamiltonian h
in self-consistent calculations; results using the dimerized
solution yield nearly indistinguishable energies. In self-
consistent calculations, we use the fragment (impurity) only
fitting (cf. eqs 30 or 35).
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Figure 4. Interacting bath DMET results for the symmetric stretch of a hydrogen ring with 10 atoms in the STO-6G basis (using a Lowdin
symmetric orthogonalization). (a) Bond dissociation curve. Two RHF curves are displayed, corresponding to a fully symmetric and a dimerized
solution; the corresponding instability occurs at ~2.1 A. (b) Fraction of the correlation energy captured by DMET. (c) Nearest-neighbor bond
orders in self-consistent DMET(2H, u #0) calculations.

2713 DOI: 10.1021/acs.jctc.6b00316

J. Chem. Theory Comput. 2016, 12, 2706—2719


http://dx.doi.org/10.1021/acs.jctc.6b00316

Journal of Chemical Theory and Computation
(a) (b)

—0.40 —  0.006 : , ; ,
ul B
—0.42} § 0005
IS
—0.44} 8 0.004
o g
= I
E —0.46 ! 0.003
© ] %
5 i = 0.002
g o048} i
>
2 o 0.001
& —0.50¢ 5
2 0.000
—0.52f LI
3 —0.001
—0.54f 2
‘ ‘ =1 Y00 ‘ . ‘ ‘
05 1.0 25 3.0 0035 1.0 L5 2.0 25

1.5 2.0 .
Bond length (Angstrom) Bond length (Angstrom)

Figure S. Interacting bath DMET results for the symmetric stretch of a hydrogen ring with 90 atoms in the STO-6G basis (using a Lowdin
symmetric orthogonalization). (a) Bond dissociation curve. (b) Energy differences with respect to DMET(6H, u = 0) calculations.
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Figure 6. Interacting bath DMET results for the symmetric stretch of a beryllium ring with 30 atoms using the STO-6G basis set. (a) Potential
energy curve obtained in DMET u = 0 calculations (using a CCSD solver) compared to CCSD and RHF. (b) Differences in DMET u = 0
calculations compared to full-system CCSD. (c) Zoom-in of panel (a) near the curve-crossing region, additionally compared with u # 0 results and
with the use of a FCI solver. The RHF energies in (c) have been shifted by the atomic CCSD correlation energy.

The DMET energies follow the FCI results closely along the smaller correlation energy, not due to larger errors in DMET.
whole dissociation curve.'” More details can be observed by We see that the DMET energies are not variational, as eq 25
plotting the fraction of correlation energy captured by DMET. does not correspond to the expectation value of a single wave
The larger deviations at smaller bond distances are due to a function. The inclusion of the correlation potential (beyond the
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global chemical potential) yields results significantly more
accurate than without it; in particular, nearly exact results are
obtained for bond lengths larger than 1.6 A.

We display also the nearest-neighbor bond orders ( @l a,,))
in self-consistent DMET(2H) calculations. Because of the use
of two-site fragments, two types of bond orders can be
computed in DMET: intrafragment and interfragment. In spite
of their nonequivalence (which reflects the broken full
translational invariance), both are significantly improved over
RHF, which remains constant (by symmetry) along the entire
dissociation curve. Note that the use of the cost function eqs 30
or 35 guarantees that the determinant |®}), that results from the
DMET self-consistency procedure, has exactly the same
intrafragment bond orders as the ones defined by the DMET
expectation values. We see that the DMET solution is strongly
dimerized at intermediate bond lengths. As the FCI solution
must preserve translational symmetry, we cannot detect
dimerization in the single-particle density matrix. However,
the corresponding behavior might be expected in the bond—
bond correlation functions in the two-particle density matrix.
This would also indicate a tendency for the system to undergo a
Peierls transition.

We show in Figure S interacting bath DMET results for the
symmetric stretch of a 90 atom hydrogen ring using the STO-
6G basis, a Léwdin symmetric orthogonalization, and FCI as
the high-level solver. In this case, we show results for fragments
with one, two, three, five, and six hydrogen atoms. The fully
symmetric RHF solution was used to carry out the DMET
calculations, even though the dimerized RHF solution yields
lower energies across the entire dissociation profile. The left
plot shows results without a correlation potential; results
appear to converge relatively monotonically with respect to the
size of the fragment around the equilibrium region. The right
plot shows the difference with respect to the DMET(6H, u = 0)
energies, additionally including results with u # 0. We further
compare with the DMRG calculations presented in ref 37 for
the energy of the 50 atom H chain. (Note that for short bond
lengths larger differences are expected with respect to DMRG
results due to the difference in finite size effects in a ring vs a
chain.) Both u = 0 and u # O results using the larger fragments
are only slightly off (a few tenths of a mE, per atom) from
DMRG for bond lengths greater than 1.0 A. For the smaller
fragment sizes, the fragment density matrix fitting results are in
better agreement with DMRG than the single-shot embedding
ones. However, the difference between the two types of self-
consistency becomes small as the fragment size increases.
Unfortunately, convergence with respect to the fragment size
here is nonmonotonic, which prevents us from attempting
accurate extrapolations.

6.2. Beryllium Rings. In this section, we consider results
for a ring of 30 beryllium atoms using the STO-6G basis set. As
shown in Figure 6, the RHF solutions near equilibrium and
toward dissociation have different characters. In the former
case, there is 6 (sp-sp) bonding between the beryllium atoms,
while in the latter case, the atomic 2s orbitals are occupied.”

The DMET calculations used restricted HF as the low-level
method and either FCI or CCSD as the high-level method. Our
localization procedure for DMET calculations proceeded as
follows. We first defined the core orbitals by projecting the
RHF occupied MOs into atomic-like 1s orbitals. We then
obtained IAOs using the atomic-like 2s and a single 2p orbital
(tangent to the ring). The remaining 2p orbitals were used to
define the virtual space. This localization strategy leads to a
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(7,6) active space when a single beryllium atom is used to
define the fragment. Self-consistent DMET calculations were
performed in two stages: The core and virtual orbitals were
treated as frozen and a correlation potential was optimized in
DMET calculations using the 2s and (tangent) 2p orbitals with
the cost function eq 35; the correlation potential thus obtained
was included later in a single-shot embedding calculation using
the full set of orbitals.

We have not computed exact benchmark data for this system.
Instead, we have compared our DMET energies to the full
system CCSD energies. When the correlation is not too strong,
we expect the full system CCSD to be an accurate benchmark.
However, under more strongly correlated conditions, for
example, as the bonds are stretched or near an avoided
crossing, we might expect small fragment DMET calculations
with a CCSD solver to be more accurate than the full system
CCSD itself, as the latter can break down. [Note that it is often
the case that the impurity problem is more amenable to a
many-body correlation treatment than the original problem. In
particular, if there is no bath truncation and the highest
occupied MO (HOMO) or the lowest unoccupied MO
(LUMO) are delocalized over the fragment and the environ-
ment, it follows that the single-particle gap is larger on the
impurity. ]

As shown in Figure 6a, the single-shot DMET energies
generally lie close to the full system CCSD results along the
whole dissociation curve. All curves are discontinuous due to
the crossing of the two RHF solutions with different character.
If we examine the difference from the full system CCSD in
Figure 6b, the largest difference (with a 1l-atom fragment) is
smaller than 4 mE,, per atom, while larger fragments (S or 6 Be
atoms) give differences of only ~1 mE, per atom along the
entire dissociation profile. Close to, and to the right of, the
RHF crossing point, we see the largest differences of the
DMET energies from the full system CCSD energy. This
deviation does not significantly decrease with the larger
fragment sizes. The explanation is found in Figure 6¢, which
provides a close-up of the energies around the crossing region.
We see that the CCSD energies display an unphysical
discontinuous jump comparable to that of the RHF solution.
However, the DMET energies have a much smaller jump, much
closer to the correct physical result. The size of this jump is
much smaller with self-consistency, indicating that the DMET
self-consistency can remove most of the dependence on the
initial RHF determinant. Indeed, for the points near the
crossing, we see a smooth transition in the character of the
DMET low-level wave function from doubly occupied 2s to sp
hybridization. This thus illustrates a situation where small
fragment DMET using an approximate high-level method yields
better behavior than a calculation on the full system. Indeed,
the difference between using FCI or CCSD as a solver in these
DMET fragment sizes appears quite small, which would not be
the case for the full system.

6.3. Sy2 Reaction. In this section, we study single-shot
embedding (ie, u = 0 but with a global chemical potential)
DMET results with an interacting bath Hamiltonian for the
symmetric Sy2 reaction

CpHyF - F — CHyF - F (37)

The transition state and geometries along the internal reaction
coordinate (IRC) were optimized with Gaussian09°” and the
B3LYP method, along with the cc-pVTZ basis*’ for C and H
and the aug-cc-pVTZ basis”' for F atoms. In the interacting
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bath DMET calculations, we used the cc-pVDZ basis* for all
atoms. The transition state is shown in Figure 7.

Figure 7. Optimized transition state geometry for the Sy2 reaction.

In the DMET calculations presented below, we have used the
IAO-based localization procedure described in Section 2.2. The
system was partitioned into fragments by cutting across C—C
bonds. Different fragment sizes, labeled by the number of
carbon atoms in each fragment (#C), were considered. If 1C
fragments are used, then the leftmost fragment corresponds to
a CH,F, unit, followed by a CH, unit, and so on. Restricted HF
was used as the low-level method. Three types of calculations
have been performed:

(1) A standard DMET calculation using CCSD as the high-
level method for each fragment, denoted as DMET (all).
(2) A DMET calculation where only the leftmost fragment
(where the substitution takes place) is treated with the
high-level method (CCSD), while others are treated at
the RHF level [Here, RHF is used as a high-level
method to solve each impurity Hamiltonian. The
resulting 1-RDM may differ slightly from that of the
original Slater determinant |®) due to truncation of the
bath orbital space and the presence of /,tglob.] This we
label as DMET(1).
Same as above, but with the active space formula for the
energy (eq 27) and particle number, denoted AS.

©)

Note that for E,g the global particle number is automatically
correct, but the global chemical potential iy, needs to be
optimized for the former two cases. In selecting the bath
orbitals for a given fragment, we have considered two different
schemes: truncating the space using an eigenvalue cutoff of
10" and keeping a single bath orbital per chemical bond
broken.”

Figure 8 shows the fraction of correlation energy (with
respect to full-system CCSD) obtained with the different
calculation schemes. It is clear that the total energies from
DMET(all) calculations are more accurate than with other
schemes, as correlation from all electrons is accounted for.
Nevertheless, the same is not true for the relative energy
profiles, as discussed below.

Figure 9 displays the relative energy profiles: Results using an
eigenvalue threshold of € = 107" to select bath orbitals are
shown in panels (a), (c), and (e), while those with a single bath
orbital per chemical bond cut are shown in panels (b), (d), and
(f). Although the behavior shown in panels (a) and (c)
significantly improves with increasing fragment size, the
qualitative behavior is still far from the CCSD or RHF one.
On the other hand, the active space energy (e) displays a
qualitatively correct behavior even with 1C fragments, while
approaching quantitative agreement with CCSD as the
fragment size is increased. The very permissive threshold of ¢
= 107" captures a large amount of bath orbitals per fragment,
and this is partly responsible for the slow convergence of the
AS energy with respect to CCSD. It is even responsible for a
small jump in the 4C energy profile at [IRC| & 1.5/amu bohr
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Figure 8. Fraction of correlation energy obtained in single-shot

DMET(1), DMET(all), and AS calculations using 2C and 4C
fragments along the IRC of the Sy2 reaction 37. Here, the bath
orbital space includes a single orbital per chemical bond cut.

(hard to see), as an additional bath orbital is included for larger
values of IRC. If the bath selection is restricted to 1 orbital per
chemical bond cut (see panels (b), (d), and (f)), the agreement
with CCSD observed in AS energy calculations is much better.
The DMET(all) and DMET(1) profiles are not significantly
changed.

We can analyze the origin of the poor behavior of the
DMET(all) and DMET(1) schemes. In particular, the only
difference between panels (c) and (e) (or equivalently, panels
(d) and (f)) is that (c) uses the standard DMET democratic
partitioning of the expectation values across fragments for both
the particle number and energy. Although this democratic
partitioning allows information from different fragments to
contribute equally to the whole calculation (important, for
example, in a translationally invariant system), this is not
advantageous in the current example as the chemical change is
occurring purely locally. In Figure 10, we further show the
energy profile corresponding to panels (b) and (d) using the
standard DMET formula for the energy but without adjusting
the global chemical potential. In this case, the energy profile
appears improved and qualitatively correct, although the
convergence with respect to fragment size is still slow. This
indicates that it is the democratic evaluation of the particle
number which yields the largest source of error in the DMET
calculations.

7. SUMMARY

In this work we have reviewed several aspects of density matrix
embedding theory (DMET) in detail. In Section 2, we discuss
how a bath space can be constructed for a local fragment. While
correlated low-level methods provide accurate many-body bath
states, most quantum chemistry solvers are formulated in terms
of orbitals. The Schmidt decomposition of a mean-field wave
function naturally gives rise to bath orbitals. We have reviewed
the DMET bath orbital construction and provided a practical
way to obtain the bath orbitals from the mean-field 1-RDM of
the total system. In the future, it will be interesting to construct
a bath orbital space from a correlated low-level wave function.

In Section 3, we discuss the construction of both the
noninteracting bath and interacting bath low-level and high-
level Hamiltonians. Once the high-level Hamiltonian problem
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Figure 9. Single-shot interacting bath DMET (1), DMET (all), and AS relative energies in the IAO-localized cc-pVDZ basis set for the Sy2 reaction
(eq 37), using either the occupation number cutoff € = 107" to select bath orbitals or selecting one bath orbital per chemical bond cut. The text box
in the top of panels (a)—(f) indicates the combination of energy formula and bath selection.

is solved, and the corresponding 1- and 2-RDMs are obtained
in the local fragment and bath orbital spaces, DMET energies
can be calculated based on the formulas in Section 4. In order
to fine-tune the low-level wave function to construct better bath
spaces, a DMET correlation potential is introduced. Its self-
consistent optimization is discussed in Section S, as well as the
optimization of a global chemical potential shift to ensure that
the fragments contain the correct total number of electrons.
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This section also provides an overview of how the different
parts of DMET fit into the full DMET algorithm.

In Section 6, several applications are studied. In hydrogen
and beryllium rings we consider calculations with a single-shot
embedding scheme and in a full self-consistent correlation
potential DMET treatment. The effect of self-consistency is
generally minor but becomes pronounced near drastic changes
in the character of the HF solution, where the optimal DMET
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Figure 10. Same as Figure 9. Here, jiyy, = 0 DMET(1) and DMET (all) relative energies using one bath orbital per chemical bond cut.

Slater determinant may differ considerably from the HF one. In
hydrogen and beryllium rings, our DMET calculations have
nearly quantitative agreement with accurate dissociation
profiles even when small impurity sizes are used. The
agreement improves significantly as the size of the impurity is
increased. In the beryllium rings, self-consistency is important
for describing the avoided crossing region, and the DMET
calculations with small fragments using an approximate coupled
cluster solver appear more accurate than the full system
coupled cluster results themselves.

For the reaction barrier of an Sy2 reaction, we have tested
single-shot active space energies with CCSD as an active space
solver, the DMET energy formula where only one impurity is
treated with CCSD as the high-level method, and the DMET
energy formula where all impurities are treated with CCSD as
the high-level method. In addition, we compare the accuracy of
a large cutoff-based bath orbital space with the selection of one
bath orbital per chemical bond cut. We have found that the
active space relative energies converge the fastest to the CCSD
calculations for the full system. This is because the standard
DMET democratic evaluation of expectation values across
fragments does not provide optimal error cancellation when
only local changes in a single fragment take place. Thus, for
molecular applications, when reactions occurs locally, the
single-shot DMET active space energies with one bath orbital
per chemical bond cut provide the most reliable description.
Note that if FCI is used as an active space solver this exactly
corresponds to a CAS-CI calculation, with DMET providing a
natural way to define the relevant active space.

B APPENDIX: ANALYTIC GRADIENTS OF THE
MEAN-FIELD DENSITY MATRIX WITH RESPECT TO
THE CORRELATION POTENTIAL

Consider a change ¢ in one particular value of the correlation
potential. The change in the mean-field operator can be written
as

A=0"+sa (38)

where both [° and A" are Hermitian L X L matrices. With the
mean-field solution
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EO CO,T

A0 occ occ

H = [C:))cc C\(/')ll’] 0 0t
Evir Cv1]r (39)

one can solve for the first-order (Rayleigh—Schrodinger)
response equation
A'cl + A'CC, =

occ occ

occBoce + CoccFoce (40)
The matrices C... have the shape L X N, and represent the
order i occupied orbitals. The matrices C,;, have the shape L X
(L = N,.) and represent the order i virtual orbitals. The
diagonal matrix E. has the shape N, X N, and represents
the occupied orbital energies, and likewise for Ej,. The
occupied first-order response orbitals are orthogonal to the
ground-state orbitals
cict. =0= B =cYA'c]

occ ~occ occ occe occ (41)

This allows us to rewrite eq 40 as

~0 1
H COCC

- CicCE(())cc = _(1 - CO CO,T)I:IICSCC

0Cc ~occ
= —_C° % 0
= —CyCyir H G (42)
By virtue of eq 41, the response orbitals can be written as

c.=c’7z (43)

occ

The entries of the (L — N,..) X N, matrix Z' can be found
with eq 42:

0,11yl ~0
1 _ (CvirH Cocc);u/
w = T L0 0
Evir,;t - Eocc,y (44)

Finally, the first-order response of the density matrix can be
obtained as

oD

g 5=0 = %[(Cgcc + 6C;cc)(cc())cc + 5C¢;cc)T:|

0=0

— CO CLT + Cl CO;T — CgchLTC\?i‘rT + C‘(’)irZICOIT

occ ~occ '0cc ~occ occ

(45)
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