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Abstract 

Background: Third generation sequencing platforms produce longer reads with higher error rates than second 
generation technologies. While the improved read length can provide useful information for downstream analysis, 
underlying algorithms are challenged by the high error rate. Error correction methods in which accurate short reads 
are used to correct noisy long reads appear to be attractive to generate high-quality long reads. Methods that align 
short reads to long reads do not optimally use the information contained in the second generation data, and suffer 
from large runtimes. Recently, a new hybrid error correcting method has been proposed, where the second genera-
tion data is first assembled into a de Bruijn graph, on which the long reads are then aligned.

Results: In this context we present Jabba, a hybrid method to correct long third generation reads by mapping them 
on a corrected de Bruijn graph that was constructed from second generation data. Unique to our method is the use 
of a pseudo alignment approach with a seed-and-extend methodology, using maximal exact matches (MEMs) as 
seeds. In addition to benchmark results, certain theoretical results concerning the possibilities and limitations of the 
use of MEMs in the context of third generation reads are presented.

Conclusion: Jabba produces highly reliable corrected reads: almost all corrected reads align to the reference, and 
these alignments have a very high identity. Many of the aligned reads are error-free. Additionally, Jabba corrects reads 
using a very low amount of CPU time. From this we conclude that pseudo alignment with MEMs is a fast and reliable 
method to map long highly erroneous sequences on a de Bruijn graph.
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Introduction
Background
The accurate determination of the DNA sequence of an 
organism, i.e., establishing the precise order of the nucle-
otides A, C, G and T in a DNA molecule, is a fundamen-
tal and challenging problem in biology. Essentially this 
process consists of two steps: (1) sequencing the DNA by 
means of a chemical process, resulting in a large number 
of reads and (2) genome assembly, where the reads are 
processed to reconstruct the complete DNA sequence. 
Every sequencing technology results in reads that con-
tain errors, with error profiles varying greatly between 

platforms. There is a clear distinction between second 
generation reads and third generation reads, where the 
latter are characterized by vastly improved read lengths 
albeit with much higher error rates.

For second generation sequencing we mainly consider 
the Illumina platform. The different Illumina technolo-
gies produce many short (100–300 nucleotides) reads 
with a high accuracy (<2 % errors, mainly substitutions) 
with high throughput and at a low financial cost. New 
algorithms, based on de Bruijn graphs, were specifically 
developed to efficiently deal with the assembly of huge 
amounts of second generation sequencing data. Over-
lap between short reads is then established in linear 
time between reads that share a k-mer, i.e., a substring 
of length k. Repeat resolution in the de Bruijn graphs is 
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however severely hindered by the very short read length 
of the second generation data.

Recently, third generation sequencing technologies 
(Pacific Biosciences, 2013; Oxford Nano Technolo-
gies, 2014) began to emerge. Pacific Biosciences SMRT 
sequencing results in much longer reads (avg. >5000 
nucleotides), albeit with significantly higher error rates 
(up to 15%, mostly insertions and deletions and to a lesser 
extent substitutions). Despite this high error rate, a very 
high consensus accuracy may be achieved because the 
errors are uniformly distributed over the read. If the cov-
erage is sufficiently high and overlap between the reads is 
correctly established, this uniform distribution of errors 
allows for very accurate consensus calling. Computing 
these overlaps can not be efficiently achieved by means of 
a de Bruijn graph, because the high error rate leads to an 
overabundance of incorrect k-mers. Therefore, other effi-
cient methods have been developed to compute pairwise 
alignments between third generation reads [1, 2].

Error correction
The processing of sequencing reads usually involves 
mapping them to other sequences, either by aligning 
the reads to each other to establish potential overlap, or 
by mapping them to a reference genome. Errors in the 
reads introduce noise to these alignments, leading to 
weaker alignments than the corresponding error-free 
reads would have. Lower rated alignments may then be 
discarded for further analysis, potentially discarding cru-
cial information. This can be especially problematic when 
dealing with low quality reads in a region with low cov-
erage. To deal with this sequencing noise, error correc-
tion methods can be applied. By correcting the errors in 
the reads, the optimal alignments can be more accurately 
identified and more appropriately rated, leading to bet-
ter downstream analysis, as shown in e.g. [3] for de novo 
assembly.

Algorithms to correct second generation reads have 
been classified [4] into three types. The k-mer spectrum-
based methods  [5, 6] rely on coverage thresholds to 
determine whether a k-mer represents part of the actual 
DNA sequence. The suffix tree-based methods [7, 8] gen-
eralize the k-spectrum methods by handling multiple k 
values at once. Finally, the multiple sequence alignment-
based methods [9] correct the reads after aligning several 
similar reads.

To correct third generation reads, they can be aligned 
to each other and a consensus sequence between overlap-
ping reads may then be computed. However, the coverage 
required for high accuracy consensus-based correction 
of third generation reads can lead to a prohibitively high 
financial cost for many sequencing projects. Hybrid error 
correction methods provide an alternative. The goal is 

to correct long third generation reads using the more 
accurate sequence information contained in second gen-
eration reads. The idea is that a (relatively cheap) second 
generation data set might be sufficient to correct the long 
reads, regardless of the coverage of third generation data. 
This may result in a reduced financial cost for sequenc-
ing, as low coverage third generation data might suffice. 
Hybrid error correction methods also appear attrac-
tive from a computational point of view as they avoid 
pairwise comparisons between long reads, thus circum-
venting the quadratic computational complexity. The 
first type of hybrid error correction methods LSC  [10], 
PacBioToCA  [11] and proovread  [12] rely on mapping 
short reads to long reads, and then calling the consensus 
sequence from this multiple alignment. However, such 
methods map short reads individually and do not exploit 
the context in which the short read occurs. A more recent 
hybrid error correction method, LoRDEC, first constructs 
a de Bruijn graph from the short reads and then maps the 
long reads on this graph. The sequence implied by the 
path in the graph to which the long read aligns then repre-
sents the corrected read. The use of a de Bruijn graph has 
the advantage that overlap between short reads is estab-
lished prior to mapping them to long reads. In [13], it was 
shown that LoRDEC achieves similar accuracy as other 
error correction methods, but with significantly improved 
runtimes. LoRDEC uses a k-mer index where every seed 
corresponds to a node in the graph.

We introduce Jabba, a hybrid error correction method 
for third generation reads. In Jabba, third generation 
reads are mapped to a de Bruijn graph  [14] built from 
second generation reads, using a pseudo alignment 
approach based on a seed-and-extend methodology. The 
resulting paths in the graph dictate the read correction. 
The seeds are maximal exact matches (MEM) between an 
individual read and a node of the graph.

The usage of MEMs as seeds has several advantages 
over k-mers as they are used in LoRDEC. Firstly, the 
seeds can be longer. Even though long seeds only occur 
rarely, a few longer seeds can be sufficient to have a rough 
estimate of how the read should be aligned to the graph. 
Shorter seeds can then be used to further refine this. Sec-
ondly, given an enhanced suffix array [15], seeds of arbi-
trary lengths can be sought without the need to rebuild 
this index. This is not the case for a k-mer index (e.g. a 
hash table): when different values for k have to be used 
during the alignment process, different k-mer indexes 
need to be built of the graph. Finally, the use of MEMs 
allows for the use of arbitrary values of k to build the de 
Bruijn graph. Since the high error rates of the third gen-
eration reads are the limiting factor on the minimal seed 
size, this offers a clear advantage over the state of the art 
in hybrid error correction. This decoupling of seed size 
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and k-mer size allows the use of a larger value of k to build 
the de Bruijn graph, resulting in a less complex de Bruijn 
graph. The k-mer size of the de Bruijn graph is then lim-
ited by the error rate in the second generation data. In 
this way, correcting the short reads before construct-
ing the graph and using MEMs as seeds act together in 
allowing large k-values for the de Bruijn graph, effectively 
resolving many small repeats.

Jabba is implemented in C++ and OpenMP. The source 
code, installation instructions, and manual are freely 
available at http://bioinformatics.intec.ugent.be/jabba.

Methods
Overview
In this work, we further build upon the idea of using a 
de Bruijn graph for hybrid error correction of long reads. 
Specifically, the main goal is the use of Illumina data to 
correct Pacific Biosciences SMRT reads.

To this end, the Illumina data is corrected using exist-
ing tools (e.g. Karect  [16]). From the corrected Illumina 
data a de Bruijn graph is constructed and this graph is 
then further corrected using standard procedures  [17]. 
Subsequently, long reads are aligned along a path in the 
graph. This path then dictates the correction of the long 
reads. This procedure is summarized in Fig. 1.

Whereas LoRDEC relies on shared k-mers to align the 
long reads to a de Bruijn graph, we explore the idea of 
using maximal exact matches (MEMs). MEMs are exact 
matches between two sequences that can not be extended 
in either direction. This as opposed to common k-mers, 
which are exact matches of a fixed length k, which may or 
may not be maximal. Alignment methods based on maxi-
mal exact matches have been developed for read map-
ping [18–20]. It is shown in [18] that these methods can 
be more efficient than alignment techniques based on 
k-mers and Burrows–Wheeler transforms [21, 22]. From 
the definition of a MEM, it is clear that every MEM of 
size l ≥ k can be represented as a consecutive sequence 
of k-mers, and vice versa. However, finding large MEMs 

can be achieved in an efficient manner, and MEMs can 
compactly represent multiple k-mers.

The remainder of this section is dedicated to a more in-
depth description of all steps involved.

Assembly of the second generation data
Before the main error correction procedure can start, 
the second generation data is assembled in a de Bruijn 
graph. In the Jabba workflow this preprocessing step has 
two phases, first the reads are corrected, then a de Bruijn 
graph is constructed from these corrected reads.

Two phase preprocessing
In the preprocessing phase for Jabba, the second genera-
tion reads are processed twice. First a relatively small k-
mer size (e.g. k = 13) is used to correct the reads, using 
Karect [16]. The resulting reads have a very high per 
base quality and these are then used to build a de Bruijn 
graph with a relatively high k-mer size (e.g. k = 75). On 
this graph further corrections can then be performed, as 
described below. This approach has two main advantages:

1. The per base accuracy is very high, which is crucial 
since the long reads are corrected based on the node 
content of the de Bruijn graph.

2. Repeats smaller than the k-mer size are resolved in 
the de Bruijn graph. For large values of k (e.g. k = 75 
for 100  bp reads) this greatly reduces the complex-
ity of the graph, which facilitates the alignment of 
sequences to the graph.

Graph correction
Errors in short reads lead to erroneous paths in the de 
Bruijn graph. Three types of errors can be discerned 
based on their position in the read. An error that is 
located at least k − 1 nucleotides away from both ends of 
the read will result in k erroneous k-mers. In turn, this 
leads to the formation of a ‘bubble’, i.e. a path of length 
k that runs parallel to the real path. On the other hand, 
errors positioned close to the ends of the read lead to 
the creation of less than k erroneous k-mers, thus form-
ing ‘dead ends’ (tips) in the de Bruijn graph. Errors in the 
reads may also result in chimeric connections between 
unrelated parts of the graph. Additionally, because of 
coverage biases certain paths could be absent or under-
represented in the graph.

These errors can be corrected as described in  [17]. 
Assuming a sufficiently low error rate and a high cov-
erage, the correct path in a bubble will typically have 
a higher coverage than parallel erroneous paths, and 
the graph can be corrected by removing the erroneous 
path. Tips can be easily identified and removed, based 
on topology and coverage considerations. The chimeric 

Fig. 1 To align a read to the de Bruijn graph, a seed-and-extend algo-
rithm is used. First MEMs are found between the read and the graph, 
then a path in the graph is found between these seeds, creating the 
final alignment

http://bioinformatics.intec.ugent.be/jabba.
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connections and coverage gaps vastly complicate the 
graph correction procedure, and erroneous paths may 
remain present in the final corrected graph.

Aligning reads to a de Bruijn graph
To align the reads to the graph a seed-and-extend 
approach is applied. By properly indexing the graph the 
seeds can be found in O(m) time, where m is the size of 
the read that is being mapped.

Finding maximal exact matches
To rapidly find MEMs between the nodes of the graph 
and the long reads, essaMEM [23] is used. These MEMs 
will be used as seeds for the alignment. By concatenat-
ing the sequences of every node and their reverse com-
plement, a single sequence is constructed. From this 
sequence, an enhanced sparse suffix array is built by essa-
MEM. The sparseness factor of the index sharply reduces 
the space requirement for the index, compared to tra-
ditional suffix trees or enhanced suffix arrays, but this 
comes at the cost of a small increase in runtime.

Chaining seeds
To chain the seeds, several passes over the read are per-
formed. In each iteration the algorithm considers every 
region of the read that has not yet been aligned. For every 
such region separately, the largest seeds are considered. 
From these seeds it is determined to which nodes the 
current region of the read could map. For each such node 
the list of all seeds between this node and the current 
region of the read is considered, and an optimal place-
ment of these seeds is decided, removing the ones that do 
not fit. Seeds are compatible if the distance between the 
two seeds on the read is contained in an interval deter-
mined by the estimated error rates and the distance of 
the seeds in the node.
Generally, larger MEMs are less likely to be noise than 
shorter seeds, since the number of all k-mers increases 
exponentially if k increases and the number of k-mers 
contained in a sequence is similar to the size of the 
sequence, independent of k. There can still be noisy long 
seeds, especially when the genome contains imperfect 
repeats. In this case, the correct seeds can usually be rec-
ognized amidst the noisy seeds by considering the con-
text. Firstly, the local context is considered, by comparing 
the seeds in the same node. This way seeds that occur in 
the same order in a node and in the read can be chained 
together to form inexact matches. Secondly, if the situa-
tion is still ambiguous, the global context is considered, 
by comparing the alignments in the neighborhood of the 
ambiguous region. If this neighborhood has not yet been 
chained in previous passes, the chaining of the current 
region is delayed to the next pass.

After obtaining the presumed layout of the seeds, the 
quality of the alignment is assessed. The following cases 
are filtered:

1. Local mappings that are not super maximal, i.e., local 
mappings that are on the read contained in a larger 
local mapping.

2. Local mappings that cover less than a predetermined 
fraction of the node. The absence of any seeds in the 
rest of the node makes it less likely that this is actu-
ally a correct mapping. The fraction can be calculated 
based on the work in Section .

After the local alignments are computed for the current 
pass, the next phase begins: chaining the alignments 
between different nodes by following unique paths in 
the graph. During this phase every local alignment is 
extended by considering the possible paths in the graphs. 
Both directions of the alignments are extended in the 
same manner, as follows:

1. If there is a unique edge, this edge must be correct 
and the local alignment is extended along this edge.

2. If there are several edges, the lengths of the end 
nodes are considered. Since the extension takes place 
between two regions of the read, certain estimates 
can be made for the maximal distance between the 
alignments, edges that are too long are then not con-
sidered.

3. If at any point there are no suitable edges to extend 
along, a mistake was made at some point. Either the 
graph is incorrect or the original local chaining was 
erroneous. In either case the erroneous region is 
reprocessed in a new local chaining step.

In the rest of this section the distance between corrected 
regions on a read is denoted as n and the estimated 
insertion and deletion rates of the data are denoted as i 
and d.

After the unique-extension step, the resulting chains 
may overlap in the graph, in which case they can be 
linked together to make one consecutive path. Overlap-
ping chains are however not a sufficient condition for 
linking, the size of the sequences represented by the path 
and the read need to be compared. If the sequence on 
the path is smaller than (1+ 2i)−1n, the shortest cycle 
at the common point is considered. If this shortest cycle 
can not adequately fill the gap, then the paths are not 
joined and the gap is left for the next pass. Likewise, if the 
resulting chains do not meet, the shortest path between 
both end points is considered. If this shortest path can 
not adequately fill the gap, the gap is again left for the 
next iteration.
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By clustering seeds and only using shortest path algo-
rithms to chain the nodes, computationally expensive 
path searching and per base alignment can be avoided.

Final alignment
After all passes of the algorithm have been performed, 
there are often several remaining possible alignments. 
The alignment that best covers the read is selected, and 
used for the error correction. To correct the read ends, 
the alignment is extended along unique paths in the 
graph. If the read is estimated to continue further than 
the longest unique path, this part of the read will be 
discarded. Correcting these read ends is typically an 
expensive operation, since they have to be aligned to all 
possible paths leaving the aligned path. This is the case 
because these read ends do not contain reliable seeds. If 
they would, those seeds would have been chained with 
the path. This could be further improved upon by search-
ing for smaller seeds in the read ends, however, this is not 
done in Jabba, since it is a relatively expensive operation 
for a small gain.

If any of the previously discarded read ends contains an 
alignment, this alignment is additionally used to correct 
that read end. This methodology is applied recursively. 
In this way one read in the input can result in several 
smaller non-overlapping reads in the output. This allows 
Jabba to deal with coverage gaps in the graph, where no 
uninterrupted path exists. Additionally it allows Jabba to 
handle chimeric third generation reads.

Settings
Jabba takes several parameters that can affect the results. 
Most importantly the minimal length l of MEMs for 
the initial search can be specified, the standard value is 
l = 20, but this should be chosen based on the discussion 
in section in function of the data. If for a particular read, 
an extremely high or low amount of seeds are found, the 
seed finding procedure is repeated for this read, with a 
more suitable choice of l. Incorrectly setting this param-
eter may hence still lead to results comparable to a cor-
rect choice of l, but at the cost of an increase in runtime.

Another crucial parameter is the k-value of the de 
Bruijn graph. If k is too large, the graph will have many 
small disconnected nodes. Since Jabba only corrects to 
paths that actually exist in the graph, these nodes will 
typically not contribute anything to the error correc-
tion, and most of the second generation data is not used. 
If, on the other hand, k is too small, many small repeats 
remain in the graph, severely reducing the size of linear 
paths in the graph and increasing the path-finding com-
plexity. Building a de Bruijn graph from corrected second 
generation data is a relatively inexpensive operation. As 
such, this parameter can be optimized by constructing 

several graphs with different k-mer sizes, and comparing 
the connectedness of the resulting graphs. If two graphs 
have a similar degree of connectedness, i.e., they contain 
a similar number of bases in their largest components, 
then the graph with the largest k should be preferred.

The maximal number p of iterations of the algorithm 
can be specified, the standard value is p = 5. Finally, 
Jabba has two different output modes, short attempts to 
correct the read completely by estimating how far from 
the extremal aligned seed the alignment still continues, 
while long extends the correction maximally along lin-
ear paths in the graph. Because of this, the long output 
mode has a small risk of creating additional chimeric 
reads, but the resulting reads will in many cases be sev-
eral times longer than the original reads. The short out-
put mode results in output that is more similar to the 
input reads.

Expected maximal exact matches in sequences
In this section the occurrence of maximal exact matches 
in reads is investigated. Insertions and deletions have a 
different effect on the size of maximal exact matches than 
substitutions. A substitution error puts a firm stop to any 
running exact matches, while an insertion or deletion 
may allow for the exact match to continue, effectively 
looking like an error at a further point in the read. In 
the following, this difference is ignored and all errors are 
treated like they were substitutions. Because of this, the 
size of MEMs is slightly underestimated for sequences 
that contain insertions or deletions. It is also assumed 
that errors are uniformly distributed in the sequences, as 
is the case for Pacific Biosciences SMRT reads.

Coverage by exact regions
In this section the expected fraction of a long read that 
should be covered by MEMs larger than a given size is 
explored, under the assumption that the reference con-
tains no errors. Variations on this topic have been 
explored in  [24–26]. In the following, n is the length of 
the read, p is the error-rate and m the threshold for maxi-
mal exact matches. An exact region of size k on a read is 
defined as k correct consecutive bases in that read. The 
coverage by exact regions is the fraction of bases that are 
contained in exact regions.

The expected number of exact regions (including those 
of length 0) is the expected number of errors, i.e., np. The 
expected coverage of a read by exact regions of size k is 
then the product of (i) the coverage of the read by one 
exact region of size k: k/n, (ii) the expected number of 
exact regions: np, and (iii) the probability that an exact 
region has size k: (1− p)kp. This results in:

(1)k(1− p)kp2 .
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Summing (1) over all k ≥ m gives the expected coverage 
of the read by exact regions of size k ≥ m:

the right hand side provides a finite formula to compute 
this expected coverage. Figure  2 shows the expected 
coverage by exact regions larger than m, for error-rates 
p = 10% and p = 15%. The maximum 1− p is obtained 
at {0, 1} since every correct base is contained in an exact 
region of size ≥ 1. It can be seen that increasing p leads to 
a steeper descent near the inflection point. While it was 
a priori clear that a lower error rate leads to larger exact 
regions, this also shows that the equilibrium between a 
sufficient amount of seeds and a sufficiently large mini-
mal seed length, is less stable for higher error rates.

Occurrence of exact regions
The expected length of the longest exact region in a read 
of size n is denoted by ERp(n). If np(1− p)m ≥ 1 then at 
least one exact region of size k ≥ m is expected in a read 
of size n, hence the expected length of the longest run 
can be approximated by solving np(1− p)m = 1 for m:

The distribution around this average can be approxi-
mated by the complement of a Gumbel distribution with 
cumulative distribution function

the probability that a read of length n will have an exact 
region of size k ≥ m is then approximated by

(2)
∞
∑

k=m

k(1− p)kp2 = (1− p)−

m−1
∑

k=0

k(1− p)kp2 ,

(3)ERp(n) ≈ − log1−p np.

(4)F(x) = exp
(

−(1− p)x+1
)

;

These approximations are highly accurate when p and n 
are sufficiently large. Figure 3 shows the fraction of reads 
of length n that are expected to have an exact region of 
size m, for error-rates p = 10% and p = 15%. For suf-
ficiently large values of n, replacing n by n′ > n shifts 
the graph to the right by a term log1−p n/n

′, replacing 
p by p′ < p shifts the graph to the left and steepens the 
descent near the inflection point. This again shows that 
larger error rates make the determination of a proper 
seed size threshold less stable.

Applications
During the local chaining step from section   one can 
apply the results of section   to decide whether a local 
mapping is plausible or not. For each mapping the cover-
age by exact regions can easily be computed by counting 
seed sizes. The resulting number can then be compared 
to the expected coverage that can be obtained from sec-
tion. If there is a significant deviation in either direction, 
the local mapping gets a lower rating.

When computing mappings it is required to have at 
least one seed available, hence the results from section   
propose good upper bounds for the minimum length of 
seeds, depending on the read size and error rates. To a 
certain extent this result can also be used to estimate the 
probability of a read containing several exact regions of 
a minimal size. If a read of size n contains a MEM of size 
k ≥ m, then this MEM divides the read in two pieces, one 
of size n′ and the other of approximately size n− n′ . This 
approximation of the piece-sizes is made since typically 

(5)
P(n, p,m) = 1− F(m+ ERp(n))

= 1− exp
(

−np(1− p)m+1
)

.
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k is significantly smaller than n, and k is not known a 
priori. The conditional probability of the read contain-
ing a second MEM of size larger than m then becomes 
1− (1− P(n′, p,m))(1− P(n− n′, p,m)), with P as in (5). 
Since n′ depends on the read, it is a priori not known and 
integrating over n′ is required. The distribution of the size 
of n′ can be approximated by the uniform distribution on 
{0, . . . , n}, and because of symmetry this leads to the fol-
lowing estimate of the a priori probability of a read of size 
n containing at least 2 exact regions with size larger than 
m:

where Q(n, n′, p,m) = 1−
(

1− P(n′, p,m)
)(

1− P(n− n′, p,m)
) . 

In a similar fashion, equation (6) can be extended to mul-
tiple seeds, possibly of different minimal sizes. However 
one should be careful when using (6) and other exten-
sions of (5), since the approximation made by P(n, p, m) 
becomes less accurate when n decreases.

Results
Jabba is compared with LoRDEC [13] and proovread [12]. 
In [12, 13] it is demonstrated that LoRDEC and proovread 
perform better than both LSC [10] and PacBioToCA [11].

Data
To evaluate Jabba a combination of simulated and real 
data was used. The sources of the data are specified in 
Table 1.

For Escherichia coli, Aeromonas hydrophila, Saccharo-
myces cerevisiae, Arabidopsis thaliana, and Drosophila 
melanogaster, Illumina paired-end reads were simulated 
using ART Illumina  [27], using the MiSeq profile. For 
Ostreococcus tauri, real Illumina reads were used, with an 
average size of 76 bp.

From the A. hydrophila genome Pacific Biosciences 
reads were simulated using pbsim [28], with average read 
length of 10 kbp and 15% errors, distributed as 60% inser-
tions, 30% deletions and 10% substitutions. Real Pacific 
Biosciences datasets were used for all other genomes. For 
O. tauri, the Illumina and Pacific Biosciences data were 
sequenced from the same strain.

Parameters
LoRDEC
LoRDEC was run with k = 19 for the bacterial data sets, 
for S. cerevisiae, and for O. tauri, as suggested in  [13]. 
For the larger genomes the best results were obtained 
for k = 21. LoRDEC results are shown with and without 
post-processing with LoRDEC-trim. For all data sets the 
short reads were preprocessed with Karect, to allow a 

(6)P(n, p,m) =
2

n

n/2
∑

n′=0

Q(n, n′, p,m) ,

more clear comparison of the tools. Additionally, for E. 
coli, A. hydrophila and O. tauri, LoRDEC was applied to 
the uncorrected reads.

proovread
For proovread the standard parameters were used.

Jabba
For Jabba the minimum MEM size was l = 20 and the 
de Bruijn graphs were built with k = 75 for all datasets 
except for O. tauri, where k = 55 was used due to the 
short read lengths of the second generation data, i.e., 
76 bp. Jabba was run with the short output mode.

Evaluation metrics
After correction the reads are aligned to the reference 
genome with BLASR  [29], with a minimum alignment 
identity of 70%. In Table 3 the following metrics are used 
to compare the performance of the tools:

  • Gain: relative change in errors of the aligned reads 
compared to the original reads.

  • Accuracy: the identity percentage of the aligned 
reads.

  • Error-free: the fraction of the aligned reads that 
aligns without errors.

  • Aligned: the fraction of aligned bases.
  • Throughput: the ratio of corrected base pairs and 

input base pairs.
  • Nx: the Nx of the reads, i.e., the minimum read size 

such that all reads larger than this contain x% of the 
bases in the data set. In Table  3 the N50 is shown, 
continuous plots of Nx values are displayed in 
Figures 4 and 5.

  • CPU time: the average CPU time per read.
  • Memory: the peak memory usage.

All experiments were run on dual-socket octa-core 
Intel Xeon Sandy Bridge computing nodes at 2.6 GHz 
and 64 GB of memory. The runtimes and memory 
usage are measured using the standard Linux time 
command.

Evaluation and discussion
Table  2 shows the results for LoRDEC, proovread and 
Jabba. The output of LoRDEC has been post-processed 
by trimming and splitting the reads and only retain-
ing the regions of the reads that are of high quality. The 
proovread run on S. cerevisiae did not finish after 3 days 
and is not included in this discussion. In the follow-
ing discussion every reference to LoRDEC concerns the 
results of LoRDEC with preprocessing by Karect, unless 
otherwise mentioned.
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On the simulated long reads for A. hydrophila, all tools 
perform very well. The main difference between the tools 
on the simulated data is in the percentage of error-free 
reads; almost all reads produced by Jabba and proovread 
contain no errors. LoRDEC on the other hand, only 
reaches up to 86.74 % error-free reads.

On all real data sets, all the tools perform worse than 
on the simulated data set. From the table it is clear that 
LoRDEC and proovread have a slightly higher through-
put than Jabba on all data sets. However, a significant per-
centage (11%–50%) of the reads corrected by LoRDEC 
do not align to the reference. For the aligned reads, all 
the tools achieve over 98% accuracy on all datasets. Jabba 
consistently has the highest accuracy on real data sets 
and keeps performing well even on the larger genomes. 
Both LoRDEC and proovread obtain significantly worse 
accuracies on the larger genomes than on the bacterial 
genomes. For all data sets, except for O. tauri, over 95% 

of the Jabba-corrected reads that align to the reference 
contain no errors. For LoRDEC and proovread this num-
ber is significantly lower, many reads still contain errors.

In general, the output of Jabba is very reliable for both 
the real and the simulated data. Almost all reads that are 
corrected by Jabba are of very high quality, and many of 
them contain no errors at all.

From Figs. 4 and 5 it is clear that on every data set, the 
output from Jabba is contained in longer reads than the 
output from both other tools.

The memory usage of all tools is shown in Table  4. 
The memory usage of Jabba is almost linear in the 
genome size. LoRDEC uses more memory than Jabba 
on the smaller genomes, but this is a peak during the 
construction of the de Bruijn graph. On the two larger 
genomes, Jabba uses more memory than LoRDEC. The 
memory usage of Jabba is dominated by the storage of 
the enhanced sparse suffix array, which can be linearly 

Table 1 The data sets and reference genomes

a Reference genome available at http://www.ncbi.nlm.nih.gov/nuccore
b Reads available at http://www.ncbi.nlm.nih.gov/sra
c Reference genome available at http://www.fruitfly.org/sequence/release5genomic.shtml

ID Number  
of reads

Number  
of bases (Mbp)

Maximal  
read length

N50 Estimated 
coverage

Escherichia coli

 Reference NC_000913a

 Short reads ART 28.4 M 2840 100 100 600×
 Long reads SRR1284073b 163 K 649 49,424 13,578 135×

Aeromonas hydrophila

 Reference NC_008570a

 Short reads ART 4.74 M 474 100 100 100×
 Long reads pbsim 515 4.74 24,430 10,421 1×

Saccharomyces cerevisiae

 Reference NC_001133a

 Short reads ART 9.72 M 2430 250 250 200×
 Long reads SRR1284074b 1.96 M 5580 37,008 3973 453×

SRR1284662b

Ostreococcus tauri

 Reference NC_014426a

 Short reads [30] 9.72 M 1778 76 76 135×
 Long reads [30] 225 K 1135 22,892 7322 86×

Arabidopsis thaliana

 Reference NC_003070a

 Short reads ART 23.9 M 5975 250 250 49×
 Long reads SRR1284093b 327 K 1439 86,350 14,256 12×

SRR1284094b

Drosophila melanogaster

 Reference Release 5c

 Short reads ART 24.1 M 6025 250 250 49×
 Long reads SRR1204085b 327 K 686 55,988 12,478 6×

SRR1204086b

http://www.ncbi.nlm.nih.gov/nuccore
http://www.ncbi.nlm.nih.gov/sra
http://www.fruitfly.org/sequence/release5genomic.shtml


Page 9 of 12Miclotte et al. Algorithms Mol Biol  (2016) 11:10 

decreased by increasing the sparseness factor. This is 
shown for A. hydrophila in Table 5. In this table the rela-
tion between memory usage (m) and sparseness factor 
(s) is approximately m = 82.57/s + 20.50. This sparse-
ness factor allows Jabba to also run on lower memory 
machines, but this comes at a cost in runtime. Another 
major contributor to the peak memory usage are reads 
that have an overabundance of MEMs with the graph.

The average CPU time per read is displayed in Table 3. 
Jabba processes 10–100 reads per CPU second. Both 
LoRDEC and proovread require significantly more CPU 

Table 2 Results for LoRDEC, proovread and Jabba

Results for proovread on S. cerevisiae have been left out because they did not compute in 3 days. The subscript p indicates that the tool used the reference genome 
instead of short reads. The subscript  n indicates that the tool used uncorrected short reads

Gain (%) Accuracy (%) Error-free (%) Aligned (%) Throughput (%) N50 (bp)

E. coli - simulated short and real long reads - 4.7 Mbp

 Uncorrected reads 85.16 0 59.16 13,578

 LoRDECn 96.46 99.47 13.74 82.16 62.30 4661

 LoRDEC 98.83 99.82 79.31 88.95 63.70 7618

 proovread 99.64 99.94 89.64 99.57 58.65 5706

 Jabba 99.70 99.95 95.70 99.23 57.04 12,760

A. hydrophila—simulated short and simulated long reads: 4.8 Mbp

 Uncorrected reads 86.84 0 100 10,421

 LoRDECn 99.21 99.89 25.29 96.72 94.79 7625

 LoRDEC 99.93 99.99 86.74 99.76 95.35 9695

 proovread 99.99 99.99 96.53 99.99 95.40 9803

 Jabba 99.74 99.96 97.66 99.98 98.04 10,215

S. cerevisiae - simulated short and real long reads: 12.3 Mbp

 Uncorrected reads 83.21 1.50 27.99 3969

 LoRDECn 91.17 98.51 44.02 77.77 21.72 2869

 LoRDEC 92.08 98.67 60.82 83.12 30.43 3802

 proovread – – – – – –

 Jabba 99.87 99.97 98.35 99.93 27.67 8373

O. tauri - real short and real long reads: 13.2 Mbp

 Uncorrected reads 83.83 0.05 23.10 7322

 LoRDECn 91.04 98.55 63.60 85.05 31.43 985

 LoRDEC 91.51 98.62 66.76 85.42 31.54 1043

 proovread 98.11 99.69 80.28 90.55 26.31 1501

 Jabba 99.06 99.84 83.33 93.31 13.81 4183

A. thaliana - simulated short and real long reads: 121 Mbp

 Uncorrected reads 83.32 8.00 47.82 14,256

 LoRDEC 90.43 98.40 59.35 50.69 46.09 904

 proovread 91.11 98.51 69.71 96.66 42.08 7788

 Jabba 99.47 99.91 96.67 99.85 39.87 12,647

D. melanogaster—simulated short and real long reads: 122 Mbp

 Uncorrected reads 85.70 22.97 41.72 12,478

 LoRDEC 89.18 98.45 54.29 49.24 44.78 1119

 proovread 97.07 99.58 67.72 98.36 43.49 11,476

 Jabba 99.51 99.93 96.24 99.81 38.20 15,553

 Jabbap 99.51 99.93 96.24 99.82 38.22 15,564

Table 3 Average CPU time per read for LoRDEC, proovread 
and Jabba

Results for proovread on S. cerevisiae have been left out because they did not 
compute in 3 days

LoRDEC (ms) proovread (ms) Jabba (ms)

E. coli: 4.7 Mbp 111 1782 47

A. hydrophila:  4.8 Mbp 582 5652 11

S. cerevisiae: 12.3 Mbp 172 – 28

O. tauri: 13.2 Mbp 462 3165 9

A. thaliana: 121 Mbp 633 2128 100

D. melanogaster:  122 Mbp 289 1699 53
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time. The high speed of Jabba is a result of the pseudo 
alignment approach.

The preprocessing with Karect requires a high amount 
of computing resources, as shown in Table  6. However, 
the increase in error-free reads is significant, and on all 
data sets LoRDEC performs better in this regard after 
preprocessing the second generation data with Karect. 
Additionally, Table  7 indicates that the throughput and 
N50 of proovread corrected reads can also be signifi-
cantly improved by preprocessing the short reads. This 
indicates that the integrated short read error correc-
tion (k-mer frequency filtering) performs worse than the 

Table 4 Peak memory usage for  LoRDEC, proovread 
and Jabba

Results for proovread on S. cerevisiae have been left out because they did not 
compute in 3 days

LoRDEC  (MB) proovread (MB) Jabba (MB)

E. coli - 4.7 Mbp 2946 17,035 175

A. hydrophila - 4.8 Mbp 1205 617 103

S. cerevisiae - 12.3 Mbp 2693 – 401

O. tauri - 13.2 Mbp 2208 12,963 328

A. thaliana - 121 Mbp 3876 7042 5098

D. melanogaster - 122 
Mbp

3936 6656 4099

Fig. 4 Nx plots for E. coli, A. hydrophila and S. cerevisiae Fig. 5 Nx plots for O. tauri, A. thaliana and D. melanogaster
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dedicated second generation error correction tool Karect. 
For Jabba this preprocessing step carries the additional 
advantage of allowing a larger k-mer size for the de Bruijn 
graph. A de Bruijn graph that was built from uncorrected 
short reads, with k = 75, is very disconnected and can 
not be used for alignment of long reads. From the results 
on a perfect graph for D. melanogaster, it is clear that 
after preprocessing short reads with Karect, Jabba per-
forms equally well on a graph built from short reads as on 
a perfect graph. Any further improvements to the hybrid 
error correction procedure should therefore be focused 
on the alignment procedures, and not on further correc-
tion of the second generation data.

Conclusion
Jabba produces highly reliable corrected reads: almost all 
corrected reads align to the reference, and these align-
ments have a very high identity. Many of the aligned 
reads are error-free and the N50 of the reads is high com-
pared to other tools. Additionally, Jabba corrects reads 
using a very low amount of CPU time. From this we con-
clude that pseudo alignment with MEMs is a fast and 
reliable method to map long highly erroneous sequences 
on a de Bruijn graph.

From the comparison of LoRDEC and proovread with 
and without preprocessing with Karect, we conclude that 
dedicated second generation error correction tools can 
provide a meaningful contribution to the hybrid error 
correction procedure. Especially for the creation of error-
free reads, LoRDEC’s built-in short read error correction 
procedure performs significantly worse than building a 
graph from corrected short reads. Additionally, this pre-
processing is vital for Jabba, since it allows Jabba to use a 
de Bruijn graph with a high value of k.

Jabba performs equally well on a perfect graph and a 
graph constructed from corrected short reads, future 
work in hybrid error correction should be focused on 
improving the alignment procedures.
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