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Abstract
In this work we developed an embedded atom method potential for large scale atomistic
simulations in the ternary tungsten–hydrogen–helium (W–H–He) system, focusing on
applications in the fusion research domain. Following available ab initio data, the potential
reproduces key interactions between H, He and point defects in W and utilizes the most recent
potential for matrix W. The potential is applied to assess the thermal stability of various H–He
complexes of sizes too large for ab initio techniques. The results show that the dissociation of
H–He clusters stabilized by vacancies will occur primarily by emission of hydrogen atoms and
then by break-up of V–He complexes, indicating that H–He interaction does influence the
release of hydrogen.
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1. Introduction

Tungsten (W) and tungsten based alloys are the primary
candidate materials for plasma facing components (PFCs) in
fusion reactors. In the DEMO and future commercial reactors
PFCs will be exposed to unprecedented and unexplored
irradiation conditions. The exposure to high-energy radiation,
consisting of neutron damage, helium (He) and hydrogen
(H) high temperature/flux plasma, severely damage the
microstructure of the materials by violently displacing atoms
from their lattice and thereby creating vacancy clusters,
dislocation loops, voids and even microscopic bubbles
and cracks. All the above mentioned radiation-induced
processes cause profound macroscopic property changes that
severely degrade the performance and lifespan limits of PFC
materials [1, 2].

One of the issues in the development of PFCs is the
retention of H isotopes (namely tritium) [3], originating
from the trapping of plasma components on pre-existing (i.e.
natural) and radiation-induced lattice defects. Without neutron
irradiation, experiments involving mixed ion beam and plasma

accelerators have shown that under mixed H–He exposures the
interplay between H isotopes and He might have a significant
effect on the enhancement of H retention [4–8]. Moreover,
continuous production of displacement damage by neutron
scattering will generate lattice defects serving as traps for H
and He, and acting as obstacles to dislocation motion thereby
further reducing the ductility of tungsten [2]. Trapping of
H and He at natural and radiation-induced defects as well as
irradiation embrittlement takes its origin at the nano-scale and
therefore a good understanding of these phenomena should
correspondingly be achieved at the atomic level. This is why
the development and application of atomistic tools for W-based
systems have recently received essential attention, for example
in [9–13].

Theoretical attempts to study the synergy between H
and He is so far limited to density functional theory (DFT)
studies regarding the stability of vacancy-hydrogen–helium
(VHlHem) clusters [14–16]. Due to the computational
limitations of DFT calculations only elementary clusters
containing a single vacancy were considered. However,
there is the essential desire to extend our knowledge to the
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stability and mobility of larger VkHlHem clusters (i.e. for
k, l, m � 1) as their formation certainly occurs under high
flux plasma exposure, which typically leads to the formation
of well-resolved bubbles and blisters. Also, the study of H
and He accumulation near extended lattice defects, such as
dislocation lines, dislocation loops and grain boundaries and
their effect on dislocation movement are outside the scope
of DFT calculations. Therefore, all such studies require
large scale atomistic simulations employing semi-empirical
interatomic potentials that are known to offer an acceptable
compromise between computational efficiency and physical
reliability. For the development of such potentials, DFT data
serves as a guide.

In this work we develop an embedded atom method
(EAM) potential for the ternary W–H–He system. The
potential is benchmarked against available DFT data from the
literature and its performance is compared with the only ternary
WHHe potential available so far: the bond order potential
(BOP) by Li et al [9]. As a first step, we apply the developed
potential to extend the information about the thermal stability
of VkHlHem clusters beyond the scale accessible to DFT
calculations. For convenience and further use in kinetic mean
field theory or object kinetic Monte Carlo models, the results
are formatted within a frame of a simple yet accurate liquid
tear drop (LTD) model.

The paper is organized as follows. In section 2 we
explain the fitting strategy followed to fit the potentials and
the procedures applied to obtain the binding energy of any
VkHlHem cluster. In section 3 we validate the potential by
making one-to-one comparisons with both BOP and DFT data.
In section 4 we present and discuss the results concerning
the stability of VkHlHem clusters. The paper is finalized by
conclusions.

2. Methodology

In the literature, many EAM type interatomic potentials for
bcc W are available, see e.g. [10–12, 17–30]. A critical review
assessing their strengths and weaknesses is given in [13]. For
this work, we selected the one, which gives the best ‘global
performance’, i.e. ‘EAM2’ from the work of Marinica et al
[11]. As key features, this potential provides elastic constants,
point-defect, edge and screw dislocation properties as well as
grain boundary energies consistent with DFT calculations or
experiments (see [13] for more details).

In the literature three semi-empirical potentials exist for
WHe [10, 31, 32] and two for WH [33, 34]. From those
potentials, the ones by Wilson et al [31] and Henriksson et
al [32] predict opposite stability for He in an octahedral and
tetrahedral position. The one by Juslin and Wirth [10] provides
a He migration barrier of 0.21 eV, which overestimates the DFT
value (0.06 eV) by more than a factor three. The WH potential
by Juslin et al [33], on the other hand, predicts the < 1 1 0 >

dumbbell self interstitial be more stable than the < 1 1 1 > one
in bcc W, which is in contradiction with DFT data (see [13]
and references therein). The one by Li et al [34] is part of the
ternary WHHe BOP that is used as a benchmark throughout
this work. At this point we also note that none of the potentials

for pure W used in the above works reproduce the key features
as good as ‘EAM2’ by Marinica et al [11]. In addition, a 1/2
< 1 1 1 > screw dislocation in bcc W relaxed by BOP provides
a threefold degenerate core structure, which is contradictory
to DFT results [35] and ‘EAM2’ by Marinica et al [11].

The H–H interaction in bulk W is essentially different
from its description in vacuum. In vacuum, two H atoms form
the strongly bonded H2 molecule (Eb = 4.75 eV) [33]. In
bulk W, on the other hand, two H atoms exhibit repulsion or
weak binding [14] as they cannot form the strongly bonded H2

molecule due to interactions with the surrounding W atoms.
The modulation of such behaviour within the EAM frame
work is difficult to achieve. Therefore, we chose to focus
on the effective interaction of H (and He) in bulk W. As a
consequence, the here derived potentials for H and He should
not be used in vacuum.

We have fitted two sets of WHHe potentials, namely,
EAM1 and EAM2. Both potentials were fitted to reproduce
the relative stability between tetrahedral (T) and octahedral (O)
sites as well as between tetrahedral and < 1 1 0 > dumbbell
position, with the latter serving as saddle for T–T migration.
In addition, the binding between H–H, He–He and H–He pairs
in bulk W and the binding between vacancy-H and vacancy-
He pairs were fitted. For EAM1, emphasis was put on a
quantitative reproduction of DFT data of the binding between
H–H, He–He and H–He pairs. The off-centre position of
a H atom in a vacancy as predicted by DFT [36] was not
considered, and therefore both H and He are described by
pair potentials only. For EAM2 we focussed on stabilizing
H in an off-centre position in the vacancy and therefore an
embedding function was added for H. For both H and He no
density function is defined, i.e. only W adds to the electron
density at a given site and there is no contribution to it by H or
He. The optimized parameters for both EAM1 and EAM2 are
reported in appendix A.

The total binding energy of a VkHlHem cluster, Etot
b , was

calculated as,

Etot
b (VkHlHem) = k E (V ) + l E(H) + m E (He)

−E (VkHlHem) − (k + l + m − 1) E(W) (1)

Here E(W) is the total energy of the perfect bcc W crystal,
E(V), E(H) and E(He) are the total energy of the bcc W crystal
containing one V, H and He atom, respectively, with H and He
in the tetrahedral position. With this definition, positive values
of Etot

b indicate attraction.
In our study, we have considered VkHlHem clusters

containing up to 12 vacancies (in the most compact
configuration) with a H to V ratio, xH, and He to V ratio,
xHe, in the range 0.1–6. For the selected maximum number
of V, xH and xHe, the sequential binding energy of a V, H
and He to a VkHlHem cluster saturates, respectively, so no
larger clusters need to be addressed. In total, 2087 different
VkHlHem clusters were considered. In each cluster the H and
He were introduced at random (with a maximum of 6H/He per
vacancy) and the configuration was relaxed ten times using
a quench method with a molecular dynamics (MD) run at
300 K for 1 ps in between each quench down to 0 K. The latter
procedure allows the system to evolve out of local minima and
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Table 1. Point defect properties of H and He in bcc W calculated by DFT and the potentials.

Hydrogen Helium

Property DFT EAM1 EAM2 BOP DFT EAM1 EAM2 BOP

�E(Octa-Tetra) (eV) 0.38 0.35 0.38 0.32 0.22 0.19 0.23 0.17
�E(< 1 0 0 >-Tetra) (eV) 0.39 0.35 0.38 0.32 0.23 0.19 0.23 0.17
�E(< 1 1 0 >-Tetra) (eV) 0.21 0.22 0.21 0.22 0.07 0.09 0.06 0.02
�E(< 1 1 1 >-Tetra) (eV) 1.51 2.10 2.70 2.29 0.51 1.40 0.98 0.75
Eb(X-Vac) (eV) 1.19 1.24 1.33 2.03 4.55 4.55 4.54 5.04
Em(X) (ev) 0.20 0.22 0.21 0.22 0.06 0.09 0.06 0.02
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Figure 1. Comparison of the H–H binding energy as a function of
distance as calculated by DFT and the potentials.

was tested to provide an absolute minimum in the case of the
single vacancy. For each configuration, the lowest of the 10
values for the total energy was retained. For all runs, a cubic
bcc W crystal was used containing 2000 atoms with periodic
boundaries in all directions.

3. Validation of the potentials

In table 1 the point defect properties of H and He in bcc W
calculated with our potentials are compared to DFT [14] and
BOP [9]. Clearly, DFT predicts the tetrahedral position to be
the most favourable for both H and He, which is reproduced
by all potentials. In addition, all potentials predict the correct
ordering in interstitial formation energies, although EAM1
and EAM2 show the best quantitative agreement with DFT.
With respect to the binding energy between a H or He to
a vacancy, both EAM1 and EAM2 closely reproduce the
DFT values, while BOP underestimates and overestimates the
binding for H and He, respectively. The migration energy for
H is well reproduced by all potentials, but the one for He is
only reproduced by EAM1 and EAM2, and underestimated by
BOP by a factor three.

In figures 1–3 the binding energy between H–H, He–He
and H–He pairs as a function of separation distance is
plotted as calculated by DFT and the potentials. The
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Figure 2. Comparison of the He–He binding energy as a function of
distance as calculated by DFT and the potentials.
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Figure 3. Comparison of the H–He binding energy as a function of
distance as calculated by DFT and the potentials.

considered configurations are taken from [14] and only the
final distance between the pairs is considered. As with both
DFT and the potentials the distance between H and He pairs
changes considerably during atomic relaxation, a comparison
of binding energy with distance is more sensible than a
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Figure 4. Binding energy of a H in a VHlHem cluster as calculated by (a) DFT, (b) EAM1, (c) EAM2 and (d) BOP.

one-to-one comparison between the specific configurations.
Taking DFT as the reference, He–He and He–H attract
with maximum values of 1.03 eV and 0.20 eV, respectively,
while H–H pairs repel with a maximum of −0.47 eV. This
behaviour is qualitatively reproduced by all potentials and also
quantitatively by EAM1. Both BOP and EAM2 have a too
long interaction range for H–H pairs, underestimate the He–
He attraction and overestimate (BOP) the H–He binding or
underestimate (EAM2) the H–He interaction range.

In figures 4 and 5 the binding energy of a H and He atom
to VHlHem clusters calculated by the potentials and DFT [14]
is compared. The DFT results show that He is bound stronger
than H to the same VHlHem cluster by roughly a factor four.
For both H and He, the binding energy slightly decreases
with increasing cluster size. For EAM1, the values for the
binding energy are within the DFT range, but with increasing
He content, the binding of He to the cluster does not decrease.
For EAM2, the values for the binding energy are also within
the DFT range, and qualitatively, also the binding energy
decreases with cluster size. For BOP, the binding energy for H
is overestimated by about a factor two, but for He, on the other
hand, the values lay within the DFT range. Qualitatively, BOP
reproduces the decrease in binding energy with cluster size.

4. Binding energy of VHlHem clusters

From the results presented in section 3 with respect to
VHlHem clusters, EAM2 seems the most suitable to extend

the calculations to VHlHem clusters. In figure 6, the data as
calculated by molecular dynamics (MD) is presented as scatter
for clusters containing 2, 4 and 6 vacancies. For both inter-
and extra-polation purposes, we have fitted a 3D hyper surface
based on a LTD model to represent the data, as detailed in
appendix B. From this function, all sequential binding energies
can easily be derived. Projections for clusters containing 2,
4 and 6 vacancies are superposed in figure 6. The average
deviation between raw data and fitted surface is ∼10%, which
is acceptable for a simple LTD model.

As an additional validation of the model, we show the
binding energy of a He atom to a VHem cluster (figure 7(a))
and of a H atom to a VHl and VHeHl cluster (figure 7(b))
computed with the LTD model, DFT and EAM2. For VHem,
the LTD model slightly overestimates the DFT and EAM2
results, but agreement is nevertheless satisfactory. For VHeHl

and VHl , the difference between the DFT data sets (and EAM2
data sets) is negligible. This trend is followed by the LTD
model, although the values are somewhat underestimated.
Considering all approximations, we find the LTD model
satisfactory and this enables to extrapolate to larger VkHlHem

clusters.
In figure 8 we present the dissociation energy of a V, H

and He in a VHHe cluster as a function of xH and xHe for the
limiting cases of clusters containing two (figure 8(a)) and 12
(figure 8(b)) vacancies. The dissociation energy was obtained
in the standard way as the sum of the sequential binding energy
of a V/H/He atom to the cluster and its migration energy.
For a vacancy the sequential binding energy is obtained as,
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Figure 5. Binding energy of a He in a VHlHem cluster as calculated by (a) DFT, (b) EAM1, (c) EAM2 and (d) BOP.
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Figure 6. Total binding energy of VHHe clusters as a function
of hydrogen- and helium-vacancy ratio (xH, xHe) for clusters
containing two, four and six vacancies.

Etot
b (VkHlHem)−Etot

b (Vk−1HlHem), with similar expressions
for H and He. As values for the migration energy we used
the ones provided by the potential (Em (V ) = 1.85 eV)
[13], which is within the range of experiments and DFT
calculations [13].

We observe that for both limiting cases the binding energy
of H is lower than that of a V or He for all xH and xHe

combinations, consistent with the single vacancy case (see
figures 4 and 5). This implies that any VHHe cluster formed
in W will first release all H before releasing a He or V.
For VHe clusters, an optimum xHe exists above which He
dissociates from the clusters and below which a V dissociates
from the cluster. This optimum, indicated by the dashed line in
figures 8(a) and (b), depends slightly on xH and the number of
vacancies in the clusters. The optimum point slightly increases
with increasing xH and saturates from ∼2 for two vacancies
to ∼1 for six vacancies and more. In addition, the sequential
binding of H to a cluster decreases with increasing number
of vacancies while the sequential binding of He to the cluster
increases with the number of vacancies. For the sequential
binding energy of a vacancy the slope of the surface gets steeper
with increasing number of vacancies.

5. Conclusions

We have developed two versions of a EAM potential for large
scale atomistic simulations in the ternary W–H–He system.
Both potentials reproduce key interactions between H, He and
point defects calculated by DFT. We applied the potentials
to compute the dissociation energy of various VHHe clusters
of nano-metric size and parameterize a simple liquid-tear drop
model applicable to up-scale mean field or kinetic Monte Carlo
simulations. The obtained results show that the dissociation
of mixed VHHe clusters primarily takes place by emission
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Figure 8. Dissociation energy for a V, H and He from VHHe clusters as function of hydrogen- and helium ratio (xH, xHe) for a cluster
containing (a) two and (b) twelve vacancies.

of H, whose trapping energy is not essentially changed by the
presence He in the clusters. Hence, the H–He interaction does
not affect the thermal stability of H in the vacancy-stabilized
H–He clusters. Therefore we conclude that the origin of
the H–He synergy expressed by the enhanced H uptake
should be investigated at the stage of the nucleation of H–He
defects.
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Appendix A. Parameterization interatomic potential

The atomic interactions are described using the EAM [37].
In addition to pair interactions, V , this approach includes an

embedding energy, F , dependent on the local electron density,
ρ. The latter term approximates the many-body contribution
of all nearby atoms. The total energy within EAM is given as,

E = 1

2

N∑
i, j = 1
j �= i

Vti tj (rij ) +
N∑

i=1

Fti (ρi). (A1)

Here N represents the total number of atoms in the system,
rij is the distance between atoms i and j , and ti denotes
chemical species. The local electron density around atom i,

Table A1. Spline coefficients for the modified embedding function,
F mod.

Spline coefficient

A0 = −5.524855802E + 00
A1 = 2.317313103E − 01
A2 = −3.665345949E − 02
A3 = 8.989367404E − 03

6
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Table A2. The optimized fitting parameters for the WHeH potentials.

EAM1 EAM2

k rk (Å) ak (eV Å−3) rk (Å) ak (eV Å−3)

VHeHe

1 2.000000000E + 00 2.106615791E + 00 1.800000000E + 00 2.000000000E + 01
2 3.000000000E + 00 −2.217639348E − 01 2.000000000E + 00 1.051327582E + 00
3 2.100000000E + 00 −4.000000000E + 00
4 3.000000000E + 00 3.203322671E − 02

VHH

1 2.000000000E + 00 4.862785907E − 01 1.600000000E + 00 4.000000000E + 01
2 3.000000000E + 00 1.018797872E − 01 2.000000000E + 00 2.315124670E − 01
3 2.200000000E + 00 −2.000000000E − 01
4 3.000000000E + 00 5.180584543E − 02

VHHe

1 1.800000000E + 00 1.500000000E + 01 2.000000000E + 00 3.256370012E + 00
2 2.000000000E + 00 2.563700119E − 01 2.500000000E + 00 −4.000000000E − 01
3 3.000000000E + 00 −4.489510592E − 02 3.000000000E + 00 −4.489510592E − 02

VWHe

1 1.900000000E + 00 2.100000000E + 01 1.900000000E + 00 0.000000000E + 00
2 2.200000000E + 00 8.565323293E − 01 2.000000000E + 00 1.400000000E + 01
3 3.500000000E + 00 2.750099819E − 01 2.200000000E + 00 −3.712116187E + 00
4 3.500000000E + 00 3.105031456E − 01

VWH

1 2.000000000E + 00 1.375733214E + 01 2.000000000E + 00 4.424459079E + 01
2 3.000000000E + 00 1.296071475E − 01 2.647500000E + 00 −4.993477782E + 00
3 3.295000000E + 00 1.461712984E + 00

contributed from its neighbours is given as,

ρi =
N∑

j = 1
j �= i

ϕtj (rij ), (A2)

where ϕ denotes the electron density function of the considered
element.

For pure W, ‘EAM2’ developed by Marinica et al [11]
was used. However, we apply some minor modifications that
do not modify the potential’s properties but exclude possible
future problems when W is alloyed (with e.g. Ta, Re, . . . ).
Firstly, we transform the potential into its effective gauge
[17, 38], characterized by an equilibrium density ρ0 = 1 and
F eff ′

(1) = 0. The gauge transformation is given as,



V eff(r) = V (r) − 2C ϕ(r)

ϕeff(r) = S ϕ(r)

F eff (ρ) = F
(

ρ

S

)
+ C

S
ρ

, (A3)

with C = 1.848055990E + 00 and S = 2.232322602E − 01.
After this transformation, the embedding function, F eff , was
modified beyond the inflection point to provide a positive
curvature for all densities. The modified embedding function,
F mod, is then defined as,

F mod (ρ) =
{

F eff (ρ) , ρ � ρi

A0 + A1 ρ + A2 ρ2 + A3 ρ3, ρ > ρi
,

(A4)

with ρi = 1.359141225E + 00 the inflexion point and {Ai}
spline coefficients (see table A1) fitted to be continuous at ρi

up to second derivative with F eff . This modification does not

change the equilibrium properties of the potential, such as,
elastic constants, lattice stabilities, formation energy of point
defects and dislocation core structure.

The pair potentials fitted here are parameterized by the
cubic spline expansion,

V(r) =
N∑

k=1

ak (rk − r)3 H(rk − r), (A5)

where N denotes the total number of knots, rk the knots, ak

the fitting parameters and H the Heaviside unit step function.
The embedding function for H (EAM2) is parameterized as,

F (ρ) = A
√

ρ + Bρ2, (A6)

with A = −2.610066441E + 01 and B = 4.688963869E −
01. The optimized knots and fitting parameters for the pair
potentials are given in table A2. We note that for both H and
He no density function is defined, i.e. only W adds to the
electron density at a given site and there is no contribution to
it by H or He.

Appendix B. Parameterization of the total binding
energy of VkHlHem clusters

The total binding energy of VkHlHem clusters was
parameterized by a mixture of a LTD model and Redlich–
Kister (RK) expansion. The LTD model consists of two terms:
one proportional with volume, expressing the energy gain
of the defects clustering together; and one proportional with
interface area, expressing the energy loss due to the interface
created between matrix and defect cluster. A RK expansion is

7
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Table B1. Optimized parameters for the LTD model.

LTD model parameters

AV = 4.524241E + 00 BV= 5.985280E + 00 L0
VH = −3.727769E − 02

AH = −7.277276E − 01 BH = −2.235115E + 00 L0
VHe = 2.659537E − 01

AHe = 2.591062E + 00 BHe = −2.592230E + 00 L0
HHe = −9.119871E − 03

commonly used to parameterize free energy surfaces of solid
solutions in thermodynamic modelling. It accounts for the
interactions between the different defect types. In our model
we included binary interactions only as the inclusion of ternary
interactions did not improve the fit. Applying both models, the
total binding energy of a VkHlHem clusters is given as,

Etot
b (VkHlHem) = AV k − BV k2/3 + AH l − BH l2/3 + AHe m

−BHe m2/3 + L0
VH k l + L0

VHe k m + L0
HHe l m.

(B1)

The optimized parameters for this expression are given in
table B1.

References

[1] Zinkle S J 2005 Phys. Plasmas 12 058101
[2] Pintsuk G 2012 Comprehensive Nucl. Mater. 4 551
[3] Roth J et al 2008 Plasma Phys. Control. Fusion 50 103001
[4] Hino T, Koyama K, Yamaguchi Y and Hirohata Y 1998 Fusion

Eng. Des. 39–40 227
[5] Nagata S and Takahiro K 2001 J. Nucl. Mater. 290–293 135
[6] Iwakiri H, Morishita K and Yoshita N 2002 J. Nucl. Mater.

307–311 135
[7] Lee H T, Haasz A A, Dawis J W and Macaulay-Newcombe

R G 2007 J. Nucl. Mater. 360 196
[8] Lee H T, Haasz A A, Davis J W, Macaulay-Newcombe R G,

Whyte D G and Wright G M 2007 J. Nucl. Mater.
363–365 898

[9] Li X-C, Shu X, Liu Y-N, Yu Y, Gao F and Lu G-H 2012
J. Nucl. Mater. 426 31

[10] Juslin N and Wirth B D 2013 J. Nucl. Mater. 432 61
[11] Marinica M-C et al 2013 J. Phys.: Condens. Matter. 25 395502
[12] Wang J, Zhou Y L, Li M and Hou Q 2014 Modelling Simul.

Mater. Sci. Eng. 22 015004
[13] Bonny G, Terentyev D, Bakaev A, Grigorev P and Van Neck D

2014 Modelling Simul. Mater. Sci. Eng. 22 053001
[14] Becquart C S and Domain C 2009 J. Nucl. Mater. 386–388 109
[15] Jiang B, Wan F R and Geng W T 2010 Phys. Rev. B 81 134112

[16] Zhou H-B, Liu Y-L, Jin S, Zhang Y, Luo G-N and Lu G-H
2010 Nucl. Fusion 50 115010

[17] Finnis M W and Sinclair J E 1984 Phil. Mag. A 50 45
[18] Ackland G J and Thetford R 1987 Phil. Mag. A 56 15
[19] Johnson R A and Oh D J 1989 J. Mater. Res. 4 1195
[20] Foiles S M 1993 Phys. Rev. B 48 4287
[21] Wang Y R and Boercker D B 1995 J. Appl. Phys. 78 122
[22] Zhou X W et al 2001 Acta Mater. 49 4005
[23] Kong L T, Li X Y, Lai W S, Liu J B and Liu B X 2002 Japan.

J. Appl. Phys. 41 4503
[24] Gong H R, Kong L T, Lai W S and Liu B X 2003 Phys. Rev. B

68 144201
[25] Zhang R F, Shen Y X, Gong H R, Kong L T and Liu B X 2004

J. Phys. Soc. Japan 73 2023
[26] Zhang R F, Kong L T, Gong H R and Liu B X 2004 J. Phys.:

Condens. Matter 16 5251
[27] Zhang R F, Shen Y X, Yan H F and Liu B X 2005 J. Phys.

Chem. B 109 4391
[28] Dai X D, Li J H and Kong Y 2007 Phys. Rev. B 75 052102
[29] Derlet P M, Nguyen-Manh D and Dudarev S L 2007 Phys.

Rev. B 76 054107
[30] Björkas C, Nordlund K and Dudarev S 2009 Nucl. Instrum.

Meth. Phys. Res. B 267 3204
Björkas C, Nordlund K and Dudarev S 2010 Nucl. Instrum.

Meth. Phys. Res. B 268 1529 (erratum)
[31] Wilson W D and Johnson R A 1972 Interatomic Potentials

and Simulation of Lattice Defects ed P C Gehlen et al
(New York: Plenum Press) p 375

[32] Henriksson K O E, Nordlund K, Keinonen J, Sundholm D and
Patzschke M 2004 Phys. Scr. T108 95
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