
Memristor models for machine learning
Juan Pablo Carbajal, Joni Dambre, Michiel Hermans, and

Benjamin Schrauwen

Department of Electronics and Information Systems, Ghent
University, Belgium

{juanpablo.carbajal, michiel.hermans, benjamin.schrauwen,

joni.dambre}@ugent.be

July 15, 2014

Abstract
In the quest for alternatives to traditional CMOS, it is being suggested

that digital computing efficiency and power can be improved by match-
ing the precision to the application. Many applications do not need the
high precision that is being used today. In particular, large gains in area-
and power efficiency could be achieved by dedicated analog realizations
of approximate computing engines. In this work, we explore the use of
memristor networks for analog approximate computation, based on a ma-
chine learning framework called reservoir computing. Most experimental
investigations on the dynamics of memristors focus on their nonvolatile
behavior. Hence, the volatility that is present in the developed technolo-
gies is usually unwanted and it is not included in simulation models. In
contrast, in reservoir computing, volatility is not only desirable but neces-
sary. Therefore, in this work, we propose two different ways to incorporate
it into memristor simulation models. The first is an extension of Strukov’s
model and the second is an equivalent Wiener model approximation. We
analyze and compare the dynamical properties of these models and discuss
their implications for the memory and the nonlinear processing capacity of
memristor networks. Our results indicate that device variability, increas-
ingly causing problems in traditional computer design, is an asset in the
context of reservoir computing. We conclude that, although both models
could lead to useful memristor based reservoir computing systems, their
computational performance will differ. Therefore, experimental modeling
research is required for the development of accurate volatile memristor
models.

1 Introduction
As the scaling of the traditional MOSFET transistor is reaching its physical
limits, alternative building blocks of future generation computers are being in-
vestigated. Most of this research is focused on producing controllable switch-like
behavior, but over the last decade analog computation has also enjoyed a revival,
partly due to the increasing success of neuromorphic devices. In particular,

1

ar
X

iv
:1

40
6.

22
10

v2
 [

cs
.L

G
]

 1
4

Ju
l 2

01
4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55807567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

memristor networks have been used for computational purposes, mostly using
structured topologies, since their fabrication exploits technology developed for
the assembly of cross-bar arrays of transistors [1; 2, section 5]. In most of these
applications, memristors are used as programmable synaptic weights. However,
at the nanoscale, even highly controlled processing flows cause relatively large
variations in the device parameters. For this reason, computing systems built
with such components must embrace this variability [1]. Increasingly, it is being
suggested that efficiency and power gains can be achieved in digital computers
by exploiting the fact that many applications do not need the high precision
that is being used today. In this new research field of approximate computing,
digital, low-precision neural network accelerators are currently being evaluated
[3; 4].

Reservoir computing (RC) is a supervised learning framework rooted in re-
current neural network research (seminal work in [5; 6], recent developments
in [7; 8]). It was originally applied to simulated neural networks in discrete
time and can be implemented in open loop operation [9–13] or in feedback sys-
tems [14–16]. RC can also be used as a leverage to directly exploit the analog
computation that naturally occurs in physical dynamical systems in a robust
way, i.e. without the need to control all system parameters with high precision.
Recently, this approach (physical RC or PRC) has been demonstrated (in sim-
ulation or experimentally) using several physical substrates. These include a
water tank [17], tensegrity structures [18], opto-electronic and nano-photonic
devices [15; 19–21] and resistive switch networks [13].

The computation in RC is based on the observed responses of a set of (inter-
acting input-driven nonlinear) dynamical systems. At each point in time, the
n observed responses are linearly combined, in order to optimally approximates
a desired output. As is common in supervised machine learning approaches,
the weights in this linear combination are optimized for a set of representative
examples of the desired input-output behavior (i.e., the task). The system’s
responses to each of the input signals are sampled and the m samples recorded
into a large m× n matrix called the design matrix Θ, which is usually used in
a common linear regression setup:

ŷ = Θw minimizing dist(y, ŷ), (1)

where ŷ is the (sampled) desired output. The readout vector w has n compo-
nents, one for each observed state signal, and remains fixed after optimization
(training). The aim is to optimize the readout weights in such a way that the
system generalizes well to new data that has not been used for training. Note
that a task is comprised of more than one desired output. The task can be
described by comprehension, as in delay tasks or filtering tasks, in which case
the desired outputs used to optimize (train) the readout weights are sampled
from the set and the amount of training data is potentially unbounded (also
known as synthetic data). However, as in many machine learning techniques,
the task is such that no analytical or algorithmic solution is available. In this
case, tasks is known only through a finite number of input-output examples.

In order to obtain useful results with PRC, the system’s responses to the in-
put signals must meet several requirements. First, reservoir computing strongly
relies on a property of the input-output relation of the system generating the
responses, namely fading memory (also known as the echo state property). It is

2

present when the output depends on previous inputs of the system in a decaying
way, such that perturbations far in the past do not affect the current state. In
this way, the functional relationship between the response of the system and the
inputs is localized in time, providing a notion of "memory" [22]. Another role of
fading memory is to avoid high sensitivity to initial conditions which, if present,
could obscure the relation between inputs and outputs [see 23, and references
therein].

Secondly, analog computation, and in particular RC, exploits the natural
behavior of the device (the computer) to simulate a primary system. The class
of computable primary systems is strictly related to the class of systems used
as computer, e.g. both systems are modeled with the same class of differential
equations [see "General-Purpose Analog Computation" in 24]. In RC this is
reflected in the properties of the generated design matrix.

In general m � n and the linear problem in Eq. (1) is rank-deficient or
ill-posed [25]. The suitability of a dynamical system for reservoir computing
depends on the extent to which input signals affect the system responses. In
particular, the rank and range of the design matrix play a crucial role. Intu-
itively, the numerical rank r of Θ characterizes the power to reproduce features
of the desired output. Indeed, in a geometrical interpretation, the responses in
the design matrix span an r-dimensional subspace of all possible features [26].
Hence, for large ranks, one expects that the features required for a specific
task are present within this subspace. The affinity between the task and the
design matrix depends on the linear span of its singular vectors (the range of
Θ). Highly complicated responses (e.g. characterized by randomness or by the
chaotic dynamics of the underlying autonomous system), produce design matri-
ces with high ranks but with extremely varied ranges. These matrices do not
generalize well to unseen data, which leads to poor task performance. Moreover,
if the responses do not significantly depend on the input history, they will not
be very useful as features for obtaining a desired input-output relationship.

Whether or not a system can meet these requirements is for a large part
determined by the system’s inherent dynamics. Hence, to gauge what can be
computed with a given system, it is crucial to understand its behavior. This
allows us to propose encodings for the inputs and parameter values that optimize
computation.

In this paper we revisit the implementation of RC using volatile resistive
switches (for short we will call them memristors or memristive devices, despite
the ongoing controversy [27]). This is a novel application of memristive de-
vices as processing units rather than mere synaptic weights. Recent work has
reported large random networks of memristors that can be fabricated with rel-
ative ease [28]. Their dynamical behavior indicates that they could be used as
reservoirs [13; 29].

Most experimental investigations focus on the nonvolatile dynamics of mem-
ristors. Interestingly, volatility is present in the developed technologies [e.g. Fig.
1 of 30, see Fig. 1]. It can be observed that the conductance of the memristive
device under study decays when there is no input, unless the conductive silver
filament is fully formed. Additionally, the rate of decay depends on the stage
of development of the filament: slow decay for incipient filaments and for those
that are close to being fully formed. Fig. 1 sketches the state dependent decay
rate. This behavior indicates a state dependent volatility with a maximum at
some intermediate state of formation of the silver filament.

3

In
te

rn
al

 s
ta

te

In
p

u
t

Time

upper bound

lower bound

Figure 1: State dependent diffusion. Schematic reproduction of Fig. 1 of [30].

Due to the focus on ultra-dense storage (ReRAMs) applications, the current
trend is to engineer volatility out of the devices. Consequently, reports of nu-
merical models suitable for the simulation of volatile memristor networks are
scarce [2, section 3.2]. The available mathematical models of memristors are
adequate for the study of nonvolatile devices, i.e. having internal states without
(or with negligible) autonomous dynamics.

To adequately study the potential use of memristor networks for RC, which
requires fading memory, a deeper study of volatility is in order. For example,
when working with memristors, volatility prevents saturation. This is key for
RC, since a saturated memristor becomes a linear resistor that only scales the
input. In this work we present a first study on models of memristors that
focus on volatility and their dynamical response. These models are studied to
provide a conceptual basis for the study of networks of these devices and their
use in RC. The article begins with a short recapitulation of general models of
memristive systems. Section 2.1 introduces the model proposed by Strukov [31]
and its current driven solution, and proposes an equivalent nonvolatile Wiener
model. Section 3 presents a simple modification of each model that introduces
linear volatility. We focus on the production of harmonics and delays in the
steady state response of these models, in the vein of the harmonic balance
method. These aspects are important when designing the encoding to use for the
inputs representing values in datasets. Section 4 describes RC using memristors
connected in series and two simple application examples are given. Subsequent
sections discuss the results and indicate future directions of research.

2 Memristive systems
Memristive systems are devices that can be modeled with a nonautonomous
(input-driven) dynamical system of the form,

ẋ = F (x, u), (2)
y = H(x, u)u (3)

where x is a vector of internal states, y a measured scalar quantity and u a
scalar magnitude controlling the system. Due to its origins in electronics [32],
the pair (y, u) is usually voltage-current or current-voltage. In the first case

4

("current controlled" system) the function H(x, u) is the called "memristance",
and it is called "memductance" in the second case ("voltage controlled"). We
use a general denomination for H(x, u) and call it output function. The output
function is assumed to be continuous, bounded and of constant sign, leading
to the zero-crossing property: u = 0 ⇒ y = 0. It has been shown that this
property is a modeling deficiency for redox-based resistive switches [33], and an
extended version of equation (3) was proposed, namely

y = H(x, u)u+ h(x). (4)

Where h(x) is an autonomous output given by an internal battery in the system.
This term, in general, removes the zero-crossing property making these systems
incompatible with the original definition of memristor. In this work, we will not
study these extended systems.

2.1 Memristor models
One of the most popular models of memristive behavior consists of a single
internal state with linear dynamics and a piece-wise linear output function [31],

ẋ = µI(t), (5)

H(x) =

R if x < 0
R− (R− r)x if 0 ≤ x ≤ 1
r if x > 1

, (6)

V (t) = H(x)I(t), (7)

where I, V are the current and voltage, respectively and µ is a parameter re-
lated to the geometry and the physical properties of the material realizing the
memristor. In particular it is proportional to the average ionic mobility. H(x)
plays the role of a state dependent resistance. Note that the value of x can
grow unboundedly while H(x) remains bounded. For this reason some authors
consider the model valid only for x ∈ [0, 1][31; 34, Eq. 31].

A modified version of this model applies a windowing function to the dy-
namics of the internal state, effectively bounding it [31; 35]

ẋ = µx(1− x)I(t),
H(x) = R−∆rx,
V (t) = H(x)I(t).

(8)

The parameter ∆r = R− r depends on the bounds of the output function. The
internal state is driven by a Bernoulli equation, hence we can obtain an explicit
input-output relation for the current controlled memristor,

V (t) =
[
R−∆r

(
1 + 1− x0

x0
e−µq(t)

)−1
]
I(t), (9)

where q(t) =
∫ t

0 I(τ) dτ .

5

Noteworthy, relation (9), corresponding to the nonlinear internal state dy-
namics (8) and linear output function, is indistinguishable from the relation
corresponding to a system with linear internal state dynamics and sigmoidal
output function, i.e. a Wiener model defined as

q̇ = µI(t),

H(q;x0) = R−∆r
(

1 + 1− x0

x0
e−q(t)

)−1

= R− ∆r
2

[
tanh

(
q(t)

2 + C(x0)
)

+ 1
]
.

(10)

Note that this model is a smoothed version of the original Strukov model. The
fact that the nonlinear model can be seen as a Wiener system imposes strong
restrictions to the type of processing the system will be able to perform on the
input signals. For example, its memory function will be restricted to exponential
decays, as in linear systems. As will be discussed next, this equivalence is broken
when an autonomous term is added to the dynamics. However, in Section 3.2
we will establish an approximated equivalence for small amplitude input signals,
indicating that strong amplitudes will be needed to depart form a linear memory
behavior.

3 Fading memory
We propose a modification of these models that includes an autonomous term,

ẋ = F (x, u) +D(x) (11)

where for all x, we have that F (x, 0) = 0 and D(x) < 0. In the sections that
follow we will restrict ourselves to the case when D(x) is a linear function.
Note the difference with Eq. (4). Since we are adding diffusive dynamics to the
internal state, it does not change the zero-crossing property of the memristive
system. This modification of the model in the context of resistance switching,
arising from charge transport, implies that there is a flow of carriers that goes
out of the electrical circuit of the device (e.g. additional sink) and it is not
explicitly modeled. For example, in the hydraulic memristor studied in [34],
the decay of the internal state is realized when the storage tank has a leak,
that reduces the hydraulic resistance. Note that by doing this the methods to
convert between current and voltage controlled devices described by Biolek [34]
have to be extended, since these volatile models are not time invariant. As said
before, the equivalence of the models (8) and (10) is lost.

3.1 Nonlinear dynamics
In the case of the nonlinear dynamics model (8) we write,

ẋ = µx(1− x)I(t)− λx = (µI(t)− λ)x− µI(t)x2. (12)

6

This equation can again be identified with the Bernoulli equation and the solu-
tion is (see Supplementary data for derivation)

x(t) =
(

1 + 1− x0

x0
F (t)−1 + λF (t)−1

∫ t

0
F (z) dz

)−1

(13)

F (t) = e

∫ t

0
µI(w) dw−λt

. (14)
Comparing with Eq. (9), we see that λ introduces an exponentially decaying
factor (linearly detrending the integral of the input) and adds the integral term.
In the mathematical description that follows, we investigate the harmonics and
delay generation in the steady response of the system. The presence of harmon-
ics directly impacts the maximum rank that the RC design matrix can achieve.
Similarly, as any delayed sinusoidal signal can be expressed as a superposition of
the undelayed signal plus a cosine component of the same frequency, delays can
also increase the maximum rank of the design matrix. We begin by expressing
the convergence of the mean response (obtainable directly from the fixed point
of Eq. (12)) and continue with the response generated by periodic input signals.
We explicitly write the delay and harmonic generation in terms of interactions
between parameters of the input signal and the system’s parameters.

Using the first mean value theorem for integration when the input has mean
value µĪ = m results in,

x̄(t) =
(

1 + λ

m− λ
+ 1− x0

x0
e(λ−m)t

)−1
, (15)

which is nonzero in the long run only if m > λ. This average evolution has a
pole at

tc = 1
λ−m

ln
[(

m

λ−m

)(
x0

1− x0

)]
. (16)

Taking t = tc + τ the convergence to the steady state solution of Eq. (12) is
given by

x̄(t) = m− λ
m

(
1− e(λ−m)τ

)−1
, (17)

which shows that all initial conditions converge to the same mean but their
convergence time increases with decreasing initial conditions. In other words,
a memristor with high resistance will take longer to converge to the steady
state given by the mean value of the input. However, the timing properties of
Eq. (14) do not depend on the initial condition. Therefore delays (and fading
memory) depend only on the interaction between the input and the memristor
parameters.

This interaction is crucial to determine how the system reacts to different
inputs signals. We characterize two easily controllable properties of the inputs,
namely, their mean value and their deviations from it. Deviations from the
mean value can be seen as small amplitude oscillations. Therefore, to evince
the interaction between system’s parameters and the input signal, the latter is
decomposed in its mean value and a zero-mean waveform:

µI(t) = m+ γ(t), (18)

µ

∫ t

0
I(τ) dτ = mt+ φ(t) + φ0, (19)

7

where φ(t) is the primitive of γ(t) and the initial values were all aggregated in
the constant φ0. We assume that both functions are bounded and proceed to
calculate the harmonics generation and delay between input and output. For
this family of inputs we get,

x(t)−1 = 1 + e−φ0e−φ(t) 1− x0

x0
e(λ−m)t + λ

∫ t

0
eφ(z)−φ(t)e(m−λ)(z−t) dz. (20)

Assuming that m = λ+ ε with ε > 0, the second term vanishes in the long run.
Additionally, if we assume small bounds for φ(t), i.e. |φ(z)−φ(t)| small, we can
expand the integrand obtaining,

∫ t

0
eφ(z)−φ(t)e−ε(z−t) dz = 1− e−εt

ε
+
∞∑
n=1

1
n!

∫ t

0
(φ(z)− φ(t))n eε(z−t) dz. (21)

This expansion makes evident that the response of the system can be seen as the
infinite superposition of the response of a linear system to all the homogeneous
monomials in {φ(z), φ(t)}. Inserting this expansion back into Eq. (20), keeping
terms of first order and removing vanishing terms we obtain,

x(t)−1 = ε+ λ

ε
+ λ

∫ t

0
(φ(z)− φ(t)) eε(z−t) dz. (22)

As a prototype of zero mean waveforms we take γ(t) = α sin(ωt) and proceed
to specify the previous equations on inputs of this kind (this will provide the
harmonic response of the memristor). Introducing this input into the previous
equation we get,

xω(t) =
(
ε+ λ

ε
− λ

ε

α√
ω2 + ε2

sin(ωt− ϕ)
)−1

(23)

= ε

m

(
1− λ

mω
α sin(ϕ) sin(ωt− ϕ)

)−1
, (24)

where vanishing terms were removed (note m = ε+λ) and the delay is given by

sin(ϕ) = ω√
ω2 + ε2

. (25)

Note that, as long as

α <
m
√
ω2 + ε2

λ
, (26)

we can further expand Eq. (24):

xω(t) = ε

m

[
1 +

∞∑
n=1

(
λ

mω

)n
αn
(

sin(ϕ) sin(ωt− ϕ)
)n]

. (27)

This result is a good approximation for small amplitudes of the inputs. For
larger amplitudes, higher order terms in Eq. (21) are not negligible and har-
monics of the input frequency increase their contribution.

8

The voltage drop across the memristor is obtained using Eq. (8) by multipli-
cation with the input current and has three terms. The first term is the voltage
drop across an effective resistor, and has the same frequency as the input:

rm+ ∆rλ
µ

(
1 + α

m
sin(ωt)

)
. (28)

The second term is obtained by multiplication of the oscillatory part of xω(t)
with the mean value of the input:

−∆r(m− λ)
µ

∞∑
n=1

(
λ

mω

)n
αn
(

sin(ϕ) sin(ωt− ϕ)
)n
. (29)

The third term is formed by the product of the oscillatory parts of the input
and xω(t),

−∆r(m− λ)
mµ

∞∑
n=1

(
λ

mω

)n
αn+1(sin(ϕ) sin(ωt− ϕ)

)n sin(ωt). (30)

The voltage drop is the sum of all these terms. Taking n = 1 and using
trigonometric identities, the coefficients of the sine (aω) and cosine (bω) are:

aω =
(α
m

)(∆rλ
µ

sin2(ϕ) + r

)
=
(α
m

)(∆rλ
µ

ω2

ω2 + (m− λ)2 + r

)
, (31)

bω =
(α
m

)(∆rλ
µ

cos(ϕ) sin(ϕ)
)

=
(α
m

)(∆rλ
µ

ω(m− λ)
ω2 + (m− λ)2

)
. (32)

For the first harmonic 2ω we obtain:

a2ω = 1
2

(α
m

)2
(

∆rλ
µ

cos(ϕ) sin(ϕ)
)

= 1
2

(α
m

)
bω, (33)

b2ω = 1
2

(α
m

)2
(

∆rλ
µ

cos2(ϕ)
)

= 1
2

(α
m

)2
(

∆rλ
µ

(m− λ)2

ω2 + (m− λ)2

)
. (34)

The amplitude of the cosine contribution at the input frequency (and, as a
consequence, the delay) is modulated by the ratio between the oscillation am-
plitudes and the mean value. This contribution is shown in the top-right panel
of Figure 2. Additionally it depends on the frequency of the input signal and
the difference m − λ. As was anticipated, the signal parameters play a mayor
role in the response of the system and this can be used to propose "meaningful"
encodings.

3.2 Wiener model
In the case of the Wiener model (10) we write,

ż = µI(t)− λ`(z − zs), zs < 0. (35)

Where zs is chosen such that the output function saturates to R when there are
no inputs. Note that when zs 6= 0, the diffusive term is not strictly negative as

9

requested in (11), the role of zs is to prevent numerical overflows. The solution
is readily obtained by integration:

z(t) = µ

∫ t

0
I(τ)eλ`(τ−t) dτ + (z0 − zs)e−λ`t + zs (36)

and the timing properties are independent of the input characteristics. This
makes the calculation of the harmonic response of the system trivial, so we use
inputs of the form,

µI(t) = m+
N∑
i=1

αi sin(ωit). (37)

Replacing in the corresponding equations we obtain:

z(t) =

ε`︷ ︸︸ ︷
m

λ`
+ zs +

q(t)︷ ︸︸ ︷
N∑
i=1

αi√
ω2
i + λ2

`

sin(ωit− ϕi), (38)

sin(ϕi) = ωi√
ω2
i + λ2

`

. (39)

Since this is the response of a linear system, it generates no harmonics. Higher
frequencies are introduced when the response becomes the argument of the
sigmoid function in Eq. (10).

x(t)−1 = 1 + 1− x0

x0
e−ε`e−q(t) =

1 + 1− x0

x0
e−ε`

(
1 +

∞∑
n=1

(−1)n

n! q(t)n
)

(40)

The first order gives,

x(t)−1 = 1 + 1− x0

x0
e−ε`

[
1−

N∑
i=1

αi
ωi

sin(ϕi) sin(ωit− ϕi)
]
. (41)

The case with a single frequency can be compared with Eq. (23). The equiva-
lence between the first order models requires that (see Supplementary data for
comparison of responses),

λ` = ε (delay)

zs = − ln
(

x0

1− x0

λ

ε

)
− m

λ`
(mean value).

(42)

This equalities introduce properties of the input into the system parameters.
Therefore, this Wiener model is input signal dependent.

As mentioned before, the fact that we can establish an equivalence (approx-
imated) between the nonlinear model and the Wiener model indicates that the

10

memory of the nonvolatile memristors will resemble that of a linear system. To
observe memories that differ from exponential decays, high amplitude oscilla-
tions will be required. Note however, that the decay of conductance observed
in experiments is not linear (see Fig. 1), possibly allowing for more complicated
memory functions in a wider range of amplitudes.

4 Reservoir computing with memristors in se-
ries

In the RC context, the response of a set of memristors is used to assemble
a design matrix which is used to linearly regress the desired output. A sim-
ple but restrictive approach is to ask that the responses are linearly combined
instantaneously,

ŷk = Θ(tk)Tw. (43)

Where tk are the sampling timestamps, ŷk is the approximation to the desired
output yk and Θ(tk) is a vector with the responses of the set. The mixing vector
w is fixed for all tk and has as many components as there are memristors in the
system. For all timestamps we have

ŷ = Θw, (44)

Θ ∈ RT×n is the design matrix having the n responses of the set as columns.
This approach will be used in section 4.1 to generate delayed versions of the
input.

According to Eqs. (31)- (32) the voltage drop across n different memristors
(different values of λ and µ) to a single frequency current of small amplitude
(first order in Iω) can provide at most a design matrix of rank 2 given by the
sine and cosine components of the responses. For an input with N frequencies
it is theoretically possible to obtain a maximum rank of 2N , but probably this
is unrealistic. The use of larger amplitudes can increase the rank due to the
generation of higher harmonics. In this case, incommensurate frequencies in the
input are the best option to maximize the rank, since they reduce the overlap of
harmonics. Interestingly, the rank benefits from memristor variability, making it
a desired feature of the building process instead of a nuisance [1, and reference
98 therein].

Figure 2 (left panel) shows a mockup setup of memristors connected in se-
ries. The input current is a zero mean signal γ(t) and each memristor is fed
a small local current I0i. The case I0i = I0 for all i corresponds to a signal
with mean value and no local current. The right panel of the figure shows the
distribution of cosine components for independent mean values (top) and for
a unique mean value (bottom). For simplicity of the presentation, the bottom
panel assumes that all memristors have the same µ parameter. In general the
cosine contribution will be controlled by µiI0−λi, wider variety will, in general,
improve the rank of the design matrix. In terms of control of the design matrix
properties, the most versatile situation is the one with independent local inputs
mi. When this is not possible, variability of the memristor parameters is the key
for successful RC. A wider variety responses to the same signal, i.e. parameter
variability, would increase the rank of the design matrix.

11

0 10 20 30 40

70 80 90 100 110 120

Figure 2: Memristors in series. (left) Set of memristors for simple signal processing.
Each memristors is fed a constant current mi = µiI0i. The right panel shows the
cosine component (Eq. (32), arbitrary scale) for independent mi (top) and for equal
mi (bottom). Labels on the curves indicate the value of λi. Independent mi allow to
tune mi −λi and the response of each memristor. When a single mean value is present
(dotted line in bottom panel) the response depends on the natural distribution of the
parameters.

12

Herein we assume that the diffusion parameter λ and the effective ionic
mobility µ are independent parameters. The veracity of this assumption depends
on the physical diffusive mechanism. If diffusion is coupled with carrier mobility,
then λ will be proportional to µ. However, as in the case of the leaking hydraulic
memristor this is not necessarily true in general.

4.1 Delayer
The delay task requires that the linear mixture of output voltages is able to
recover a delayed version of the input signal. For the example presented here
we have sampled 500 input signals defined by,

γ(t) = α

12∑
n=1

ξn
πn

sin(πnt)− C. (45)

With ξn independent Gaussian variables with zero mean and unit variance. The
constant C removes the mean value of the signal for t ∈ [0, 2]. The memristor
bank consisted of 50 units with mi−λi ∈ [0.1, 100] logarithmically spaced. The
response of the system was calculated for 36 periods of the input. The last 12
periods were used for the training of the readout weights and a column filled
with ones was added to the design matrix. These weights were obtained using
ridge regression with 10-fold cross-validation.

The training performance of the system is shown in Fig. 3, top-left panel.
The correlation coefficient interval is [0.9, 1] indicating that the lower frequencies
are more easily delayed (as indicated by Eq. (25)).

The trained weights were tested using a previously unseen input signal shown
in the top-right panel. The deterioration of higher frequencies with increasing
delay is also visible in these plots.

The panel at the bottom shows the distribution of the weights for each
memristor (labeled with its εi parameter) and their variation with increasing
delays. Higher delays recruit memristors with smaller εi. The integrals in
Eq. (21) allows to interpret this in terms of memory, with lower εi corresponding
to filters with longer time constants, i.e. longer memory. Note that volatility
cannot be cancel out with a fixed mean value, since even if εi = 0, diffusion
is still driven by the mean value of the input with a quadratic dependency on
the state (Eq. (12)). The smooth variation of the readout weights with the
delay can be interpolated reducing the number of delays that need to be trained
explicitly.

The numerical rank of the obtained design matrix in these experiments was
approximately 5, with a clear gap between the singular values beyond that
rank (discrete rank-deficient). Therefore, the size of memristor bank could be
reduced. The size of the bank in this example was chosen to show the smooth
variation of the readout weights as a function of εi. Similar performances as the
one shown here were obtained with banks consisting of 10 memristors.

4.2 Binary operators
In this example we use data from the set Z2/3 = {0, 1, 2}2 and we try to learn all
mappings Z2/3 → Z/3, i.e. binary operators in Z/3. Note that in the absence
of noise, a design matrix with rank 9 would solve any of these tasks exactly. To

13

C
o
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

0 0.2 0.4 0.6 0.8 1
delay [phase]

0.9

1
A

B

C

0 0.5 1 1.5 2
Time

A

B

C

0 0.2 0.4 0.6 0.8 1
delay [phase]

-1

-0.5

0

0.5

1

1.5

2 4000

0

-4000

-1000

-5000

Figure 3: Signal delayer. Three panels showing the performance of the memristor
bank for the delay task. (top-left) Correlation coefficient between the estimated and
desired output, for different delays. The solid line corresponds to training values, the
dotted line to a single test value. (top-right) Test example for three delays (A,B,C
marked in the panel) high-frequency features of the signal are lost with higher delays.
(bottom) Readout weights for each delay and εi parameter. The correlation coefficient
is overlaid to guide the eye.

14

bank linear

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9

%
 o

f
o
p

e
ra

to
rs

Error [# symbols]
1

4
3

1

2
7

4
2 4

0
0

4

4
4

3
6

3
6

0
0

2
1

5
0

9
9

4

2
9

0

3
2

4

Figure 4: Solving all tasks in Z/3. 10-fold cross validation error for all possible tasks
in Z/3 for a single 10 memristors bank. Each bar shows the tasks count and the y-axis
shows the corresponding percentage. Pattern filled bars corresponds to the memristor
bank, solid (red) bars are the results obtained using the inputs directly.

use the memristor bank with discrete datasets, we need an encoding from the
domain of the dataset to the continuous input signal space. Each input pair
(s1, s2) ∈ Z2/3 is mapped to an input signal via the formula,

u(t, s1, s2) = s1 + 1
3 sin (ω1t) + s2 + 1

3 cos (ω2t) , (46)

where ω1 = π2
/
√

2 and ω2 = 3π
√

3. These signals combine two (or more if
desired) frequencies. The values si equalize the driving signal by defining fre-
quency components within u(t, s1, s2). Since we will be working with the long
term response of the memristor bank, the ordering of the input pairs is irrele-
vant, i.e. the response of the system for symbols i is independent of the response
for symbols i − 1. This also means that we are not exploiting the memory of
the dynamical system. To do this, we would use encodings that present each
element of the input pair sequentially. The encoding (46) allows us to use the
bank as a static map between inputs and outputs similar to ELMs [36]. The
same operators can be implemented in nonvolatile memristors, granted that all
encoded inputs have zero mean.

For this application, the readout map is a linear combination of buffered
output signals: for each input pair, we integrate the system for a period of time
T = 20π/ω1 (sampling frequency f = 150 Hz) and sample the output voltages
at timestamps T − [0.95, 0.7, 0.5]× 2π/ω1. With this data we construct a single
row of the design matrix. Therefore, the total number of readout weights is 3N ,
with N = 10 the number of memristors in the bank.

Figure 4 shows the performance of the memristor bank for all possible binary
operators in Z/3. About 64% of all 332 possible tasks are solved with 3 or less
errors. For comparison, the plot also shows the performance of a design matrix
constructed in the same way but using directly the input signals instead of the
system’s responses.

If we use random matrices as proxies for systems generating responses with
very narrow autocorrelation functions, the performance of the memristor bank
(64% with 3 or less errors) is obtained with random matrices of rank 7 and
above (9 × 30 matrices with Gaussian entries and then SVD truncated to the
desired rank). However the design matrix generated by the memristor rank
has a numerical rank of 3 (1×10−2 tolerance). This indicates that the singular
vectors are better suited for the task than the ones from random matrices.

15

5 Discussion
We have studied two models of volatile memristors that are reasonable modifi-
cations of popular models used nowadays for the study of nonvolatile devices.
Model (8) has been used for the simulation of networks [37], while model (10)
is an original contribution of the authors. Interestingly the nonlinear model of
memristors can be thought of as a static nonlinearity applied on the trajectories
of a linear dynamics model, i.e. a Wiener model. Though the equivalence be-
tween the models could be used for nonlinear system identification, its existence
might hinder the usability of these systems in reservoir computing, since memory
functions are restricted to decaying exponentials. A uniformly decaying memory
function is unsuited for many machine learning problems, e.g. finding match-
ing parentheses in a written sentence, which requires some kind of retrievable
memory. However, the volatility observed in real devices [30] is more complex
than the linear volatility studied herein. Nonlinear volatility might prevent an
equivalent Wiener model. Additionally, memory can become intricate when the
system is used in close loop.

The addition of linear volatility to resistance switching models based on
charge transport, implies that there is a flow of carriers that goes out of the
electrical circuit of the device. Here in this additional sink was not explicitly
modeled. Improved models could include leak currents generated by diffusive
processes and internal batteries, i.e. using Eqs. (4) and (11). Nevertheless,
before moving towards more detailed models, we believe there is a need for
thorough evaluation of the current models against the behavior of real devices.

When memristors are used in the RC framework, the natural variability of
their parameters comes as a benefit contrary to what it is usually considered
in other computational paradigms. The variability of the devices produces a
gamma of responses (ideally, linearly independent responses) to the same input
signal. This set can then be linearly combined to generate new functions. In this
regard, RC is similar to Galerkin’s method but the set of linearly independent
functions used as generators are provided by the system itself rather than by
design. This particularity makes the approach interesting for adaptive systems
and has been used to generate motion control inputs for nonlinear systems [38,
part II] and to draw connections to the synergy hypothesis in motor control [12].

Whether variations of the input can be afforded by the RC solution is highly
dependent on the kind of system generating the responses and must be studied
on a case by case basis. In general, systems showing fading memory for a family
of driving signals are expected to be able to cope with input perturbations
localized in time. This point highlights the role of the input encoding. The
models studied here have a very well defined harmonic generation [35; 39] and
encoding information in the spectrum (e.g. Eq. (46)) could exploit this natural
behavior. However these memristor models are suited to produce only upshifts
of frequency bands in the lower range of the spectrum. Another important
feature of the model studied here is the coupling between the mean value of the
inputs and the induced delay (and harmonic generation near the saturation).
This indicates that low frequency variations are well suited for encodings. Note
that this encoding would be much restricted in nonvolatile devices, since inputs
with mean value would saturate the devices almost all the time.

The memristor bank presented in section 4 is the simplest topology that can
be assembled with a set of memristors. It is a building block for the understand-

16

ing of larger topologies. It also offers a reference to evaluate the contribution
of more complicated topologies. To study the complementary circuit, the par-
allel topology, we need to adapt the methods in [34] to include the time variant
component of the dynamics. This will be done in subsequent works.

Regarding numerical simulations of large networks with the two models pre-
sented herein, there are several issues that are worth mentioning. For the case
of the nonlinear state dynamics (Eq. (8)), x = 0 is unstable and any numerical
error giving a slightly negative value will create a divergence of the simulations.
To solve this, the value of x has to be forced to comply with x > 0 (slowing
down the simulations) or one can build a nonlinear equation that is stable in
both extrema of the interval [0, 1]. When λ = 0, once the internal state reaches
x = 0 or x = 1 beyond machine precision, it cannot be driven out of those
states since it becomes insensitive to the driving signal. This is an unavoidable
problem when input signals have nonzero mean value. This is not the case for
the model in Eq. (10). H(x) can be driven out from saturation (in either ex-
trema) using the appropriate input signal, even when numerical rounding errors
are present. Note that model (8) provides a bounded internal state, while (10)
does not. Since in the latter model saturation is present in the output function
but not in the internal states, the integral of the input needed to "de-saturate"
the internal state may grow with time and input signals with mean value could
drive the internal states to overflow.

6 Conclusions
In this work we have studied a modified version of the nonlinear Strukov mem-
ristor model that includes a linear diffusion term. The long term behavior of the
model and its response to periodic inputs have been presented in detail. The
results evinced the role of the mean value of the inputs as a modulator of the
memory of the memristors and the consequent generation of delays.

We have also presented a Wiener model that can approximate the behavior
of the nonlinear model for inputs with small amplitude variations. This model
can provide a starting point for nonlinear system identification of large net-
works. However, the existence of a Wiener model approximating the memristor
behavior limits the complexity of its memory functions. Feedback loops would
be required to overcome this drawback.

We have presented results on two academic tasks: delaying an input signal
and binary operators in Z/3. The delay task illustrated how RC recruits memris-
tors with longer memories to generate higher delays. The binary operator task,
showed that although the design matrices are rank-deficient their performance
is comparable to high rank random matrices. The results also highlight that
device variability is a desired feature for the implementation of RC in memristor
networks.

Clearly, the different computational properties arising from the Strukov-
based model and the Wiener model imply that a more in-depth study on the
use of memristor networks for reservoir computing relies on the selection of
a physically realistic model. Therefore, experimental modeling research is re-
quired for the development of accurate volatile memristor models.

17

Acknowledgements
The authors would like to thank Prof. Nir Y. Krakauer for the suggested litera-
ture on rank-deficient linear problems. We acknowledge the fruitful discussions
with Dr. Pieter Buteneers about ELMs. We thank the developers of GNU
Octave; Sage and Inkscape for their excellent software tools.

Funding. The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 604102 (Human Brain Project).

Author contributions : JPC developed the software and mathematical for-
mulation; carried out the experiments, data analysis. JPC & JD wrote this
manuscript. BS & MH contributed to the numerical experiment design and
copy-edition.

References
[1] Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G, Prodromakis

T. Integration of nanoscale memristor synapses in neuromorphic computing
architectures. Nanotechnology. 2013 Sep;24(38):384010.

[2] Kuzum D, Yu S, Wong HSP. Synaptic electronics: materials, devices and
applications. Nanotechnology. 2013 Sep;24(38):382001.

[3] Esmaeilzadeh H, Sampson A, Ceze L, Burger D. Neural Acceleration for
General-Purpose Approximate Programs. In: 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE; 2012. p.
449 – 460.

[4] Samadi M, Lee J, Jamshidi DA, Hormati A, Mahlke S. SAGE: self-tuning
approximation for graphics engines. In: 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE; 2013. p. 13–24.

[5] Maass W, Natschläger T, Markram H. Real-time computing without stable
states: a new framework for neural computation based on perturbations.
Neural computation. 2002 Nov;14(11):2531–60.

[6] Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless communication. Science (New York, NY). 2004
Apr;304(5667):78–80.

[7] Maass W. Liquid state machines: motivation, theory, and applications. In:
Cooper SB, Sorbi A, editors. In Computability in Context: Computation
and Logic in Imperial College Press; 2010. p. 275–296.

[8] Lukoševičius M, Jaeger H, Schrauwen B. Reservoir Computing Trends. KI
- Künstliche Intelligenz. 2012 May;26(4):365–371.

[9] Triefenbach F, Jalalvand A, Schrauwen B, Martens JP. Phoneme recog-
nition with large hierarchical reservoirs. In: Lafferty J, Williams CKI,

18

Shawe-Taylor J, Zemel RS, Culotta A, editors. Advances in Neural Infor-
mation Processing Systems. vol. 23. Neural Information Processing System
Foundation; 2010. p. 9.

[10] Buteneers P, Verstraeten D, Van Nieuwenhuyse B, Stroobandt D, Raedt R,
Vonck K, et al. Real-time detection of epileptic seizures in animal models
using reservoir computing. EPILEPSY RESEARCH. 2013;103(2-3):124–
134.

[11] Ongenae F, Van Looy S, Verstraeten D, Verplancke T, Benoit D, De Turck
F, et al. Time series classification for the prediction of dialysis in critically
ill patients using echo state networks. ENGINEERING APPLICATIONS
OF ARTIFICIAL INTELLIGENCE. 2013;26(3):984–996.

[12] Alessandro C, Carbajal JP, D’Avella A. A computational analysis of motor
synergies by dynamic response decomposition. Front Comput Neurosci.
2013;.

[13] Sillin HO, Aguilera R, Shieh HH, Avizienis AV, Aono M, Stieg AZ, et al.
A theoretical and experimental study of neuromorphic atomic switch net-
works for reservoir computing. Nanotechnology. 2013 Sep;24(38):384004.

[14] Reinhart RF, Jakob Steil J. Regularization and stability in reservoir net-
works with output feedback. Neurocomputing. 2012 Aug;90:96–105.

[15] Fiers M, Van Vaerenbergh T, wyffels F, Verstraeten D, Schrauwen B,
Dambre J, et al. Nanophotonic reservoir computing with photonic crystal
cavities to generate periodic patterns. IEEE TRANSACTIONS ON NEU-
RAL NETWORKS AND LEARNING SYSTEMS. 2014;25(2):344–355.

[16] wyffels F, Li J, Waegeman T, Schrauwen B, Jaeger H. Frequency modula-
tion of large oscillatory neural networks. BIOLOGICAL CYBERNETICS.
2014;.

[17] Fernando C, Sojakka S. Pattern Recognition in a Bucket. In: Banzhaf W,
Ziegler J, Christaller T, Dittrich P, Kim JT, editors. Advances in Artificial
Life. Springer Berlin Heidelberg; 2003. p. 588–597.

[18] Caluwaerts K, D’Haene M, Verstraeten D, Schrauwen B. Locomotion with-
out a brain: physical reservoir computing in tensegrity structures. ARTI-
FICIAL LIFE. 2013;19(1).

[19] Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G, Ver-
straeten D, et al. Experimental demonstration of reservoir computing on a
silicon photonics chip. Nature Communications. 2014;5.

[20] Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M,
et al. Optoelectronic reservoir computing. Scientific Reports. 2012;2:1–6.

[21] Larger L, Soriano MC, Brunner D, Appeltant L, Gutierrez JM, Pesquera
L, et al. Photonic information processing beyond Turing: an optoelectronic
implementation of reservoir computing. Optics Express. 2012;20(3):3241.

19

[22] Hermans M, Schrauwen B. Memory in linear recurrent neural networks in
continuous time. Neural networks : the official journal of the International
Neural Network Society. 2010 Apr;23(3):341–55.

[23] Manjunath G, Jaeger H. Echo state property linked to an input: exploring
a fundamental characteristic of recurrent neural networks. Neural compu-
tation. 2013 Mar;25(3):671–96.

[24] MacLennan BJ. Analog Computation. In: Meyers RA, editor. Computa-
tional Complexity. New York: Springer; 2012. p. 161–184.

[25] Hansen PC. Rank-Deficient and Discrete Ill-Posed Problems. Society for
Industrial and Applied Mathematics; 1998.

[26] Dambre J, Verstraeten D, Schrauwen B, Massar S. Information processing
capacity of dynamical systems. Scientific reports. 2012 Jan;2:514.

[27] Vongehr S. Missing the Memristor. Advanced Science Letters. 2012
Oct;17(1):285–290.

[28] Avizienis AV, Sillin HO, Martin-Olmos C, Shieh HH, Aono M, Stieg
AZ, et al. Neuromorphic atomic switch networks. PloS one. 2012
Jan;7(8):e42772.

[29] Stieg AZ, Avizienis AV, Sillin HO, Martin-olmos C, Aono M, Gimzewski JK.
Emergent Criticality in Complex Turing B-Type Atomic Switch Networks.
Advanced Materials. 2012;24(2):286–293.

[30] Ohno T, Hasegawa T, Nayak A, Tsuruoka T, Gimzewski JK, Aono M.
Sensory and short-term memory formations observed in a Ag2S gap-type
atomic switch. Applied Physics Letters. 2011;99(20):203108.

[31] Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor
found. Nature. 2008;453(7191):80–83.

[32] Chua LO. Memristor-the missing circuit element. IEEE Transactions on
Circuit Theory. 1971;ct-18(5):507–519.

[33] Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F,
et al. Nanobatteries in redox-based resistive switches require extension of
memristor theory. Nature Communications. 2013 Apr;4:1771.

[34] Biolek Z, Biolek D, Biolkova V. Analytical Solution of Circuits Employing
Voltage- and Current-Excited Memristors. IEEE Transactions on Circuits
and Systems I: Regular Papers. 2012 Nov;59(11):2619–2628.

[35] Nedaaee Oskoee E, Sahimi M. Electric currents in networks of intercon-
nected memristors. Physical Review E. 2011 Mar;83(3):031105.

[36] Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Neural Networks, 2004. Pro-
ceedings. 2004 IEEE International Joint Conference on. vol. 2. IEEE; 2004.
p. 985–990.

20

[37] Stieg AZ, Avizienis AV, Sillin HO, Aguilera R, Shieh Hh, Martin-olmos
C, et al. Memristor Networks. Adamatzky A, Chua L, editors. Cham:
Springer International Publishing; 2014.

[38] Carbajal JP. Harnessing Nonlinearities: Generating Behavior from Natural
Dynamics [PhD]. University of Zürich; 2012.

[39] Georgiou PS, Barahona M, Yaliraki SN, Drakakis EM. Device Properties
of Bernoulli Memristors. Proceedings of the IEEE. 2012 Jun;100(6):1938–
1950.

[40] Octave community. GNU Octave 3.8.1; 2014. Available from: www.gnu.
org/software/octave/.

[41] The Sage Development Team. Sage Mathematics Software (Version 6.1.1);
2014. Available from: http://www.sagemath.org.

[42] Inkscape community. Inkscape 0.48; 2014. Available from: http://www.
inkscape.org/.

21

www.gnu.org/software/octave/
www.gnu.org/software/octave/
http://www.sagemath.org
http://www.inkscape.org/
http://www.inkscape.org/

	1 Introduction
	2 Memristive systems
	2.1 Memristor models

	3 Fading memory
	3.1 Nonlinear dynamics
	3.2 Wiener model

	4 Reservoir computing with memristors in series
	4.1 Delayer
	4.2 Binary operators

	5 Discussion
	6 Conclusions

