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ABSTRACT

The aim of this paper is to investigate the feasibility of well-posed lateral boundary conditions in a Fourier
spectral semi-implicit semi-Lagrangian one-dimensional model. Two aspects are analyzed: (i) the compli-
cation of designing well-posed boundary conditions for a spectral semi-implicit scheme and (ii) the impli-
cations of such a lateral boundary treatment for the semi-Lagrangian trajectory computations at the lateral
boundaries.

Straightforwardly imposing boundary conditions in the gridpoint-explicit part of the semi-implicit time-
marching scheme leads to numerical instabilities for time steps that are relevant in today’s numerical
weather prediction applications. It is shown that an iterative scheme is capable of curing these instabilities.
This new iterative boundary treatment has been tested in the framework of the one-dimensional shallow-
water equations leading to a significant improvement in terms of stability.

As far as the semi-Lagrangian part of the time scheme is concerned, the use of a trajectory truncation
scheme has been found to be stable in experimental tests, even for large values of the advective Courant
number. It is also demonstrated that a well-posed buffer zone can be successfully applied in this spectral
context. A promising (but not easily implemented) alternative to these three above-referenced schemes has
been tested and is also presented here.

1. Introduction (1978), a field must be supplied at the lateral boundary
for each inward-pointing characteristic. This implies
that only some subset of all the prognostic variables
should be imposed there. If the number of imposed
boundary fields has been correctly chosen in the above
sense, the initial boundary value problem is said to be
“well posed.”

The construction of such a well-posed lateral bound-
ary condition (LBC) in NWP models is a delicate task.
Nevertheless, some well-posed LBC’s treaments have
been recently designed with in mind meteorological
forecast models, but exclusively for discretization
schemes based on local pointwise horizontal represen-
tations of the fields. Namely, for the High-Resolution
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In limited-area numerical weather prediction (NWP)
models, the lateral borders of the domain are not physi-
cal boundaries for the flow, but artificial boundaries
constructed in the aim that the solution of the govern-
ing equations over this limited area remain consistent
with the one of the global atmosphere. This results in a
so-called initial boundary value problem. To solve the
equations describing the evolution of the atmosphere in
that context, some information has to be supplied at
these artificial boundaries throughout the course of the
integration time. As shown by Oliger and Sundstrém
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treatments for semi-implicit (SI) semi-Lagrangian
schemes (SL) based on a finite-difference gridpoint dis-
cretization with a staggered Arakawa C grid. Still in
pointwise approaches, Lie (2001) has demonstrated the
feasibility of well-posed boundaries with a semi-implicit
semi-Lagrangian (SISL) model using an horizontal fi-
nite-element discretization. However, finite-difference
and finite-element methods are not the only horizontal
discretization schemes used in NWP models. Space dis-
cretization methods based on Fourier spectral horizon-
tal representation of the fields are also commonly used
in limited-area models, but until now the question of
the feasibility of well-posed LBCs within this spectral
approach has not yet been investigated, especially in
conjunction with SISL algorithms.

In the NWP community, Fourier spectral limited-
area models are common practice, as for example, the
National Centers for Environmental Prediction (NCEP)
model (Juang et al. 1997), the Aire Limitée Adaptation
Dynamique Développement International (ALADIN)
model (Bubnova et al. 1995), and the so-called spectral
version of the HIRLAM model (Haugen and Machen-
hauer 1993). But, because of the contradiction between
a local specification of LBCs and the global character of
the Fourier spectral discretization, designing stable and
accurate well-posed boundary conditions is a daunting
task. In Fourier spectral limited-area models, one of the
most difficult questions is to combine the periodicity
constraint for the Fourier expansion with well-posed
time-dependent LBCs. For this reason, and because of
the success of the engineering solution of Davies
(1976), all spectral limited-area NWP models have been
so far formulated with a flow-relaxation scheme, as in
the NCEP model (Juang and Kanamitsu 1994) and in
the ALADIN model (Radnéti 1995). This scheme con-
sists in overspecifying the boundaries and in damping
the resulting noise in a relaxation buffer zone. This
gives stable forecasts and leads to a very easy imple-
mentation. Despite this, the relaxation scheme has
however some unavoidable weaknesses that might
jeopardize the benefit that could be expected from
high-resolution modeling and from sophisticated physi-
cal parameterizations (see Warner et al. 1997). Addi-
tional reasons to look for a well-posed lateral boundary
strategy have been hightlighted by McDonald (1999),
and will not be detailed here.

The aim of this paper is to examine if a well-posed
formulation of LBCs is possible (and viable) in the
framework of the spectral technique, since this is the
method currently used in the ALADIN model and that
might not be questioned in the short term.

In the finite-difference or in the finite-element SISL
frameworks, the key point for designing well-posed
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LBCs consists in locally altering the gridpoint implicit
operator induced by the semi-implicit scheme, with
the boundary conditions. This leads to a space-depen-
dent closed system that can be iteratively solved at each
time step, thanks to efficient gridpoint solvers. For the
Fourier spectral method to be attractive, the so-called
implicit operator must remain horizontally homoge-
neous in such a way that it is readily inverted in spectral
space. Hence, the above well-posed LBC strategy, im-
plying a local modification of the implicit operator, is
not suited for spectral models. The main issue is to find
how well-posed LBCs can be incorporated into the
Fourier spectral SISL scheme in a stable and accurate
manner without jeopardizing the attractive aspects of
the Fourier spectral method.

This paper explores these issues in the framework of
a one-dimensional linearized shallow-water spectral
model, by restricting the specification of LBCs to the
gridpoint space. It is first shown that imposing the
LBCs in a purely explicit way cannot lead to a suffi-
ciently stable behavior for operational applications.
Then an alternative method is examined: the LBCs are
introduced in the explicit gridpoint part of the compu-
tations, but they are treated in an approximate implicit
way through an iterative procedure, in the same spirit
as the iterative centered implicit (ICI) schemes pro-
posed in Bénard (2003).

Moreover, McDonald (2000) identified accuracy
problems linked to semi-Lagrangian trajectories when
the departure lies outside the domain. He proposed
three solutions that are also examined in the present
paper. However, in the context of McDonald’s study as
well as in the present context, these proposals turn out
to be either inaccurate in certain circumstances or too
costly for future NWP applications. An alternative so-
lution is introduced here, based on the substepping idea
of Termonia and Voitus (2008), which circumvents
these drawbacks.

This paper is organized as follows. The one dimen-
sional two-time level (2TL) SISL spectral shallow-
water model is presented in section 2. In section 3, we
examine the feasibility of well-posed LBCs by imposing
the characteristics boundary conditions, first with an
explicit and then with an iterative implicit treatment. In
section 4, the problem of the semi-Lagrangian trajecto-
ries originating from outside the domain is examined.
Some numerical tests are presented in section 5. Fi-
nally, concluding remarks and a discussion are given in
section 6.

2. The one-dimensional shallow-water model

Let us consider the linearized shallow-water equa-
tions for a one-dimensional flow on an fplane along the
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x direction in the absence of orography. Assuming that
the basic state denoted by (@, v, ®) is constant and
stationary, the evolution of small perturbations u, v,
and ® around this basic state is examined, where P
stands for the logarithm of the geopotential field gz;
where z is the free surface height; and u and v are,
respectively, the x and y components of the horizontal
wind. As a result, the linearized system is given by

il .1 ad )1 9P, f

duix,t) _ dv(x,b)
+u

or ax and

+ fu(x, t) = 0,

2

ob(x,t)  0P(x, 1) Ju(x,t)
+u + =0

ot 0x 0x ’ 3)

where the basic-state advection velocity %, Coriolis pa-
rameter f, and geopotential height ¢ = e® are constants.
The characteristic variables (or Riemann invariant vari-
ables) are given by v, p = u + ¢®, and ¢ = u — ¢®, with
¢ = \/ ¢ denoting the gravity wave phase velocity.
These variables are, respectively, associated with the
characteristic velocities @, ( + ¢), and (# — ¢). The
wave solutions to (1)-(3) can be written as = U
exp[i(kx — wt)]. Substituting this general wave solution
into (1)-(3) implies that o admits three solutions: a
slow advective solution w, = ku, which corresponds to
the geostrophic balance state (u = 0, and fv = ¢?9d/ax),
and two fast solutions, which correspond to the inertia—
gravity waves adjustment modes with w. = k(7 * ¢),
and ¢, = \/& + (flk)>.

In this paper, a spectral model version of the shallow-
water equations in (1)-(3) with a structure following the
proposal of Haugen and Machenhauer (1993) is formu-
lated over the horizontal limited-area domain 0 = x =
L (hereafter the “C zone”). This model is discretized on
a collocation grid with the index i = (0, i;), where i =
0 represents the left artificial boundary of the physical
domain and i = i, is the right artificial boundary (i.e.,
L = i;Ax). The C zone is then extended by a meteo-
rologically meaningless extension zone (hereafter the
“E zone”), which is labeled by i = (i, + 1, N — 1),
making the whole domain (C + E) fully periodic (i.e.,
the value of all fields at points x = NAx and x = 0
coincide). The length of the (C + E) area is denoted L,
(i.e., L, = NAx). In the E zone, all fields are supple-
mented by a periodic extension by means of a spline
interpolation before applying the FFT transforms to
compute the horizontal derivative terms in spectral
space. The cubic splines used in this paper are exactly
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the same as the existing one in the ALADIN model.
Alternative spectral model formulations with the Fou-
rier extension, such as the one proposed by Boyd
(2005) may be adopted, but they will not be investi-
gated here: the work presented herein is restricted to
the extension method used in the ALADIN model.

This spectral model version is used to solve the shal-
low-water system throughout the limited-area domain
C zone, by supplying time-dependent boundary condi-
tions only at the lateral boundaries of the C zone. The
purpose in then to design the LBCs in such a way that
the solution over this C zone is consistent with the exact
analytical solution provided over the unbounded do-
main and considered as the “truth.” The evolution of
the pronostic fields inside the E zone is not relevant,
this zone is there only to allow the application of the
Fourier spectral method.

A two-time-level semi-Lagrangian semi-implicit (2-
TL SISL) discretization of (1)—(3) is performed. The set
of shallow-water equations being linear, there are no
additional sources of instabilities due to nonlinear re-
siduals terms, the 2-TL SISL scheme is consequently
unconditionnally stable and O(A#*) accurate. The dis-
cretized equations of (1)—(3) can be written as

(q> ; %“;—Z)+ — R = (AY)?, )
At (oD - * u u\ 0
5 (850 m)] r i ma o
Ar_ \+ v w0
<v+?fu> = R"= (A% (©)
with
At du\°
(A% = (¢> - 35) , ™
w0 _ At L0 f ’
@AY =lu=5(é--~f)|. and (®)
. 0
(A,,o:<v_%’u>, ©)

where the asterisk subscript denotes interpolations at
the departure point of the SL trajectory x,, = x; — uAt,
with x; = iAx. The superscripts plus sign and 0 cor-
respond to time levels ¢ + At and ¢, respectively. X =
(u, v, ®)" represents the state vector. Assuming that the
initial state X° is made periodic using the extension
procedure, then transformed in spectral space, the de-
tailed model structure in absence of any time-depen-
dent lateral boundary conditions is organized as fol-
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lows: the derivative of the (periodic) fields a,X° are
computed in spectral space after some suitable spectral
truncation. An inverse Fourier transform is applied to
X" and to 9, X" in order to transfer these fields to grid-
point space. The right-hand side (rhs) explicit terms
A% = (A%, A", AY)T are computed in gridpoint space at
time ¢ through (7)—(9), and then evaluated through cu-
bic interpolation at the departure points to get the (pe-
riodic) fields R = (R“, R*, R®)" over the whole (C + E)
domain, which are then transformed into spectral
space.

The left-hand side (lhs) implicit terms of (4)—(6) cor-
respond to the implicit part of the SI scheme. This sys-
tem can be put into the symbolic matrix form [I — (A#/
2)L] X* = R, where the definition of the linear differ-
ential operator [I — (A#/2)L] is directly derived from
(4)—(6). This operator is inverted by solving a Helm-
holtz equation for the u field, which is obtained by
substituting ® by (4) in (5), and v by (6) in (5):

AP _ AP du Y _AtaR®
1+Tf U= x2 —R +—R,— R
(10)

In spectral space, the Helmholtz equation in (10) is
solved by a simple algebraic division for each spectral
mode:

Ru + (fst)R\U $% <27TK>I%£
g = 5 Bl
(fAf) AP (27K
3 +¢T<Lx>

where i}, ]A?’,"(, 1%7(, and li’% are the spectral coefficients
associated to the wavenumber K for u*, R%, R, and R®,
respectively, and 2wK/L, the multiplicative factor of
the derivative operator. Then, ®;; and 9 are easily
obtained through back substitution in the spectral
counterpart of (4) and (6). It is important to note that
this solution in spectral space is allowed provided that
the coefficients of the Helmholtz operator are spatially
homogeneous.

The challenge is to insert well-posed boundary con-
ditions into this SISL model structure. Sundstrém and
Elvius (1979) have suggested to externally supply the
well-posed incoming characteristic variables at the
boundaries into the implicit part of the SI scheme,
which leads to a local modification of the Helmholtz
gridpoint solver at the boundaries. This idea has been
successfully explored by McDonald (2000). In this grid-
point representation, it is always possible to impose
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boundary conditions anywhere locally. On the contrary,
in spectral representation, the value at a single point
cannot be modified by changing the coefficients of the
spectral representation of the fields. This holds, a for-
tiori, in the spectral form (11) of the Helmholtz equa-
tion. Hence, local modifications can only be performed
in gridpoint space computation of the spectral model
structure. Besides, since the implicit part is evaluated in
spectral space, it is impossible to impose a well-posed
boundary condition in a purely implicit manner.

3. Well-posed boundary treatment

Oliger and Sundstrom (1978) have pointed out that
well posedness implies that for each inward-pointing
characteristic, one field must be supplied at the consid-
ered lateral boundary. In the context of the shallow-
water system examined here, this means that if [zl <
/¢ then two fields have to be supplied at the inflow
lateral boundary and only one at the outflow. Inversely,
if lal > \/$ then three fields have to be supplied at the
inflow boundary and none at the outflow. In this paper,
the case lul < \/¢ will be deeply investigated. The
other case can be treated in a similar way with some
minor changes, but will not be examined here.

a. Explicit well-posed boundary conditions

Assuming that w > 0, without loss of generality, the
left physical boundary (x = 0) becomes the inflow
boundary and the right physical boundary (x = L =
iz Ax) is the outflow boundary. Let us consider the case
u < \/E As outlined above, two fields have to be
supplied at x = 0 and only one at x = L. Thus, we
impose pg”, 13", and ¢;” at boundaries, where the su-
perscript “A” denotes the external boundary data sup-
plied by the “host” model following the terminology in
McDonald (2002). In pratice, they are imposed through
the @ field and the v field at the beginning of the grid-
point computations in such a way that ® = (1/¢)(p3" —
up), v = vp, and @) = —(1/e)(q}" — uy).

The derivative terms involved in the rhs terms at
boundaries i = 0 and i = i, are evaluated using a first-
order off-centered finite-differente approximation in
order to avoid the use of grid points from outside the C
zone. For stability reasons, we used second-order cen-
tered finite-difference approximations to estimate the
derivative terms at the immediately adjacent grid points
from the boundaries i = 1 and i = i; — 1 (not to do this
was found to lead to instabilities in our tests). Conse-
quently, near the boundaries, the explicit rhs terms in
(7)—(9) are evaluated by
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- cAt ac| _PrTEP0
(Ap)” = 1- Ax W0 TS A > , (12)
1 n Y
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(A]) = ul - ? d) 2Ax - 2 bl (13)
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1 0
h
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where the tilde denotes a field modified by LBC speci-
fication. The same finite-difference approximations are
employed to compute du/dx at the boundaries i = 0, 1,
i; — 1, and i, . In the interior of the physical domain
(ie.,i=2,...,i, — 2), the derivatives are computed
spectrally.

Concerning SL trajectory computations at inflow
boundaries, the so-called trajectory truncation method,
as defined in McDonald (2000), is applied: when the
departure point is outside the physical domain (i.e.,
x, < 0or x, > i;Ax), the trajectory is simply truncated
at the boundary of the physical domain C zone. Other-
wise, when some points of the stencil of the cubic op-
erator lay outside the domain [i.e., 0 < x, < Ax or
(i;, — 1) Ax < x, < i;Ax] the interpolations are per-
formed only quadratically, see McDonald (2000) for
more details. The resulting interpolated rhs terms are
then periodically extended into the E zone before ap-
plying the FFT direct transform procedure and solving
the implicit problem in spectral space.

To test the stability and the consistency of this ex-
plicit boundary option, we use the fastest wave solution
corresponding to the frequency w,. For this wave so-
lution and for the wavenumber k = 27/L ., the variables
®, u, and v are given by

(16)

1 (2= B
d(x,t)=a, - sin L—[x — (U + ]+ Ay,
k x

2
ux,t)=a, sin{L— [x — (@ + ¢ ] + )\+}, and (17)

B f 2m .
v(x, 1) = —a, HCOS{L—X [x — (@ + ] + )\+}, (18)

where a, and A, are constants. This wave solution is
periodic over the whole domain (C + E). The initial
state is given by appropriate ®(x, 0), u(x, 0), and v(x, 0)

fields. The initial and boundary conditions are chosen
in such a way that this wave moves in the positive x
direction with the velocity # + ¢,. The following pa-
rameters are used; L, = 1200 km, L = 1000 km, Ax =
10 km, a, =10, A, = O,f= 107*s7 % and ¢, = 300.4 m
s~ ', In the tests below, the length of the integration (T')
is always chosen in such a way that the traveling wave
exactly covers the distance L, in the analytical solution.
Thus, the initial and the final state should overlap,
making any error “jump out” immediately. The char-
acteristic boundary conditions are given by the analyti-
cal solution: p(0, t) = u(0, £) + ¢®(0, 7), v(0, t), and
q(L,t) = u(L, t) — c®(L, ).

In a first test, the settings are chosen as follows: At =
49.94s, ¢=300ms ', w =100 ms !, so that the wave
Courant number cA#/Ax is 1.5, and the advective Cou-
rant number a = wA#/Ax is 0.4994. This choice avoids
severe SL trajectory truncation. The LBC variables are
taken from the exact solution in (16)—(18) and supplied
at all time steps. This is an idealization with respect to
operational models where they come from a model of
lower resolution and are interpolated in time. Compli-
cations due to the temporal interpolation (see, e.g.,
Warner et al. 1997; Termonia 2003) will not be treated
here. Termonia (2004) proposed a method to monitor
the quality of the interpolation operationally. A de-
tailed study within the context of this work lies beyond
the scope of this paper.

Figure 1 represents the fields u = ¢, ® and v after 50
min of integration over the physical domain lying be-
tween 0 and 1000 km and the E zone between 1000 and
1200 km. As can be seen in this figure, these fields
behave as expected at the boundaries and the numeri-
cal solution over of the whole domain (C + E) remains
stable and accurate. In another test, the settings are
now chosen as At = 100 s and # = 49.94 m s~ in such
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F1G. 1. Wave solution of (1)—(3) with initial condition given by (16)—(18) and characteristic
conditions imposed at boundaries in the explicit rhs terms. At time zero u + ¢, & is shown by
the diamonds, # — ¢, ® by the plus sign, and v by the symbol-free line. These also represent
the analytical solution at T. The result of integrating with At = 49.94s,¢ = 300 ms™!, @ = 100
m s~ !, a = 0.4994 is displayed as squares for u + ¢,®, multiplication symbol for u — ¢,®, and
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dots for v.

a way that @ remains unmodified, but now ¢(A#/Ax) = 3.
This test leads to a strongly unstable behavior (not
shown). Further tests with various other settings indi-
cate that this purely explicit boundary scheme becomes
unstable when the wave Courant number cAt/Ax is big-
ger than 2. Then a growing mode appears first at
boundaries as a short wavenumber disturbance with a
2At time frequency, and progressively spreads out
throughout the whole computational domain. This un-
stable behavior indicates that some kind of implicit
treatment is needed.

b. Toward an iterative implicit well-posed LBC
treatment

An appropriate treatment in order to stabilize the
explicit LBC specification consists of introducing some
additional implicit LBC corrections into the interpo-
lated explicit rhs terms. These implicit corrections have
to be constructed in such a way that they compensate
the detrimental effect of the explicit LBC imposition in
the derivatives and the Coriolis terms. By taking into
account the form of the finite-difference approxima-
tions made at boundaries, these implicit LBC correc-
tions can be symbolically written as

- - _ At At
Ry = (Agp) = dop (@ = )y = fF =™,

(19)
pu Au O - Ar g 1bcy +
RY = (A*,l) - d’m(@o - D5 , (20)
DU Au 0 5 At Ibcy +
RiL,l = (A*,iL,l) + d)m ((D}gL - (I)iL iy > and (1)
DU 1u O - Ar g Ibey +
Ry = (AL, + oy (@F — @) 22)

where superscript g denotes the guess solution obtained
though the governing model equations, and lbc denotes
the well-posed boundary conditions. As explained be-
fore, these terms cannot be incorporated into the spec-
tral implicit part of the SI time stepping. In what fol-
lows, we propose an alternative solution for dealing
with these additional implicit correction terms.

Here also, it is assumed that > 0, without loss of
generality. As in section 3a, the case < \/¢ is con-
sidered. The additional boundary corrections are de-
signed for the characteristics LBC, hence &P+ =
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nt — ug)le, vt =it ati = 0 (inflow boundary)
and ®P°" = —(gi"* — u;)/c ati = i; (outflow bound-
ary). The guess boundary values ®§*, v§™, and ®f"
must be dictated by the 2-TL SISL discretized govern-
ing equations (4)—(6) at the boundaries. For consis-
tency, let us use the simplest possible approximations:

VOITUS ET AL.

321

®ET = R — (At2Ax)(u; — up) ™, v§t = RV — (At2)f
ug,and ®$* = RY — (At2Ax) (u;, —u; )*. These lat-
ter definitions of (OF*™, vy ™™, ®;°°7), and (P§*, v§™,
<I)§L’+) are introduced into (19)—(22). Then, adding the
implicit boundary correction to (5) for u field at the
boundaries, the following system is obtained:

At

uy + ‘Jb (0®/0x); = Ry + vag,Jr + P«qb(Pg’Jr - ERg) — (1 + Md;)u:)r + I-‘«<21>U1+, (23)

2y, + LA + u v h+ _ —p® o + ““%tb +
a+ Mf)lh + ¢>7(6f13/6x)1 =Ri+ V«fR1 + P«¢(P(f —CRy) — 3 1+ M¢)u0 + 7“1 ) (24)
u po Ko
(1 + ppu; y + qb—(GCD/ax),L =R+ Ry - —(qh+ +CRY) — —(1 + pgl;, + Tul ,, and,

(25)
_ At

(1 + phu + ¢>7(6<D/8x);2 =R + wR!, — ny(ql” +eRY) — py(l + pyluy, + piug g, (26)

where u,, = (¢/2) (At/Ax) and p, = f(At/2). After further
algebraic manipulations, (23)-(26) can be written in the
compact form:

At ob  _\*t .
u +_(¢—fv> =R'=R‘+[8R']". (27)

[6R]" = — Ky

(Lt W)+ )05 = w7 + (L4 p)ERY — i

This equation has the same form as (5) with an addi-
tional term [8R“]™ that can be understood as a bound-
ary correction term, given at the boundary grid point
i=0andi =i, by

1+ Mf)(l + g t M¢) )

(1 + I-L(j))UzL

, (28)
““¢»

M(bv 1t (CRLL + qu )

[SR?LT Ry

with
-+ h,+ Dy A[ +
Uy = Ry + pwpvg ™ — d’? (0D/9x)q , (30)
r 7+ u v LA + : :
U" =R+ wR; — ¢7(8®/0x)i Si={1,i, — 1,4},
(31)

and at the adjacent boundary grid pointi = 1 and i =
i; — 1, the boundary correction terms are given by
the relationships [8R}]" = 1/2[6Rj]" and [8R} ]|" =
172 [8R; ]*. At the interior of the physical domain (i =
2,...,1, — 2), the boundary correction terms [8RY]*
are equal to zero. Notice that no boundary correction

2 k
L)
1+ [.L%)(l + py +7)

(29)

terms are required in (4) and (6); hence, [8R{"]" =
[BRY]* = 0.

Equation (27) together with (4) and (6) form a closed
system. It can be noticed that the boundary correction
[6R*]™ has an implicit component due to the presence
of the derivative term (9®/dx)*in its mathematical ex-
pression. This implies that the resulting operator has to
be inverted over the whole domain, which in the spec-
tral model is performed in spectral space. Unfortu-
nately, because of the local form of this boundary cor-
rection term [8R“]*, the operator to be inverted has
spatially variable coefficients, which makes the direct
inversion in spectral space impossible in the simple
usual form. However, this problem can still be solved
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through the spectral method, by making use of an it-
erative algorithm with a constant-coefficient precondi-
tioner, in the same spirit as the ICI scheme proposed by
Cullen (2001) and Bénard (2003). This iterative treat-
ment will converge under suitable conditions. For ex-
ample, the 2TL SISL scheme can be written as

At du\ k+1D) -
4+ == =R® 4 DYk) — PP
<<I> > ax> R [6R™] R”, (32)
At _ 9P \k+D fAt -
—_ — RU ST (k) (k) —= R
<u+2<!>ax> R+2v + [6R"] R", and
(33)
fAt .
L f—2 u® + [8R]Y = R".
(34)
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In what follows, the quantities [SR*]®, [6R“]®, [6R]®
are called “the iterative LBC correction terms.” The
superscript k is the integer index for iteration. For the
sake of simplicity, the Coriolis terms are also treated
iteratively. Thus, 1 is supplied at ¢ +At, at inflow di-
rectly by imposing [8R](® = vi-" — Ry + (fA2)u.
Iterative LBC correction terms for ® in (4) are still not
required, [SR®]® = 0. The guess values U;" are evalu-
ated following an iterative relationships:

_ At
UG = R + vl ™ — & (0@ron), (35)

_ At
UKD = R+ po® — qb?(acb/ax)ﬁk’; i=1,...,0.

(36)

Finally, this yields the following expressions for LBC
correction terms:

[8R5]" o , (37)
&
1+ Ky + 7
Ro(CRY + q") = py(1 + p)UR + pi Ul
[8RY, ) = (38)
1+ Ky + %

at the adjacent boundary grid point [8R“]{* = 1/2[6R“]{"
and [6R“]® = 1/2[6R"]{®). This solves the implicitness
of the derivative (a®/dx)™ and this also enables to cir-
cumvent the issue of the local structure of the boundary
correction terms [SR*]™.

Please note that the convergence might depend on
the specific form of the terms in (19)—(22). It is also
important to emphasize that other options are possible.
For instance, higher-order off-centered finite-differ-
ence approximations could be used to estimate (i) the
derivatives (d®/dx) and (du/dx) at boundaries in the ex-
plicit rhs terms (7)-(8), and (ii) the guess values
®F " and ®§" of the implicit correction terms in (19)-
(22). However, this option would imply an increase in
the number of unknown gridpoint values ;" in the sys-
tem in (23)-(26), which leads to a much more compli-
cated derivation of the boundary correction terms
[8R“]". An extensive study of such options lies beyond
the scope of this paper.

In the case u > \/E (not detailed herein), in which
three fields have to be imposed at the inflow boundary
(i = 0) and none at the outflow boundary (i = i;), we

can proceed in a similar way as previously to design the
iterative LBC correction terms [8R*]®, [6R*]®), and
[6R']® at the inflow boundary grid points i = 0 and
i = 1 for (4)—(6). Although the spirit of the method is
the same, the resulting details of the formulation sig-
nificantly departs from previous ones in (35)—(38), and
are not detailed here.

Let us now give a short description of the general
time step organization of the iterative LBC correction
procedure, regardless the values of # and ¢. First let us
assume that the explicit interpolated rhs terms are com-
puted in gridpoint space as described in section 3a,
henceforth designated by Ry,.. Then, the starting guess
at the zeroth iteration is chosen as, X = X° and
0.X® = 9 X° Thus, for k = 0, ..., Ny, — 1, the
iterative LBC correction terms [8R]*) are computed
using the known fields Ry,., X©, 9, X®_ and the bound-
ary data fields (denoted by X"*). Afterward, the final
rhs terms R = Ry, + [6R]% are periodically extended
in the E zone and then transferred into spectral space
by applying the FFT direct transform. The implicit
problem [I — (At/Z)L])A((k“) = R is solved in spectral
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iterative implicit LBC correction

inverse Fourier transform

X0 and 9,X°

Xjpe — X0
Ltoc
LBCs specification

!

Explicit dynamics « OpX
+ SL interpolations

0
lbe

Ripe

ﬁ — Rype + SR

Extension+Fourier transform

[1- 4tL] X(+D =R

K (k+1)

SR — XMt

inverse Fourier transform

FI1G. 2. Data flow in a one-dimensional 2TL SISL spectral shallow-water model for the
iterative LBC correction scheme. The boxes represent numerical operations, solid single-lined
arrows represent input and dashed single-lined arrows represent output, k is the index integer

for the iteration lying between 0 and N,

iter

— 1, and X}, symbolically represents the finite-

difference approximation made at boundary to insert the LBC into the explicit rhs terms. The

hat is dedicated to spectral fields.

space as explained in section 2. The iterative process
resumes by computing 9, X**1 spectrally. To do this, an
additional inverse FFT transform is needed at each it-
erations. The details of the data flow of the iterative LBC
correction scheme is shown in Fig. 2. At the end of the
iteration procedure the forecast is given by X" = XM,

Provided that only few iterations are required, this
iterative LBC procedure can be easily incorporated
into a general ICI scheme proposed by Cullen (2001)

and more recently detailed by Bénard (2003). From a
more practical standpoint, a specific ICI SL scheme,
with Ny, = 2 (predictor—corrector), has been imple-
mented in the French NWP operational limited-
area spectral models: the nonhydrostatic version of
ALADIN (ALADIN-NH) and Application de la Re-
cherche a I’Opérationnel pour la Méso-Echelle
(AROME). In such a context the idea of an iterative
well-posed LBC scheme is very attractive.
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F1G. 3. Wave solution of (1)—(3) with initial condition given by (16)—(18) and characteristic
conditions are imposed at the boundaries in the explicit rhs terms with an iterative implicit
LBC correction. The trajectory truncation method is used at the inflow boundary. At time
zero u + ¢, @ is shown by the diamonds, u — ¢, ® by the plus sign and v by the symbol-free line.
These also represent the analytical solution at 7. The result of integrating with Az = 400 s,
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c=300ms ', 7=125ms" !, and N,
symbol for u — ¢, ®, and dots for v.

¢. Numerical tests

The stability of this iterative LBC correction scheme
is now discussed, using the same experimental environ-
ment as in section 3a. The main purpose is to address
whether this new well-posed boundary scheme is stable
for large wave Courant number as currently used in
NWP application. The following experimental settings
are used: At = 400s, 7 = 125ms ', ¢ =300ms ', and
Ax = 10 km; hence, a« = 0.5 and the wave Courant
number is equal to 12, which corresponds to a common
target value in most of NWP pattern. For these experi-
mental settings, numerical tests for different number of
iteration N, have shown that the solution remains
stable provided that N, = 4. The mathematical reason
of this stability criterion has not been investigated in
this paper, we restrict our investigations to experimen-
tal observations only. This induces at least a factor of 4
in the computational cost of the implicit part of the
dynamics, an overcost that is however similar to the one
found in practice in the finite-difference context (see
McDonald, 2000, p. 4049). Figure 3 represents the fields
u * ¢, d and v after 50 min of integration for (N, = 4),
in the same format as Fig. 1. The forecast is stable with

= 4 is displayed as squares for u + ¢, ®, multiplication

no sign of small-scale noise, and interestingly the nu-
merical solution is consistent with the boundary condi-
tions. Notice that a phase delay occurs between the
analytical solution and the numerical solution. This can
be accounted for by poor temporal representation of
gravity waves by the SI scheme for large time steps.

These tests provide an experimental proof of the ro-
bustness of the iterative LBC correction scheme pro-
posed herein. In particular, it has been shown that at
least four iterations are required to maintain stability
when an operational value of a wave Courant number is
used [i.e., ¢(At/Ax) = 12]. In what follows, we discuss
the SL trajectory computations issue at inflow bound-
aries for large value of lal.

4. SL trajectory at boundaries

When the departure point is outside the domain, a
specific treatment is required. The simplest solution is
the above-referenced “trajectory truncation” method,
but as pointed out by McDonald (2000), this strategy is
only accurate for lal < 1. To address the limitation
McDonald suggested two options that will be discussed
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here. Additionally, an alternative way for dealing with
the SL trajectory issue at inflow boundaries is pro-
posed. For the sake of simplicity, it is assumed that 0 <
u < ¢ without loss of generality. Hence in what follows,
we consider that a > 1. The case a < —1 can be treated
in a similar way, but is not examined here.

a. Time-interpolation scheme

This method consists in replacing the trajectory trun-
cation by a time-interpolation scheme at the inflow
boundary (x = 0), exactly as in section 2c of McDonald
(2000). It has been implemented successfully in the
present spectral model version, but as pointed out by
McDonald (2000), the slowness of convergence for this
method can be problematic. The number of iterations
required to get an accurate forecast was found to be
dramatically high, which renders this technique quite
inefficient and therefore unattractive for NWP pur-
poses (it will hence not be detailed furthermore here).

b. Well-posed buffer zone

A buffer zone, external to the inflow boundary, is
constructed, so that if the departure point is located
inside this buffer zone, fields can be interpolated in the
same way as if they were in the interior. Since # > 0, a
buffer zone is needed for the region x < 0. The ingoing
characteristics p and v are imposed at (i = 0), the third
characteristic variable g is also needed to compute
fields in the buffer zone, which, to maintain well pos-
edness, has to be not externally imposed but extrapo-
lated in a stable manner. As suggested by McDonald
(2000), the equations for the characteristic fields can be
used in conjunction with a semi-Lagrangian scheme to
extrapolate the field corresponding to the outgoing
characteristic g at the inflow boundary. The equations
for the characteristic fields can be written as:

g 9 7 _
|:8—t+(u+c)a:|p_fv—0 (39)
a 0 7
[ om0 ma
AN _
(a—t-i—ua)v‘f'i(p""ﬂ_o' (41)

Equation (40) is solved by the semi-Lagrangian tech-
nique, by finding the value of the field at the departure
point x,, = xo — (& — C)A¢, it yields

At_ \o At _
q;)r:(q-i-?fv) + 5 fug -

*q
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Thus, g¢ at x = 0 are known, meaning that (d¢/dt) and
(8°q/9f*) can be approximated there. The characteristics
values p, and v, are imposed, thus (dp/dt), (dv/dt), and
(9°plar?), (0*ulaf?), can also be estimated at x = 0. Thus,
(39)-(40) can be used to compute (dp/dx), (9q/dx),
which require a potentially problematic division by
(u * ¢), and (9uv/ox) can be obtained from (41). From
these, (3®/0x) and (du/dx) can be determined using the
definitions of g and of p. Differentiating (39)—(41) with
respect to x, the second-order terms (9°®/0x?), (9°u/
ax?), and (9*v/9x?) can be computed. Then the Taylor
expansion is used to compute ®, u, and v in the buffer
zone with a O(A#) level of accuracy. However, this
method is no longer applicable when |ul = lI¢l, which
may occur in case of inertia—gravity wave propagation.

c. Substepping scheme at inflow

An alternative method based on the concept of ex-
trinsic LBCs introduced by Termonia and Voitus
(2008), is proposed here to address the SL trajectory
issue. The key point of this method consists in replacing
the trajectory truncation value of R;, fori = 0, . . ., [a]
at the inflow by a better approximation of the lhs terms
[I — (A#2)L]X*, when o« > 1. Obviously, to do this, a
guess of the state vector X at time level 1 + At (denoted
X™* hereafter) has to be estimated independently from
the dynamical core of the SISL spectral model over a
buffer zone' of N, = [a] + 1 internal grid points from
the inflow boundary, (where [«] is the integer part of
a). A substepping explicit time scheme between time
level t and ¢ + Ar with characteristics LBC is performed
to yield X* inside the buffer zone. For instance, in this
paper, a characteristics-based backward/forward time
discretization has been used as explicit substepping
scheme to discretized the (39)—(41) such as
=77,

~+T Ti~+'r ~ Ti~ o
Di +§fvi = P_zfv (42)

*p
Or

~+T Z’~+T: ~ o~ — q
qi +2fvi (P 2f“> Z{,

*.q9

and (43)

T_

-t ra=[orTiora| -z e

with 7 = A¢/N,and N, = 1 + [(lul + ¢) (A/Ax)]. The
superscripts Ot and +7 correspond to the time level ¢ +
ntand ¢t + (n + D)7, respectively, where » is an integer
between 0 and N, — 1. The subscripts *p, *q, and *v
denote interpolations to the departure points associ-

! This buffer zone is not to be confused with the well-posed
buffer zone in section 4b.
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FIG. 4. The space-time structure of the substepping character-
istic-based forward/backward scheme near the left boundary on a
collocation A grid. Only the variable p and g are represented, a
similar treatment holds for v. Space and time are represented by
the horizontal and the vertical axes, respectively. The fields p and
q are lying on the grid points indicated by circles, open circles at
the t + n7 time levels, and filled circles at the subtime levels ¢t +
(n + 1)7. The location of departure points x., and x. , are desig-
nated by *p and *q, respectively, at time ¢ + n7. Notice that
because (lul + ¢)7/Ax < 1, these departure points are always
lying between N, — n — 2 and Ny, — n withn =0, ..., N, and
Ngwp = N, + N,,.

sub

ated to each characteristic fields, which are given re-
spectively by x,,, = x; — (U + ¢)7, x,, = x; — (U + O)7,
and x,, = x; — ut. To compute the substep at time ¢ +
(n + D, the rhs terms Z¢, Z¢, and Z} are computed at
the points 0, . . ., (N, + N,) — n. The values of p, g, and
v are then computed at the points [i, ¢ + (n + 1)7] lying
inside the buffer 0, ..., (N, + N,) — n — 1. Except at
the boundary (i = 0), the choice of the time step 7
ensures that trajectories for each characteristic are al-
ways contained inside the buffer 0, ..., (N, + N,) — n.
This space-time organization of the substepping com-
putations is illustrated in Fig. 4. At the inflow boundary
(i =0),ps"=pi™, and g™ = vg ™", the value of the
outgoing characteristic g, is provided by (43). At the
end of the substepping computation (n = N, — 1), the
interpolated rhs terms R lying in the inflow buffer
0, ..., N, — 1 are replaced by a finite-difference
approximation of [I — (A#2)L]X™ using the values i,
®*, and ¥*, that are deduced from the substepping
computation of p*, g+, and ¥ at the points 0, ..., N,.
In this implementation, first- and second-order finite-
difference schemes have been used to approximate de-
rivatives (0®/dx) and (du/dx) depending on the position
with respect to the edge.

5. Numerical testing

In this section, two numerical tests are performed.
First, the efficiency of the two alternative methods to
the trajectory truncation method (previously detailed in

MONTHLY WEATHER REVIEW

VOLUME 137

section 4) are discussed using a pure advection test with
a large value of a. Second, the permeability of the
boundaries to gravity wave is investigated using a ra-
diation test.

a. Advection test: Bell-shaped perturbation entering
and exiting the area

The results of tests with the slow solution of (1)-(3)
for which u = 0, and fv = ¢(3d/dx) are discussed here.
In that geostrophically balanced case, the analytical so-
lution transports these fields with a velocity u without
changing its shape. There, the analysis and the initial-
ization produce a well-balanced initial state. On the
boundary, meteorological fields should enter the do-
main without corruption from gravity waves; this can be
modeled by imposing the slow solution at the bound-
aries. The analytical solution used here corresponds to
a bell shape for @ in geostrophic balance with v and
with zero divergence for u:

x —ut — x, |?
ote = ool - |7 |
266()( —ut — x,)

W) = T P

D(x, 1), wulx,t)=0.

(45)

This mirrors the meteorological situation of a front en-
tering the area through the western boundary and going
out through the eastern boundary. The integration
starts by placing the maximum of the bell-shaped ®
solution on the western boundary, x, = 0. Boundary
conditions consistent with the bell shape moving in the
positive direction with the velocity @ are imposed. The
experimental parameters are L = 1000 km, Ax = 10
km,f=10"*s"',¢=300ms ', At = 416.667 s, u = 100
m s~ !, thus @ = 4.167. In these tests, the length of
integration (7') will be always chosen so that in the
analytical solution the bell curve moves exactly a dis-
tance L = i;Ax. The characteristics boundary condi-
tions are imposed so that p(0, 1) = u(0, 1) + c®(0, 1),
v(0, 1), and p(L, t) = u(L, t) — ¢®(L, ¢) are given by
(45). The initial state is also given by (45) with ¢ = 0.
First, the forecast is run with trajectory truncation
and four iterations are used for the iterative LBC cor-
rection scheme. The outcome is shown in Fig. 5. For
clarity, the E zone has been dropped. It can be seen that
the front has entered and gone out of the area quite
accurately, there are neither sign of instabilities nor
spurious reflections of (2Ax) shortwave noises form at
boundaries. But, as pointed out by McDonald, the
negative aspects are, of course, the slowing down of the
® and v solutions. The use of well-posed buffer zone or
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Fi1G. 5. Advecting solution of (1)—(3) with the initial condition given by (45) and p, ¢, and
vare imposed at boundaries, using the trajectory truncation method. At time zero ® is shown
by the diamonds, u by the plus signs and v by the dotted line. The analytical solution at time
T for all three fields are shown by symbol-free lines. The result of integrating with At =
416.667 s, =300 m s~ 1, @ = 100 m s~ !, Ax = 10 km, and N,, = 4, is displayed at time (7’)

as squares for ®, multiplication symbols for «, and dots for v (the E zone has been dropped).

substepping scheme idea at inflow retain the positive
aspects of the solution and almost completely elimi-
nates the previous phase shift, as can be seen in Figs. 6
and 7. The well-posed buffer zone works in a satisfac-
tory manner, but as outlined previously in section 4b
this result holds only because in that case the gravity
wave velocity significantly departs from the wind speed.
Let us now consider the “substepping scheme at in-
flow.” The substepping parameters are given by N, =
17, Nyt = 5, and, hence, 7 = 24.51 s. The application
of this scheme at inflow leads to a numerical solution,
which is very similar to the analytical one; the phase
shift has been removed, as seen in Fig. 7. Thereby, it
appears as a good alternative for solving SL trajectory
issue at inflow boundaries.

b. Radiation test: Adjustment case

Here, the behavior of the iterative implicit LBC
scheme is examined when gravity waves leave the area
of meteorological interest. It is demonstrated that im-
posing characteristics p and g on boundaries allows
gravity waves to pass through with little reflection. The
same adjustment experiment as the one presented in

McDonald (2000) is reproduced here. Considering the
steady-state solution to the Rossby adjustment prob-
lem, described in Gill (1982, section 7.2.2). The initial
state is given by

o, for x=L/2

—®, for x>L2 (46)

d(x,0) = {
with u(x, 0) = 0 and v(x, 0) = 0 over the whole domain
0 = x = L. Experimental parameters are given by f =
107*s ' and \/é = 300 m s ', then L = 30 000 km is
10 times the Rossby deformation radius (\/E/f) Thus,
the geostrophically balanced large-scale flow at the
boundaries will remain steady with time. Constant
mean wind velocity is set to Z = 1 m s~ '. The remaining
parameters are chosen as Ax = 100 km, Az = 600 s, and
@, = 10. This test is performed using the iterative im-
plicit LBC treatment described in section 3b, moreover,
since « is much less than unity, the trajectory truncation
scheme can be used without significant accuracy prob-
lems. Concerning the boundary value, the ingoing char-
acteristics are imposed so that: p(0, ¢) = ®,, v(0, ) = 0,
and q(L, t) = —®,. The 10-day forecast is displayed in
Fig. 8. It can be seen that the solution is not corrupted
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F1G. 6. As in Fig. 5, but using the well-posed buffer zone on the boundary instead of

trajectory truncation.

200

400 600 800 1000
x (km)

F1G. 7. As in Fig. 5, but using the substepping inflow scheme on the boundary instead of

trajectory truncation.
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FiG. 8. The solution of (1)—(3) after 10 days. The dashed line represents the @ solution, the
solid line the v solution divided by ¢. The initial condition is given by (53). On the boundaries
we hold p(0, ) and g(L, ) constant and impose v(0, ) = 0 at the inflow.

by gravity waves; there is no visible sign of reflection at
boundaries, demonstrating the efficiency of the itera-
tive implicit “characteristics” LBC scheme in terms of
transparency.

6. Conclusions and discussion

The feasibility of a well-posed lateral boundary strat-
egy for the Fourier spectral one-dimensional model
using SISL time-marching schemes has been experi-
mentally demonstrated. An iterative implicit LBC cor-
rection algorithm has been designed to control the det-
rimental effects in term of stability on the SI scheme,
due to the specification of the well-posed characteristics
LBC in the gridpoint explicit part of the model dy-
namics. This iterative approach is straightforward to
implement when employing an iterative centered-impli-
cit time (ICI) scheme instead of classical SI schemes.
The salient result of the experimental tests is that sta-
bility for a significant value of the wave Courant num-
ber, typically ¢(A#/Ax) = 12, can be achieved provided
that more than four iterations (N;., = 4) are per-
formed. The theoretical reason for this has not been
elucidated here. Additional studies are needed to in-
vestigate some alternatives enabling the acceleration of
the convergence of the above-proposed iterative ap-
proach.

As far as the SL computations are concerned, the
so-called trajectory truncation scheme has been found
to be stable in experimental tests, but quite inaccurate
for large lal. Both time-interpolation and well-posed
buffer zone schemes overcome this accuracy limitation
of trajectory truncation. However, these two schemes
have both unavoidable weaknesses, highlighted by Mc-
Donald (2000), which still hold true in a spectral con-
text. With the substepping scheme, proposed here,
some of the main drawbacks of the preceding scheme
can be circumvented. Substepping scheme does not re-
quire additional iteration, it can be applied in any me-
teorological pattern and provides very accurate result.
Nevertheless, it has its own limitations: (i) it is not an
easy-implementing alternative, especially when moving
to two- (or three) dimensional systems; (ii) the substep-
ping algorithm is also quite demanding in computing
resources because of its need of rather large buffers
near the inflow boundary.

This preliminary implementation identified the diffi-
culties to build a stable and accurate well-posed bound-
ary scheme for spectral SISL discretization for a simple
one-dimensional linearized system. An important ques-
tion has not been addressed by this paper: will the pres-
ence of nonlinear terms cause unexpected problems at
boundaries? It is well known that the nonlinear residual
terms are sources of instabilities for the SI time scheme,
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and thereby might jeopardize the stability of the itera-
tive LBC scheme. Besides, Oliger and Sundstrom
(1978), pointed out that “the important case where ve-
locities change sign on the boundary and do not vanish
in a neighbourhood of such a boundary point, is not
covered by the well-posed initial-boundary value prob-
lem existing theory.”

In this preliminary work, no theory of stability of the
LBC iterative scheme has been presented. The feasibil-
ity of a well-posed LBC strategy for the Fourier spec-
tral SISL scheme has been experimentally demon-
strated in the particular case of the one-dimensional
linearized shallow-water system. As a result, there is no
evidence that this iterative approach will work in more
realistic cases (e.g., bidimensional, three-dimensional,
or in nonlinear context). Therefore, “deeper works” are
necessary.

As a next study, it is essential to test this iterative
idea in nonlinear simplified systems. Furthermore, if we
try to extend this study to two dimensions (x—y) the
complications will increase. In particular, corners are
known to induce instabilites if they are not carefully
discretized, see Elvius and Sundstrom (1973) or more
recently McDonald (2002, 2003). Thus, we plan to use
McDonald’s approach and the iterative idea discussed
in this paper to construct a two-dimensional spectral
SISL shallow-water model with well-posed characteris-
tics boundary conditions.
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