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Summary: We define natural direct and indirect effects on the exposed. We show that these allow

for effect decomposition under weaker identification conditions than population natural direct and

indirect effects. When no confounders of the mediator-outcome association are affected by the

exposure, identification is possible under essentially the same conditions as for controlled direct

effects. Otherwise, identification is still possible with additional knowledge on a non-identifiable

selection-bias function which measures the dependence of the mediator effect on the observed

exposure within confounder levels, and which evaluates to zero in a large class of realistic data-

generating mechanisms.

We argue that natural direct and indirect effects on the exposed are of intrinsic interest in various

applications. We moreover show that they coincide with the corresponding population natural direct

and indirect effects when the exposure is randomly assigned. In such settings, our results are thus also

of relevance for assessing population natural direct and indirect effects in the presence of exposure-

induced mediator-outcome confounding, which existing methodology has not been able to address.
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1. Introduction

For many decades, scientists in diverse scientific fields - most notably, epidemiology, psychol-

ogy and sociology - have been occupied with questions as to whether an exposure affects

an outcome through pathways other than those involving a given mediator / intermediate

variable. The answer to such questions is of interest because it brings insight into the

mechanisms that explain the effect of exposure on outcome (VanderWeele, 2009) and because

the presence of intermediate variables may sometimes complicate the interpretation of the

exposure effect (Joffe et al., 2001; Rosenblum et al., 2009). Mediation analyses are used

for this purpose. They attempt to separate so-called ‘indirect effects’, which designate that

part of an exposure effect which arises indirectly by affecting a (given) set of intermediate

variables, from the remaining ‘direct effect’.

Direct effects are traditionally connected with the conditional association between outcome

and exposure, given the mediator(s); the indirect effect is typically obtained through a

combination of the exposure’s effect on the mediator and the mediator’s effect on the outcome

(Baron and Kenny, 1986; MacKinnon, 2008). For instance, when the associations between

exposure A and mediator M and outcome Y can be modeled as

E(Y |A,M) = β0 + βaA+ βmM

E(M |A) = α0 + αaA,

then βa is commonly interpreted as a direct effect and βmαa as an indirect effect (Baron and

Kenny, 1986). It is well known from the causal inference literature that these interpretations

are often not justified - even when the exposure A is randomly assigned - as a result

of confounding of the mediator-outcome association (Cole and Hernán, 2002); adjustment

for such confounding becomes non-standard when confounders L of the mediator-outcome

association are themselves affected by the exposure (see Figure 1, right) (Robins, 1999;

VanderWeele, 2009; Vansteelandt, 2009b). Furthermore, decomposition of a total effect into
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a direct and indirect effect becomes subtle when certain nonlinear associations exist between

mediator and outcome (Robins and Greenland, 1992; Pearl, 2001).

[Figure 1 about here.]

Robins and Greenland (1992) introduced model-free definitions of direct and indirect effect,

which add up to the total exposure effect. Their formalism of so-called pure or natural

direct effects makes use of composite counterfactuals such as Y (a,M(a∗)), which denotes

the counterfactual outcome that would have been observed if the exposure A were set to a

and the mediator M to the value M(a∗) that it would have taken at some reference exposure

level a∗. Because such composite counterfactuals are unobservable when a 6= a∗, strong

assumptions are needed for identification. The development of Robins and Greenland (1992)

precludes the existence of exposure effect modification by the mediator on the additive scale

(at the individual level). In the development of Pearl (2001), identification is achieved by

precluding the possibility of exposure-induced or ‘intermediate’ confounding of the mediator-

outcome association. As we argue in Section 2, this places severe restrictions on the range

of realistic applications that can be addressed.

In Section 3, we propose definitions of natural direct and indirect effects on the exposed,

which add up to the total effect on the exposed. We show that these natural direct and

indirect effects on the exposed can be identified under weaker assumptions than the cor-

responding population effects. In particular, they can be identified when all confounders

of the exposure-outcome association and of the mediator-outcome association have been

measured, and in addition, a specific, non-identifiable selection-bias function is known. This

selection-bias function evaluates to zero in the absence of exposure-induced confounding, as

well as under a large class of data-generating mechanisms that allow for exposure-induced

confounding. We moreover show that these natural direct and indirect effects on the exposed

equal the corresponding population effects when the exposure is randomly assigned. Our
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results thus also entail identifiability for natural direct and indirect population effects in

the presence of exposure-induced mediator-outcome confounding. The prior absence of such

methodology has been one of the difficulties with the causal inference literature on mediation.

These natural direct and indirect effects on the exposed are thus theoretically appealing

from the standpoint of identification. They are moreover of intrinsic interest insofar as often,

when overall causal effects are analyzed, it is the effect of treatment on the treated, rather

than the average treatment effect for the entire population, that is in view. The effect of

treatment on the treated is of relevance in evaluating what the actual effect of treatment is

amongst those who took it. In an observational study, those who did not take treatment may

not have done so because of some knowledge that the treatment effect was likely not to be

advantageous to them. In these settings, it is of more policy relevance to evaluate what the

actual effect was amongst those who in fact thought the treatment was sufficiently beneficial

to make use of it. In other settings, the group who did not take treatment may include

persons that are especially difficult to induce to take treatment or for whom that would

be undesirable, and the question of what would happen if everyone in a population took

treatment may therefore be of less policy relevance if it simply is not possible or undesirable

to induce everyone to take treatment. For instance, Vansteelandt et al. (2009) argue that the

effect of hospital-acquired infection on mortality is primarily relevant in those who acquired

it because it is of interest to prevent infection for that subgroup, but it is not of interest

to induce infection in those who remained infection-free. Treatment effects on the treated

may also be of interest because of the greater accuracy with which they can sometimes be

estimated. This is for instance the case when the support of the confounder distribution in

the treated is strictly contained within the support of the confounder distribution in the

untreated. In such settings, the data tend to be more informative about the treatment effect

in the treated than in the total population (see e.g. Kurth et al. (2006)).
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2. Natural direct and indirect effects

We briefly review definitions of natural direct effects and discuss limitations of the current

developments which formed the motivation for this work. The (population) natural or pure

direct effect (Robins and Greenland, 1992; Pearl, 2001) is defined as the expected contrast

E{Y (a,M(a∗))−Y (a∗,M(a∗))}. As a leading example to illustrate this, consider the public

health question addressed in Section 5 on the direct and indirect effects of adequate (A = 1)

or inadequate (A = 0) prenatal care on the risk of preterm birth (Y ) other than through pre-

eclampsia (M). Here, E{Y (1,M(0))−Y (0,M(0))} expresses the effect of adequate prenatal

care on the risk of preterm birth as it would have been observed if the occurrence of pre-

eclampsia were as in the absence of adequate prenatal care; alternatively, one may consider

controlling the mediator at M(1), rather than M(0). Intuitively, the natural direct effect

thus appears to capture what would be realized if the exposure was administered, but its

effect on the mediator were somehow blocked; see Robins (2003) and Didelez et al. (2006)

for subtleties surrounding this more intuitive interpretation.

Under the composition assumption (VanderWeele and Vansteelandt, 2009) that for each

a, Y (a,M(a)) = Y (a) with probability 1, the difference between the total causal effect and

a natural direct effect measures an indirect effect:

E{Y (a)− Y (a∗)} − E{Y (a,M(a∗))− Y (a∗)} = E{Y (a,M(a))− Y (a,M(a∗))},

which we term the (population) natural indirect effect. In the example, E{Y (1,M(1)) −

Y (1,M(0))} would express the change in preterm birth risk under adequate care if women’s

pre-eclampsia status changed to what it would be without adequate prenatal care.

Identification of natural direct and indirect effects requires various assumptions besides

the consistency assumptions - which we shall make throughout - that Y (a,m) = Y with

probability 1 amongst those with A = a and M = m, and that M(a) = M with probability

1 amongst those with A = a. First, it requires assumptions sufficient to identify the effects
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of A and M on the outcome (Pearl, 2001). VanderWeele and Vansteelandt (2009) formalize

this by assuming that data are available on a set of covariates C which is sufficient to control

for confounding of the effects of A and M on the outcome, in the sense that

Y (a,m) ⊥⊥ A|C, (1)

and

Y (a,m) ⊥⊥M |A,C, (2)

for all a,m; here, (2) should be read as saying that for each (a,m) and each possible

realization (a∗, c) of (A,C), Y (a,m) is independent of M amongst subjects with A = a∗

and C = c. Second, their reliance on counterfactuals M(a) demands additional assumptions

sufficient to identify the effect of A on M (Pearl, 2001). VanderWeele and Vansteelandt

(2009) formalize this by assuming that the same set of covariates C is also sufficient to

control for confounding of the effect of A on M , in the sense that

M(a) ⊥⊥ A|C, (3)

for all a. Finally, their reliance on unobservable composite counterfactuals, such as Y (a,M(a∗))

for a 6= a∗, necessitates additional identification conditions. Pearl (2001) assumes that

Y (a,m) ⊥⊥M(a∗)|C, (4)

for all a,m, which rules out the possibility of exposure-induced mediator-outcome con-

founding. This is an important limitation because it is often likely to believe that some

prognostic factors of the mediator may themselves be affected by the exposure, especially

when the mediator - and hence some of its prognostic factors - comes much later in time

than the exposure (Robins, 1999); see VanderWeele and Vansteelandt (2009) for exceptions.

For instance, smoking confounds the association between pre-eclampsia and preterm birth

because it reduces the likelihood of pre-eclampsia and increases the likelihood of preterm

birth. In addition, smoking may itself be affected by adequate prenatal care.
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A number of authors have considered alternative identification conditions. Imai et al. (2010)

obtain identification under assumption (2) together with the joint independence assumption

{Y (a,m),M(a∗)} ⊥⊥ A|C for all a, a∗,m, which also requires the absence of intermediate

confounders. Robins and Greenland (1992) and Petersen et al. (2006) allow for intermediate

confounding (i.e., exposure-induced mediator-outcome confounding) by working instead un-

der specific no-interaction assumptions. Robins and Greenland (1992) assume the absence of

exposure-mediator interactions at the individual level in the sense that Y (a,m)−Y (0,m) is

a random variable not depending on m. In that case, the natural direct effect equals the so-

called controlled direct effect E {Y (a,m)− Y (a∗,m)|C} for arbitrary m (Robins and Green-

land, 1992), which can be identified in the presence of (measured) intermediate confounding

(Robins, 1999). However, the no-interaction assumption of Robins and Greenland (1992) is

strong and unlikely to hold in practice (Petersen et al., 2006). For instance, in the example,

the individual effect of adequate prenatal care may potentially be higher with pre-eclampsia

than without, because of the closer monitoring these women with pre-eclampsia may re-

quire. Petersen et al. (2006) assume instead that E {Y (a,m)− Y (a∗,m)|M(a∗) = m,C} =

E {Y (a,m)− Y (a∗,m)|C} for all a,m. This assumption is more difficult to comprehend

and will be violated when the individual (controlled) direct effect of exposure on outcome

interacts with some of the intermediate confounders L (in view of the association between

L and M(a∗)). For instance, in the example it effectively presupposes that the direct effect

of adequate prenatal care is the same regardless of a woman’s natural pre-eclampsia status.

This assumption may well be violated because the direct effect of adequate prenatal care

may be higher for smoking women (in view of its potential effect on smoking), and these

women are likely to have a reduced (natural) risk of pre-eclampsia.

In the next section, we will attempt to overcome the aforementioned limitations by fo-

cussing on natural direct and indirect effects on the exposed.
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3. Natural direct and indirect effects on the exposed

We define the conditional natural direct effect on the exposed to be:

E {Y − Y (a∗,M)|A,C} , (5)

and the marginal natural direct effect on the exposed to be:

E {Y − Y (a∗,M)|A} . (6)

These express, within each exposure stratum (and possibly also within strata of baseline

confounders), how much the average outcome would change if the exposure were set to a∗,

but the mediator were held fixed at its observed level.

The above definitions allow for variation in the mediator level between subjects (unlike

controlled direct effects) and enable decomposition of the total effect (on the exposed) into

a direct and indirect effect (on the exposed), as follows

E {Y − Y (a∗)|A,C} = E {Y − Y (a∗,M)|A,C}+ E {Y (a∗,M)− Y (a∗)|A,C} .

Here, the term

E {Y (a∗,M)− Y (a∗)|A,C} (7)

can be interpreted as an indirect effect as it evaluates how much the outcome would change

on average if the exposure’s effect acted only through modifying the mediator. Under the

aforementioned composition assumption, which we shall make throughout, we obtain that:

E {Y − Y (a∗)|A = a, C} = E {Y (a)− Y (a∗)|A = a, C} ,

E {Y − Y (a∗,M)|A = a, C} = E {Y (a,M(a))− Y (a∗,M(a))|A = a, C} ,

E {Y (a∗,M)− Y (a∗)|A = a, C} = E {Y (a∗,M(a))− Y (a∗,M(a∗))|A = a, C}

where the first expression is the total effect on those exposed to A = a and the second and

third expression are natural direct and indirect effects on the exposed, respectively (in the

terminology of Robins and Greenland (1992), they correspond with a total direct effect and

pure indirect effect). For dichotomous exposure A taking values 0 for the unexposed and 1 for
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the exposed, (5) with a∗ = 0 thus equals E {Y (1,M(1))− Y (0,M(1))|A = 1, C} in the ex-

posed and equals zero in the unexposed. The definitions thus suggests usingM(a) as a natural

reference level for subjects with exposure a, which may be of interest in itself when the choice

of reference levels (M(a) or M(a∗)) seems a priori difficult to justify. Further, (7) with a∗ = 0

equals the natural indirect effect on the exposed, E {Y (0,M(1))− Y (0,M(0))|A = 1, C},

and equals zero in the unexposed. This motivates the choice of nomenclature for (5) and (7)

as the natural direct and indirect effect on the exposed, respectively.

The following theorem shows that (conditional) natural direct and indirect effects on the

exposed equal the corresponding population natural direct and indirect effects when

Y (a∗,M(a)) ⊥⊥ A|C, (8)

for arbitrary a and a∗. This assumption is stronger than (1) (e.g., it could be violated if

the association between A and M were confounded by unmeasured factors). It is satisfied

under the causal diagrams of Figure 1 and holds in particular when the exposure is randomly

assigned, conditional on C.

Theorem 1: Under assumption (8):

E {Y − Y (a∗,M)|A = a, C} = E {Y (a,M(a))− Y (a∗,M(a))|C}

E {Y (a∗,M)− Y (a∗)|A = a, C} = E {Y (a∗,M(a))− Y (a∗,M(a∗))|C} .

Proof. We only give a proof of the first equality (the second is analogous):

E {Y − Y (a∗,M)|A = a, C} = E {Y (a,M(a))− Y (a∗,M(a))|A = a, C}

= E {Y (a,M(a))− Y (a∗,M(a))|C} . �

This result is important as it implies that the identification results in Section 4 are also

relevant for assessing population natural direct and indirect effects. The same cannot neces-

sarily be concluded for marginal natural direct and indirect effects on the exposed because

the covariate distribution in the exposed may still differ from the population distribution.
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4. Identification

4.1 Identification in the absence of intermediate confounding

Theorem 2, whose proof is in the Web Appendix, shows that in the absence of intermediate

confounding, natural direct and indirect effects on the exposed can be identified under

essentially the same identification conditions, (1) and (2), as for controlled direct effects.

Theorem 2: Suppose that the no unmeasured confounder assumptions (1) and (2) hold

for given a∗, then

E {Y (a∗,M)|A,C} =

∫
E (Y |M = m,A = a∗, C) f(M = m|A,C)dm (9)

and

E {Y (a∗,M)|A = a} =

∫
E (Y |M = m,A = a∗, C = c) f(M = m,C = c|A = a)dmdc(10)

= E

{
Y

I(A = a∗)

f(A = a∗|C)

f(M = m|A = a, C)

f(M = m|A = a∗, C)

f(A = a|C)

f(A = a)

}
. (11)

Note from Theorem 2 that the assumptions required for the identification of natural

direct and indirect effects on the exposed are slightly stronger than for identification of

controlled direct effects, but weaker than for identification of the corresponding population

effects. Identification of controlled direct effects requires assumption (2) only for a equalling

the observed exposure level A, in addition to assumption (1). Identification of population

natural direct and indirect effects requires additional ignorability assumptions such as (3)

with respect to the association between A and M . In contrast, we do not have to appeal

to counterfactuals M(a) to define natural direct and indirect effects in the exposed, so

that expression (9) can be used when the association between exposure and mediator is

confounded by unmeasured factors. While expression (9) for A = a coincides with Pearl’s

expression for E {Y (a∗,M(a))} (Pearl, 2001), the latter is only valid when the additional

assumptions (3) and (4) both hold.
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Expressions (10) and (11) suggest two estimation strategies for marginal natural direct

and indirect effects on the exposed. The first amounts to fitting a regression model for

the outcome conditional on mediator, exposure and confounders, next evaluating the fitted

values at A = a∗ and at the observed mediator and confounder values, and finally taking

their average within the subgroup with A = a. The second amounts to first fitting regression

models for the mediator conditional on the exposure and confounders, and for the exposure

conditional on the confounders. The fitted values from these models can subsequently be

used to construct a weight

I(A = a∗)

f(A = a∗|C)

f(M = m|A = a, C)

f(M = m|A = a∗, C)

f(A = a|C)

f(A = a)
,

for each subject, on the basis of which E {Y (a∗,M)|A = a} can be estimated as the corre-

sponding weighted average of the outcome in the total sample.

4.2 Identification in the presence of intermediate confounding

Implicit behind (1) and (2) is the assumption that the set of covariates which is sufficient

to adjust for confounding of the exposure-outcome association is also sufficient to adjust for

confounding of the mediator-outcome association. Because it thereby precludes the possibility

of intermediate confounding, we will now relax assumption (2) to the weaker assumption

Y (a,m) ⊥⊥M |A,L, (12)

for all a,m, where L is a set of covariates which must include C, but may additionally contain

components some of which are affected by the exposure. This assumption is satisfied under

the causal diagram of Figure 1 (right). The following identities

E {Y (a∗,M)|A,C} =

∫
E {Y (a∗,m)|M = m,A,C} f(M = m|A,C)dm

=

∫
E {Y (a∗,m)|L,A} f(L,M = m|A,C)dmdL, (13)

where we rely on assumption (12) in the second equality, make clear that this relaxation

complicates identification of the natural direct effect on the exposed. In particular, whilst
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E {Y (a∗,m)|A,C} can be identified as

E {Y (a∗,m)|A = a∗, C} =

∫
E {Y (a∗,m)|L,A = a∗} f(L|A = a∗, C)dL

=

∫
E (Y |M = m,L,A = a∗) f(L|A = a∗, C)dL, (14)

under assumptions (1) and (12) (Robins, 1999), neither E {Y (a∗,m)|M = m,A,C} nor

E {Y (a∗,m)|L,A} can be identified because conditioning on M or L may render Y (a∗,m)

and A dependent as a result of collider-stratification. Theorem 3, whose proof is given in the

Web Appendix, states our main result: it shows that progress can be made upon quantifying

that degree of dependence in terms of a selection-bias function.

Theorem 3: (i) Suppose that the no unmeasured confounder assumptions (1) and (12)

hold. Suppose furthermore that the following selection-bias function is known

qa(A,m,L) = E {Y (a,m)− Y (a, 0)|A,L} − E {Y (a,m)− Y (a, 0)|A = a, L} , (15)

which measures to what extent the mediator effect at controlled levels a of the exposure varies

over differently exposed subgroups conditional on L. Then

E {Y (a∗,M)|A,C} =

∫ ∫
E(Y |M = m,L,A = a∗)f(L|A = a∗, C)dLf(M = m|A,C)dm

+

∫ ∫
{E(Y |M = m,L,A = a∗) + qa∗(A,m,L)} {f(L|M = m,A,C)− f(L|A,C)} dL

×f(M = m|A,C)dm. (16)

(ii) The choice of qa(A,m,L) imposes no restrictions on the observed data law in the sense

for each choice of qa(A,m,L), one can find a full data law of {Y (a,m), Y (a, 0),M,L,A}

which satisfies (1), (12) and (15) and marginalizes to the observed data law.

Remark. In view of assumption (1), Part (ii) of Theorem 3 is in principle restricted to

functions qa(A,m,L) that satisfy E {qa(A,m,L)|A,C} = 0 for all m. However, the user
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need not worry about choosing functions that satisfy this constraint as functions of only

A,m and C vanish from expression (16).

Theorem 3 covers a much broader range of settings than is currently the case in the

identification of population natural direct and indirect effects in which a time-dependent

confounder L (a variable affected by treatment that in turn confounds the mediator-outcome

relationship) renders natural direct and indirect effects unidentified (Avin et al., 2005). This

is not only because assumption (12) relaxes (2), but also because no ignorability assumptions

are required regarding the exposure-mediator association, as well as no assumptions about

conditional independence of the counterfactuals Y (a,m) and M(a∗), besides assumption

(12). Instead, Theorem 3 requires a priori knowledge of a selection-bias function qa∗(A,m,L)

for the given a∗. In Section 4.3 we argue that the choice qa∗(A,m,L) = 0 holds under a

large class of plausible data-generating models that allow for exposure-induced confounding.

Expression (16) with qa∗(A,m,L) = 0 thus provides (parametric) identification results for

natural direct and indirect effects in the exposed in the presence of such confounding. Our

results moreover enable sensitivity analyses to assess the impact of departures from the

assumption that the selection-bias function equals zero.

4.3 The choice qa∗(A,m,L) = 0

By definition, the selection-bias function qa∗(A,m,L) can only differ from zero when there

are mediator effects that vary with A. When these effects do not additionally vary with L

(conditional on C), then qa∗(A,m,L) is a function of only A,m and C, which can be seen

to vanish from expression (16). Thus for the investigator to choose a non-zero selection-bias

function, there would essentially have to be a three way (additive) interaction between m,A

and L, as we will demonstrate more formally in the next section. The selection-bias function

can also be set to zero when there is no exposure-induced mediator-outcome confounding, for

then either Y (a∗,m) ⊥⊥ A|L so that qa∗(A,m,L) = 0, or M ⊥⊥ L|A,C in which case terms
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involving qa∗(A,m,L) vanish from expression (16). Finally, it can also be set to zero when

L includes all causal risk factors of the outcome that are also associated with the mediator.

Indeed, conditioning on all causal risk factors of the outcome (i.e., U in Figure 1) renders

Y (a,m) and A independent, conditional on L.

While it follows from Theorem 3, Part (ii), that the observed data can never provide

evidence to support the choice qa∗(A,m,L) = 0, we recommend using it as the primary

reference choice when its plausibility cannot be rejected on subject-matter grounds (see

the Web Appendix for alternative, natural choices). We make this recommendation for the

following two reasons. First, it follows from the previous paragraph that qa∗(A,m,L) = 0

under a class of data-generating mechanisms which is so broad, that choices other than zero

might essentially be regarded as being in disagreement with the usual principles of parsimony.

Indeed, in the hypothetical event that the data were informative about the selection-bias

function, these principles would likely lead one to set qa∗(A,m,L) equal to zero since for

qa∗(A,m,L) to be non-zero, there has to be a three way (additive) interaction between m,A

and L, the evidence for which would typically be weak. Second, it follows from the first

paragraph that the assumption, qa∗(A,m,L) = 0, can be made more plausible by collecting

data on causal risk factors of the outcome. We view this control which the investigator has

over the plausibility of this assumption as a desirable characteristic and motive for adopting

it as a ‘reference assumption’ (Vansteelandt, 2009a).

In the example, we could take q1(A,m,L) = 0 when the effect of pre-eclampsia in the

presence of adequate prenatal care is the same for women with the same smoking behavior,

L, in the 2 prenatal care groups. For this choice, it follows from Theorem 3 that

E {Y (1,M)|A = 0, C} =

∫ ∫
E(Y |M,L,A = 1) {f(L|A = 1, C)− f(L|A = 0, C)

+f(L|M,A = 0, C)} dLf(M |A = 0, C)dM. (17)
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4.4 Sensitivity analysis

Since by Part (ii) of Theorem 3, one cannot empirically verify whether qa∗(A,m,L) is a

non-zero function of L, a zero selection-bias function should only be assumed if considered

plausible. Whenever one has concerns about its plausibility, we recommend repeating the

analysis for various choices of selection-bias functions.

To gain insight into the possible form of the selection-bias function, suppose that

E(Y |U,L,M,A) = h0(L,M,A) + Uh1(L,A) + Uh2(L,M,A)

for arbitrary functions h0(L,M,A), h1(L,A), h2(L,M,A) satisfying h2(L, 0, A) = 0, where U

contains all prognostic factors of Y that are also associated with the intermediate confounder

L (see Figure 1). Then it is easily shown under the assumptions of the causal diagram of

Figure 1 that

qa(A,m,L) = h2(L,m, a) {E(U |A,L)− E(U |A = a, L)} .

Since, E(U |A,L) 6= E(U |A = a, L) in the presence of intermediate confounding, the selection-

bias function qa(A,m,L) differs from zero only when the mediator effect is modified (on the

additive scale) by the unmeasured confounders U of the confounder-outcome association.

Suppose in particular that h2(L,m, a) depends on L only through C in the sense that

- with a slight abuse of notation - h2(L,m, a) = h2(C,m, a). Suppose furthermore that

(A,U, L) is multivariate normal so that E(U |A,L) = α0 + αaA + αlL. Then qa(A,m,L) =

h2(C,m, a)αa(A− a), which can be ignored since it does not vary conditional on A and C.

It thus follows that under the above model, the selection-bias function will only differ from

zero when either the mediator effect is modified by both U and L, or when the mediator

effect is modified by U and, in addition, the association between U and A varies with L.

Thus when h2(L,m, a) = β0m+βmL and E(U |A,L) = α0 +αA+αlL, or h2(L,m, a) = βm

and E(U |A,L) = α0 + αaA+ αlL+ αAL, we have that

qa(A,m,L) = γm(A− a)L, (18)
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where γ = αβ. It is easily shown for this choice that E {Y (a,M)|A,C} equals the value (17)

obtained for qa(A,m,L) = 0 plus

γ(A− a)Cov(M,L|A,C). (19)

It follows that sensitivity of the results to the choice of selection-bias function will be weak

when the degree of intermediate confounding is weak in the sense that M and L are weakly

correlated conditional on exposure and baseline covariates. It further follows that from a

computational point of view, a sensitivity analysis is straightforward as it merely requires

modifying the estimate (17) by adding the contribution (19) for different choices of γ. The

difficulty lies, however, in finding a plausible range of selection-bias functions or, in particular,

of values of γ. In the next paragraph, we give some guidance as to how a realistic range might

be chosen.

Let U be a scalar variate with mean zero and unit variance. Suppose furthermore that

h2(L,m, a) = β0m+βmL and E(U |A,L) = α0+αA+αlL. Then β = SD(Y )/ {SD(M)SD(L)}

would indicate a relatively large three way interaction between M , L and U and could

therefore be taken as a maximum value in the sensitivity analysis. In the Web Appendix, we

further show that if (A,U, L) follow a multivariate normal distribution, then

α =
−R̃uR̃a

SD(A)(1− R̃2
a)
,

where R̃u and R̃a are the root coefficients of determination corresponding to U and A,

respectively, in the model for L. Here, R̃a is estimable from a regression of L on A because

U and A are independent regressors under the causal diagram of Figure 1. Assuming for

instance that the coefficient of determination for the model for the conditional mean of

L, given A and U , does not exceed 0.9, one could choose the maximum value of α in the

sensitivity analysis equal to ±(R̃a

√
0.9− R̃2

a)/(SD(A)(1− R̃2
a)).
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5. Data analysis

We analyze the 2003 US birth certificate data with adequate or inadequate prenatal care

(n = 2 629 247; those with intermediate or superadequate care are excluded from the analysis

for the purposes of this illustration) to evaluate direct and indirect effects of adequate or

inadequate care (A) on the risk of preterm birth (Y ) other than through pre-eclampsia (M).

Adequacy of prenatal care categories are determined from data on the month prenatal care

was initiated, on the number of visits and on gestational age according to the American

College of Gynecologists recommendation as encoded in a modification of the APNCU

inext (Kotelchuck, 1994; VanderWeele et al., 2009). The frequency of pre-eclampsia in the

population is 3.16% and 2.30% in nonsmoking and smoking mothers with inadequate care,

respectively, and 3.22% and 2.01% in nonsmoking and smoking mothers with adequate care,

respectively. Furthermore, the frequency of smoking is 23.6% in mothers with inadequate

care and 21.7% in mothers with adequate care. Our analysis considers mother’s drinking,

age category (below 20 years, between 20 and 35 years, or above 35 years), ethnicity (black,

hispanic, native american, white), education and marital status as baseline confounders (C),

and mother’s smoking as an intermediate confounder (L), considering the possible beneficial

effect of adequate care on smoking, which itself decreases the likelihood of pre-eclampsia.

We fit a logistic regression model for the risk of preterm birth (Y) involving main effects of

all variables and allowing for modification of the effect of pre-eclampsia (M) by adequate

care and ethnicity (black), and for modification of the effect of smoking by drinking. We

further fitted logistic regression models for the risk of pre-eclampsia involving main effects

of all variables (except preterm birth) and allowing for modification of the effect of smoking

by drinking, and for the risk of smoking involving main effects of all variables (except

preterm birth and pre-eclampsia). Assuming that the selection-bias function is zero, the

use of expression (17) resulted in Ê{Y (1,M)|A = 0} = 0.061 after averaging out all baseline
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confounders. We thus estimate that the risk of preterm birth would have been 6.1% in

those with inadequate care, had they received adequate care but their pre-eclampsia status

remained unchanged. Since the observed risk of preterm birth in those with inadequate care

is 12.4%, this corresponds with a natural direct effect for those with inadequate care of

Ê{Y (1,M)− Y |A = 0} = Ê{Y (1,M(0))− Y (0,M(0))|A = 0}

= −0.0639 (bootstrap 95% CI -0.0648 tot -0.0630).

It thus follows that adequate care could decrease the risk of preterm birth in those with

inadequate care with 6.4% other than by effecting pre-eclampsia. Had these women received

adequate care, the additional indirect effect of adequate care through pre-eclampsia would

be in the opposite direction, but negligible:

Ê{Y (1)− Y (1,M)|A = 0} = Ê{Y (1,M(1))− Y (1,M(0))|A = 0}

= 0.00020 (bootstrap 95% CI 0.00015 to 0.00025).

That this effect is small is perhaps not surprising since the effect of adequate care on pre-

eclampsia by decreasing smoking would likely increase pre-eclampsia whereas the effect of

adequate care not through smoking would likely be in the other direction, decreasing pre-

eclampsia.

We subsequently allowed for a sensitivity analysis by varying the choice of selection bias

function q1(1,m, L). Note that q1(1, 0, L) = 0 by definition and thus that only specification

of q1(1, 1, L) is required (where m = 1 refers to pre-eclampsia). By definition, q1(1, 1, L)

contrasts the effect of pre-eclampsia in the presence of adequate care between those without

and with adequate care and given smoking behavior S and baseline covariates C (where

L = (C, S)). In a sensitivity analysis, we assumed that q1(1, 1, L) = q(C) + λS, where the

choice of q(C) is irrelevant as it cancels from expression (16), and where λ was varied from

-0.1 to 0.1 which is a wide range since the risk of preterm birth even in the inadequate care
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group is only 0.124. Interestingly, the result in Figure 2 reveals virtually no sensitivity of the

direct and indirect effect estimates to the amount of selection bias.

Our analysis here is intended only as an illustration, as it is a simplification of what is

a more complex reality and therefore limited in the substantive conclusions that can be

drawn. Both pre-eclampsia and preterm birth are time-varying process and here we have

treated them as dichotomous, which may induce bias (Zhang et al., 2011). Furthermore,

data is only available for pre-eclampsia as a dichotomous variable; moreover not all pre-

eclampsia is diagnosed. Current research (Ogburn and VanderWeele, 2012) indicates that

under many conditions, dichotomization of a mediator will lead to overestimates of the

direct effect and underestimates of the indirect effect (though this intuition can sometimes

fail). In this example, dichotomization of the mediator pre-eclampsia (which was the only

measure available in this dataset) may have led to an underestimation of the mediated effect.

Another limitation of our analysis is that the mediator M is only partially manipulable

and different potential interventions to address pre-eclampsia may well have different effects

on the outcome, preterm birth. This issue is sometimes referred to as a problem of ”multiple

versions” and makes the interpretation of effect estimates somewhat more difficult; in some

circumstances such effects can be interpreted as the consequence of an intervention that ran-

domly selects, conditional on the covariates, a ”version of treatment”, from the distribution

of that which actually occurred in the population (Hernan and VanderWeele, 2011).

[Figure 2 about here.]

6. Discussion

Controlled direct effects can be identified in the presence of exposure-induced mediator-

outcome confounding, but have a more limited utility because they cannot be used for

decomposition of a total effect into direct and indirect effects, and because of their more
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stringent interpretation which involves fixing the mediator at the same value uniformly in the

population. The formalism of natural direct and indirect effects remedies these limitations,

but requires stronger identification conditions which essentially preclude such intermediate

confounding. We have focused on the identification of natural direct and indirect effects on

the exposed, which combine the best of both formalisms: they enable decomposition of a

total effect, allow for natural variation in the level at which the mediator is controlled, and

are essentially identifiable under the same conditions as for controlled direct effects. Indeed,

although our formalism demands additional knowledge on a selection-bias function, we have

shown that it evaluates to zero under a large class of data-generating mechanisms.

We have shown that natural direct and indirect effects on the exposed coincide with the

corresponding population-averaged natural effects under specific ignorability assumptions

which are in particular satisfied when the exposure is randomly assigned. Thus, under

these conditions, our development moreover provides a method for identifying population

natural direct and indirect effects in the presence of exposure-induced mediator-outcome

confounding, which existing methodology has not been able to address (Avin et al., 2005).

Our effect definitions are thus theoretically appealing. They are moreover the effects that

are of substantive interest whenever the effect of treatment on the treated (rather than

the population averaged treatment effect) is in view and one wants to further examine the

mechanisms responsible for this effect.

That natural direct and indirect effects on the exposed are identifiable under weaker

conditions than the corresponding population averaged effects should not come as a surprise.

Similar results are for instance found in the literature on instrumental variables (Hernan and

Robins, 2006). The reason is that by focussing solely on the exposed, one is less ambitious

about the causal inferences one attempts to make as one generally loses the ability to make

claims about the effects of arbitrary interventions on A. Note therefore that the natural direct
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effect on the exposed ψ = E{Y − Y (a∗,M)|A = a} = E{Y (a,M(a))− Y (a∗,M(a))|A = a}

must be cautiously interpreted as it only states that setting A to a∗ within those with

A = a, while holding the mediator fixed, will change the expected outcome by ψ. However,

it does not enable one to infer the effect of an a − a∗ unit increase in the exposure in

the general population as subgroups with different observed exposures might experience

different effects. In further analogy to the instrumental variables setting, the identification

results that we provide (corresponding to zero selection-bias function) are parametric in

the sense that they are restricted to data-generating models that exclude additive three-

way interactions between exposure, mediator and exposure-induced confounders. When such

interactions are anticipated, our results still enable a study of the sensitivity to deviations

away from that assumption. Like the sensitivity analysis results of Tchetgen Tchetgen and

Shpitser (2011), we thus allow for exposure-induced confounding, but in contrast, provide

adjustment for measured exposure-induced confounders so that less sensitivity is expected

with our approach.

In the application, we made use of substitution estimators, obtained by substituting the

observed data distribution by a consistent estimator. In more general settings, such substi-

tution estimators may not have a desirable performance for various reasons. First, because

functionals like (16) involve high-dimensional integration, substitution estimators can be

computationally tedious to obtain. Second, the modeling of the observed data distribution,

which may involve high-dimensional confounders L, can make these estimators greedy in

demanding parametric modeling assumptions. Further subtleties arise because parsimonious

models for the observed data distribution need not translate into parsimonious models for

the direct and indirect effect. This may not only make the results unattractive for reporting,

but also make interesting hypotheses difficult to test. In future work, recourse to alternative

strategies will be sought based on direct modeling (van der Laan and Petersen, 2008) and
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estimation of natural direct and indirect effects in the exposed. We expect this will be quite

feasible in the absence of intermediate confounding where Theorem 3 suggests that progress

can be made using inverse probability weighting. This may be more challenging in the

presence of intermediate confounding because of the possibly high-dimensional confounder

distributions appearing in (16).

Finally, Avin et al. (2005) showed that a time-dependent confounder L renders population

natural direct and indirect effects unidentified. Our results have shown that progress can still

be made when the exposure is randomly assigned, and more broadly for exposure effects on

the exposed. It remains to be studied how the results of Avin et al. (2005) on path-specific

effects in causal diagrams that involve multiple mediators, extend to our formalism.

Supplementary Materials

The Web Appendix referenced in Section 4.3 is available with this paper at the Biometrics

website on Wiley Online Library.
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Figure 1. Left: Causal diagram without exposure-induced confounding. Right: Causal
diagram with exposure-induced confounding.
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Figure 2. Natural direct (left) and indirect (right) effect of adequate care on the risk of
preterm birth other than through pre-eclampsia in the inadequately treated.


