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Quasiparticle properties of an impurity in a Fermi gas
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We report a study of a spin-down impurity strongly coupled to a spin-up Fermi sea (a so-called Fermi polaron)
with the diagrammatic Monte Carlo (DiagMC) technique. Conditions of zero temperature and three dimensions
are considered for an ultracold atomic gas with resonant interactions in the zero-range limit. A Feynman
diagrammatic series is developed for the one-body and two-body propagators providing information about the
polaron and molecule channel, respectively. The DiagMC technique allows us to reach diagram orders that are
high enough for extrapolation to infinite order. The robustness of the extracted results is examined by checking
various resummation techniques and by running the simulations with various choices for the propagators and
vertex functions. It turns out that dressing the lines in the diagrams as much as possible is not always the optimal
choice. We also identify classes of dominant diagrams for the one-body and two-body self-energy in the region
of strong interaction. These dominant diagrams turn out to be the leading processes of the strong-coupling limit.
The quasiparticle energies and Z factor are obtained as a function of the interaction strength. We find that the
DiagMC results for the molecule and polaron properties are very similar to those obtained with a variational
ansatz. Surprisingly, this variational ansatz gives very good predictions for the quasiparticle residue even when
this residue is significantly less than 1.
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I. INTRODUCTION

The notion of a “bare” particle loses its significance once it
is strongly coupled to a medium. Landau introduced the notion
of a quasiparticle whose properties may be very different from
those of a bare particle.1 The most prominent example is an
electron moving in a crystal: the electron displaces the nearby
ions and carries this distortion with it. The presence of the
phonon cloud changes the mass and energy of the electron,
which is dubbed a “polaron.”2 More generally, a polaron
arises whenever a quantum impurity is strongly coupled to an
environment. These quantum-mechanical quasiparticles play a
key role in the low-energy behavior of a macroscopic quantum
liquid.

In recent years, the field of ultracold atoms has provided
an exciting framework for studying polaronic effects. A key
idea is that models designed for describing the rich and
nontrivial structure of the solid state can be emulated in
a clean and controllable manner with ultracold atoms. For
example, so-called Fermi polarons,3–5 spin-down impurities
that are strongly coupled to a spin-up Fermi sea (FS), can
be created in a degenerate two-component atomic Fermi gas
when going to the limit of strong spin imbalance close to a
Feshbach resonance. The impurity is coherently dressed with
particle-hole excitations of the FS. The properties of the Fermi
polaron are important for the quantitative understanding of a
strongly imbalanced Fermi gas.6

In this paper, we focus on the “attractive Fermi polaron,”
with an attractive interaction between the impurity and the
fermions of the bath. A recent experiment using an ultracold
gas of 6Li atoms in three dimensions revealed the existence
of Fermi polarons through a narrow quasiparticle peak in the
impurities’ radio-frequency spectrum.4 At a critical interaction
strength, the disappearance of this peak was interpreted as
a transition from polaronic to molecular binding, when the
impurity and an atom of the sea form a two-body bound
state. Such a transition had theoretically been predicted in

three dimensions by Prokof’ev and Svistunov.3 To determine
the transition point, they developed a diagrammatic Monte
Carlo technique (DiagMC) capable of solving the Fermi
polaron model.3,8 Calculations of the ground-state energy
showed that for a sufficiently strong attraction between the
impurity atom and the atoms of the spin-up FS, a molecular
state becomes energetically favorable. The crossing point was
found at an interaction strength (kF a)c = 1.11(2), with kF

the Fermi momentum of the spin-up sea and a the s-wave
scattering length. A variational treatment developed by Chevy
based on an expansion up to single particle-hole excitations
on top of the unperturbed FS turned out to be remarkably
accurate.9 A combination of Chevy’s ansatz with a variational
wave function in the molecular limit10–12 also revealed the
polaron-to-molecule transition, very close to the DiagMC
result.

In the present work, we study the quasiparticle properties
of the Fermi polaron problem in three dimensions with the
DiagMC technique.3,8 This technique evaluates a series of
Feynman diagrams for the one-particle and two-particle proper
self-energies. A full description of the DiagMC algorithm
was presented in Ref. 8. Building on the work in Ref. 8 we
have implemented the DiagMC algorithm independently. We
explore various DiagMC schemes13 and series resummation
methods to check the robustness of the results against the pos-
sible uncertainties of summing the series. First, we confirm the
transition point. Next, we calculate the quasiparticle residue,
which we compare to experimental data and variational results.
The quasiparticle residue, or Z factor, gives the overlap of the
noninteracting wave function and the fully interacting one,

Zp = ∣∣〈�N↑
0

∣∣0↓,FS(N↑)
〉∣∣2

, (1)

with |�N↑
0 〉 the fully interacting ground state and |0↓,FS(N↑)〉

a free spin-down atom carrying momentum p = 0 in a
noninteracting FS of N↑ spin-up atoms. The spin-up atoms
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are noninteracting since p-wave scattering is negligible. The
residue reflects the impurity’s probability of free propagation.

The outline of the paper is as follows. In Sec. II we introduce
the model and the structure of the Feynman diagrammatic
expansion. In Sec. III we discuss the results of the numerical
calculations. Thereby, we investigate how the results depend
on the choices made with regard to the diagrammatic series,
like the use of bare versus dressed propagators. Also, the
resummation of the diagrammatic series is discussed in depth.
The results for the quasiparticle properties, like the residue,
are the subject of Sec. IV.

II. MODEL AND DIAGRAMMATIC STRUCTURE

We consider a dilute two-component gas of ultra-cold
fermionic atoms interacting via the van der Waals potential.
The Hamiltonian has a kinetic and interaction term,

Ĥ =
∑

k,σ=↑↓
εkσ ĉ

†
kσ ĉkσ

+ 1

V
∑

k,k′,q

V (k − k′)ĉ†k+ q
2 ↑ĉ

†
−k+ q

2 ↓ĉ−k′+ q
2 ↓ĉk′+ q

2 ↑. (2)

The operators ĉ
†
kσ (ĉkσ ) create (annihilate) fermions with

momentum k and spin σ . The spin-σ fermions have mass
mσ and dispersion εkσ = k2/2mσ , and V is the volume of
the system. We take h̄ = 1 throughout the paper and consider
the mass-balanced case m↑ = m↓ = m. All the theoretical
considerations are for zero temperature (or T � TF , with TF

the Fermi temperature). The diluteness of the system ensures
that the range b of the potential is much smaller than the typical
interparticle distance 1/kF , or kF b � 1, with kF the Fermi
momentum of the spin-up sea, and therefore the details of the
interaction potential become irrelevant. Accordingly, without
loss of generality, one can model the short-ranged interaction
as a contact interaction, V (r) = g0δ(r), in combination with
the standard ultraviolet divergence regularization procedure
described below.

The one-body and two-body propagators provide access
to information about the “polaron” and “molecule” channel,
respectively. The polaron and molecule are two distinct objects
belonging to different charge sectors. The one-body and
two-body propagators are discussed in Secs. II A and II C.
The adopted regularization procedure for the renormalized
interaction is the subject of Sec. II B. The DiagMC method is
introduced in Sec. II D.

A. One-body propagator

The polaron quasiparticle properties can be extracted from
the impurity’s Green’s function, defined as

G↓(k,τ ) = −θ (τ )
〈
�

N↑
0

∣∣ĉk↓(τ )ĉ†k↓(0)
∣∣�N↑

0

〉
, (3)

with ĉk↓(τ ) the annihilation operator in the Heisenberg picture,

ĉk↓(τ ) = e(Ĥ−μN̂↓−μ↑N̂↑)τ ĉk↓e−(Ĥ−μN̂↓−μ↑N̂↑)τ . (4)

The propagator G↓(k,τ ) is written in the momentum
imaginary-time representation, μ is a free parameter, N̂σ is the
number operator for spin-σ particles, and μ↑ is the chemical

potential of the spin-up sea. The state∣∣�N↑
0

〉 = |〉↓|FS(N↑)〉 (5)

consists of the spin-down vacuum and the noninteracting spin-
up FS. Since we are dealing with an impurity spin-down atom,
G↓ is only nonzero for times τ > 0. The ground-state energy
and Z factor can be extracted from the Green’s function of
Eq. (3). Inserting a complete set of eigenstates |�N↑

n 〉 of the full
Hamiltonian, (2), for one spin-down particle and N↑ spin-up
particles into Eq. (3) yields, for k = 0,

G↓(0,τ ) = −θ (τ )
∑

n

∣∣〈�N↑
n

∣∣ĉ†0↓
∣∣�N↑

0

〉∣∣2

× e−(En(N↑)−EFS−μ)τ

τ→+∞= −Zpe−(Ep−μ)τ , (6)

with Ep the energy of the polaron, En(N↑) the energy
eigenvalues of Hamiltonian (2), and EFS = 3εF N↑/5 the
energy of the ideal spin-up Fermi gas, with εF = k2

F /(2m)
the Fermi energy.

The difference between the polaronic and the molecular
state is embedded in the factors |〈�N↑

n |ĉ†0↓|�N↑
0 〉|2 in Eq. (6).

For situations where the polaron is a well-defined quasiparticle
in the ground state |�N↑

0 〉, we have Eq. (1) for the Z factor and
Ep = E0(N↑) − EFS. If, on the other hand, the ground state

|�N↑
0 〉 is a dressed molecule, the overlap 〈�N↑

0 |ĉ†0↓|�N↑
0 〉 is 0.11

This is clear from the expansion of the molecular state in the
number of particle-hole excitations:

∣∣�N↑
0

〉 =
(∑′

k
ξkĉ

†
−k↓ĉ

†
k↑

+
∑′

k,k′,q
ξkk′qĉ

†
q−k−k′↓ĉ

†
k↑ĉ

†
k′↑ĉq↑ + · · ·

)∣∣�N↑−1
0

〉
.

(7)

The coefficients ξ are variational parameters, and the primes
indicate that the sums on k, k′, and q are restricted to |k|,|k′| >

kF and |q| < kF . Even if a molecule is formed in the ground
state, the polaron can be a well-defined excited state (in the
sense of a narrow peak in the spectral function), and Zp can
be nonzero.

For vanishing interactions V the impurity Green’s function
of Eq. (3) becomes

G0
↓(k,τ ) = −θ (τ )e−(εk↓−μ)τ . (8)

The one-body propagator for the spin-up sea is defined as

G↑(k,τ ) = −〈
�

N↑
0

∣∣Tτ [ĉk↑(τ )ĉ†k↑(0)]
∣∣�N↑

0

〉
, (9)

with Tτ the time-ordering operator. Without interactions, one
obtains the free propagator

G0
↑(k,τ ) =

{−e−(εk−εF )τ θ (|k| − kF ) if τ > 0;
e−(εk−εF )τ θ (kF − |k|) if τ < 0.

Our goal is to calculate the G↓ of Eq. (3) to extract Ep by
means of Eq. (6). This is achieved by summing all irreducible
one-particle self-energy diagrams with the DiagMC algorithm
(which works in the momentum-imaginary-time representa-
tion). The irreducible self-energy 
(k,ω) in the imaginary-
frequency representation is obtained after a numerical Fourier
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Γ Γ0

FIG. 1. Graphical representation of the Dyson equation and
the Bethe-Salpeter equation. The free (dressed) one-body impurity
propagator is denoted G0

↓ (G↓). 
 and � are the one-body and
two-body self-energies, respectively.  is the fully dressed interaction,
wheres 0 is the partially dressed interaction, obtained by summing
all the bare ladders G0

↓G
0
↑ [see Eqs. (16) and (17)].

transform and inserted into Dyson’s equation to give G↓,

[G↓(k,ω)]−1 = [G0
↓(k,ω)]−1 − 
(k,ω), (10)

with ω the imaginary frequency. A graphical representation
of the Dyson equation is shown in the top panel in Fig. 1.As
shown in Ref. 8, the polaron energy Ep and Z factor Zp can
be extracted directly from the self-energy 
(0,τ ):

Ep =
∫ +∞

0
dτ
(0,τ )e(Ep−μ)τ ; (11)

Zp = 1

1 − ∫ +∞
0 dττ
(0,τ )e(Ep−μ)τ

. (12)

The effective mass m∗ of the polaron is evaluated with the
estimator8

m∗ = 1/Zp

1/m + B0
, (13)

with

B0 =
∫ +∞

0
dτe(Ep−μ)τ

[
1

3
∇2

k
(k,τ )|k=0

]
, (14)

which can conveniently be estimated by expanding 
(k,τ ) in
Legendre polynomials. One obtains

1

3
∇2

k
(k,τ )|k=0 = 15

2�3

∫ �

0
dk
(k,τ )

(
3k2

�2
− 1

)
, (15)

and the integral can be evaluated during the MC simulation.
The upper limit of integration (�) is optimized to minimize
the statistical noise while avoiding a systematic error at
too large �. We also used an alternative way: calculating
the quasiparticle spectrum E(k) and fitting m∗ via E(k) =
Ep + k2/(2m∗).

B. Renormalized interaction

We introduce the s-wave scattering length a for collisions
between spin-up and spin-down particles. One of the advan-
tages of working with Feynman diagrams is that one can work
directly in the zero-range limit kF b → 0 (or, equivalently,
�/kF → +∞, with � the ultraviolet momentum cutoff) while
keeping kF a constant. Thereby, the ultraviolet physics can be
taken into account by means of a summation over all Feynman
ladder diagrams.

In the momentum-imaginary-frequency representation
(p,�), one obtains for the partially dressed interaction

0(p,�) = g0 + g0�
0(p,�)0(p,�), (16)

with �0 the two-particle self-energy consisting of one “bare”
ladder,

�0(p,�) = − 1

2πV
∑

|q|<�

∫
dωG0

↑

(
p
2

+ q,ω

)

× G0
↓

(
p
2

− q,� − ω

)

= 1

V
∑

|q|<�

θ (|p/2 + q| − kF )

i� − p2/(4m) − q2/m + μ + εF

, (17)

where the momentum cutoff � is required to keep the sum
finite. The bare coupling constant V (p) = ∫

dre−ip·rV (r) =
g0 can be eliminated in favor of the physical scattering length
a by using standard scattering theory,

1

g0
= m

4πa
− 1

V
∑

|k|<�

1

2εk
. (18)

The 0(p,�) from Eq. (16) can be expressed in terms of the
s-wave scattering length a, by taking the limit � → +∞ and
g0 → 0− with a fixed. In this zero-range limit, one gets

[0(p,�)]−1 = [̃0(p,�)]−1 − �̄(p,�), (19)

with

�̄(p,�) = −
∫

dq
(2π )3

θ (kF − q)

× 1

i� − q2

2m
− (p−q)2

2m
+ μ + εF

. (20)

Here, we have taken the thermodynamic limit (V → +∞
and N↑/V fixed). The integral in Eq. (20) can be evaluated
analytically, and the dressed interaction in vacuum is given by

[̃0(p,�)]−1 = m

4πa
− m

8π

√
p2 − 4m(i� + μ + εF ) (21)

for � �= 0 or μ < −εF , and assuming the principal branch.
For μ < −[εF + 1/(ma2)], the Fourier transform to imaginary
time can be done analytically, producing

̃0(p,τ ) = − 4π

m3/2
e−( p2

4m
−μ−εF )τ

×
(

1√
πτ

+ 1√
ma

e
τ

ma2 erfc

(
−

√
τ

m

1

a

))
, (22)

with erfc(x) the complementary error function. As in Ref. 8,
we use 0(p,τ ) as a partially dressed interaction vertex in
the diagrammatic series, instead of the bare interaction vertex
g0. This dressed vertex is calculated here in an imaginary time
representation by performing the Fourier transform of Eq. (19)
numerically.

In the next step, the interaction vertex is fully dressed by
calculating the two-particle self-energy � and plugging it into
the Bethe-Salpeter equation,

[(p,�)]−1 = [0(p,�)]−1 − �(p,�). (23)

A graphical representation of this equation is shown in
Fig. 1. The self-energy � contains all connected two-particle
diagrams that are irreducible with respect to cutting a single
0 propagator. To avoid double counting, the diagrams for
� should not contain any ladders, since these have been
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summed in 0 by means of Eq. (16). This rule also holds when
summing diagrams for the one-body self-energy 
, built from
free propagators G0

σ and 0.

C. Two-body propagator

Here, we consider the pair annihilation operator,

P̂k =
∑

q

ϕ(q)ĉk−q↑ĉq↓, (24)

with ϕ(q) the momentum representation of the wave function
ϕ(r) for the relative motion of two fermions of opposite spin.
The two-particle propagator is defined as

G2(k,τ ) = −θ (τ )
〈
�

N↑
0

∣∣P̂k (τ )P̂ †
k (0)

∣∣�N↑
0

〉
, (25)

where we have included the fact that the impurity spin-↓
atom propagates forward in time. Inserting the complete basis
|�N↑+1

n 〉 for (N↑ + 1) spin-up particles and one spin-down
particle gives

G2(0,τ ) = −θ (τ )
∑

n

∣∣〈�N↑+1
n

∣∣P̂ †
0

∣∣�N↑
0

〉∣∣2

× e−(En(N↑+1)−EFS(N↑)−μ↑−μ)τ

τ→+∞= −Zmole
−(Emol−μ)τ , (26)

with Emol the molecule energy and Zmol the molecule Z factor.
If the molecule is a well-defined quasiparticle in the ground
state, we have

Zmol = ∣∣〈�N↑+1
0

∣∣P̂ †
0

∣∣�N↑
0

〉∣∣2
(27)

and Emol = E0(N↑ + 1) − EFS(N↑) − μ↑. Note that the value
of Zmol depends on the wave function ϕ(q). The functional
from of this pair wave function depends on the nature of the
experiment used to probe the molecule.

In practice, it is easier to calculate the molecule energy from
the fully dressed interaction  [see Eq. (23)]. This function is
closely related to the pair correlation function, namely,

(k,τ ) = g0δ(τ ) + g0P(k,τ )g0, (28)

with

P(r,τ ) = −θ (τ )
〈
�

N↑
0

∣∣(�̂↑�̂↓)(r,τ )(�̂†
↓�̂

†
↑)(0,0)

∣∣�N↑
0

〉
(29)

the pair correlation function. The field operators �̂†
σ (r) =∑

k e−ikrĉ
†
k,σ /

√
V create a spin-σ fermion at position r. In

Eq. (29) the pair of particles is created at the same position
[which corresponds to ϕ(q) = 1 in Eq. (24)]. The structure of
the fully dressed interaction  and the two-particle propagator
G2 now implies that both structures have the same poles [see
Eq. (28)]. Therefore, the exponential tail of the function (k =
0,τ ) can conveniently be used for estimating the molecule
energy, rather than the tail of G2(0,τ ). This is equivalent to
looking for this pole of the Bethe-Salpeter equation, (23). The
molecule’s energy Emol is given by the parameter μ, which
satisfies the equation

[0(p = 0,� = 0)]−1 = �(p = 0,� = 0), (30)

Σ

Π

FIG. 2. Diagrammatic expansion for the one-body self-energy 


and the two-body self-energy �. Here, the diagrams are built from the
bare propagators G0

σ (thin lines) and the partially dressed interaction
0 (gray box). All diagrams have a “backbone” structure, since we
have a single impurity propagating forward in time and interacting
with a Fermi sea of free particles.

where the left-hand side is known analytically and the right-
hand-side is evaluated with the DiagMC algorithm in the
imaginary-time domain.

D. Diagrammatic Monte Carlo

The DiagMC evaluates the series of Feynman diagrams for
the self-energy in a stochastic way. We deal with both one-body
and two-body self-energies. In the first step, the self-energy is
built from the free propagators G0

σ and the partially dressed
interaction 0 (obtained through summation of G0

↓G0
↑ ladders,

as discussed in Sec. II B). We refer to this series as the “bare
series.” Figure 2 shows the one-body and two-body self-energy
diagrams up to order 3 in the bare scheme. The order of a
diagram is N when there are N dressed interactions  (i.e.,
N boxes) present in the 
 diagram and N − 1 boxes in the
� diagram. Note that the diagrams cannot contain ladders
since these have been taken into the vertex function 0. To
illustrate factorial growth with order, the number of one-body
self-energy diagrams for given order N � 12 is given in the
second column in Table I for the bare series.

TABLE I. Factorial increase in the number of Feynman diagrams.
At fixed order N , the number of one-body self-energy diagrams is
given for different types of series: the bare series, the skeleton series
with dressed G↓ (bold G), and the skeleton series with dressed G↓
and  lines (bold G-).

N Bare Bold G Bold G-

1 1 1 1
2 0 1 0
3 2 2 1
4 6 7 2
5 34 34 13
6 210 206 74
7 1 526 1 476 544
8 12 558 12 123 4 458
9 115 618 111 866 41 221
10 1 177 170 1 143 554 421 412
11 13 136 102 12 816 572 4 722 881
12 159 467 022 156 217 782 57 553 440
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Σ

Π

FIG. 3. Skeleton diagrammatic expansion for the one-body and
two-body self-energies: the impurity propagator and interaction lines
that appear in the diagram are fully dressed solutions of the Dyson
equation and the Bethe-Salpeter equation (see Fig. 1).

In the second step, we use dressed propagators or “bold
lines” in the diagrams. Such dressed (skeleton) series are
evaluated with the bold DiagMC technique.3,13 We consider
the case with only dressed G↓ propagators while keeping 0

in Eqs. (19) and (20) as a renormalized interaction, and the
case where both one-body propagators and interactions are
dressed. We refer to these skeleton series as “bold G′′ and
“bold G-,” respectively. In the latter case, the bold DiagMC
algorithm is constructed as follows: given the approximate
one-body and two-body self-energies 
 and �, the Dyson and
Bethe-Salpeter equations are solved to deliver the one-body
propagator G↓ and the dressed interaction  [see Eqs. (10)
and (23)]. In the next step, these are used to dress the series
for 
 and �, which are evaluated stochastically with DiagMC
up to order N∗. This self-consistent cycle is repeated until
convergence is reached. Figure 3 shows the skeleton (bold G-
) series for the one- and two-body self-energies up to order 4.
Evidently, when dressing the lines in the self-energies, one has
to keep track of the two-particle reducibility and systematically
avoid any double counting. This typically means that at any
order N the numbers in the second column in Table I (“Bare”)
are an upper limit of the number of diagrams in the third and
fourth columns. At N = 2 and N = 4, however, the number
of diagrams increases due to the fact that ladders should be
included again once G↓ is bold. All the diagrams in Table I
are summed explicitly during the (bold) DiagMC simulation.

III. RESUMMATION AND BOLDIFICATION

When considering a diagrammatic series, it is natural to ask
whether there are dominant classes of diagrams. Identification
of the dominant diagrams potentially allows one to make
good approximations. To address this issue, we constructed
a histogram counting how many times a certain topology is
sampled. We consider the bare series first. It turns out that
for the one-body self-energy, roughly half of the simulation
time is spent on sampling two diagrams at each order. These
two diagrams are shown in Fig. 4 for diagram order 6. To
understand why these two diagrams are dominant at a fixed
N , we use an argument first made by Hugenholtz.14 For a
dilute spin-up gas, momentum integration inside the FS is

FIG. 4. The two dominant one-body self-energy diagrams for
N = 6. Imaginary time runs from right to left.

heavily restricted in phase space [momentum integration runs
up to the Fermi momentum kF ∼ (N↑/V)1/3]. This implies the
presence of a backward (or hole) spin-up propagator, reducing
the contribution of the diagram significantly, while the forward
(particle) propagator enhances the contribution by roughly a
factor

∫
|k|>kF

dk. As a consequence, diagrams with the smallest
possible number of hole propagators will be dominant. For
the self-energy, we see that, at fixed order, the minimum
number of hole propagators is 2. Since the number of fermion
loops differs by 1, these two diagrams have opposite sign.
Numerically we found that the two diagrams almost cancel
each other. This can be seen in Fig. 5, where we show the
polaron energy Ep as a function of the inverse diagram order
cutoff N∗ for the interaction strength 1/(kF a) = 0. For the
“bare series,” we observe a fast convergence due to cancellation
of diagrams. This magic cancellation was referred to as “sign
blessing.”3 At infinite scattering length, such near-cancellation
was also observed by Combescot and Giraud.15 They found
that the success of the Chevy ansatz at strong coupling can
be attributed to a nearly perfect destructive interference of the
states with more than one particle-hole excitation. Combescot
and Giraud illustrated that an expansion in powers of the
hole wave vectors converges extremely rapidly at unitarity.
In our case, the series is organized differently, but at fixed

-0.68

-0.66

-0.64

-0.62

-0.6

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1

E p
/ε
F

1/N*

Bare series
Bold G series

FIG. 5. (Color online) The polaron energy in units of the Fermi
energy as a function of the inverse maximum diagram order 1/N∗
for irreducible self-energy diagrams at unitarity 1/(kF a) = 0. The
(red) squares show the polaron energy calculated via Eq. (11) with
self-energy diagrams built from the free propagators G0

σ and the
partially dressed propagator 0. The (blue) circles show the results
using the bold G approach.
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FIG. 6. (Color online) Same plot as Fig. 5, but now considering
the interaction strength parameter 1/(kF a) = 1.333. In the bare series,
small oscillations prevent us from extrapolating to the infinite diagram
order.

order we have exactly the same type of cancellation between
diagrams with the same number of hole propagators.16 Just as
in the Combescot-Giraud argument, the cancellation is exact
when the momentum dependence of the hole propagators is
neglected. Note that the dominant diagrams (see Fig. 4) can
also be viewed as three-body T -matrix diagrams closed with
two-hole propagators.17 This class of diagrams, in which there
are, at most, two particle-hole excitations, has been considered
previously for the polaron problem.12,15 It was shown that
they exactly reproduce the Skorniakov and Ter-Martirosian
equation18 in the BEC limit. In this strong-coupling limit,
the dominant process is scattering between a dimer and a
spin-up fermion, which is diagrammatically represented by
the three-body T-matrix diagrams. Away from this limit, the
considered class of diagrams turns out to give a quantitatively
good correction to the lowest order result. We find that this is
due to their dominance, even away from the BEC limit.

When going towards the BEC side (1/a > 0), the cancel-
lation between dominant diagrams of the type shown in Fig. 4
is no longer perfect. Figure 6 shows the polaron energy as a
function of 1/N∗ for 1/(kF a) = 1.333. For the bare series, the
oscillations prevent one from extracting Ep for 1/N∗ → 0.

To cure the bad convergence of the bare series for
1/(kF a) > 0 one can include more diagrams by dressing the
propagators. We start by dressing the spin-down propagator
lines, while keeping the partially dressed 0. Diagrams
reducible with respect to cutting two spin-down lines should
no longer be sampled, since they are included implicitly.
For 1/(kF a) = 0 the self-energy 
(k,τ ) converges in this
“bold G scheme” for N∗ � 7. Extrapolation to infinite N∗
gives the exact 
 and G↓. Figure 5 includes the polaron
energy as a function of the diagram order cutoff when the
one-body self-energy is built with the exact G↓. The bare
and bold series converge to the same energy. Remarkably, the
dressed scheme gives worse results at low N∗. This indicates
that approximations based on a few low-order diagrams are
completely uncontrolled, and including more diagrams by
dressing the lines does not necessarily improve the quality
of the results.
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FIG. 7. (Color online) The polaron energy in units of the Fermi
energy as a function of the inverse maximum diagram order 1/N∗ for
irreducible self-energy diagrams at unitarity 1/(kF a) = 0. The (blue)
circles show results using a fully bold DiagMC simulation: self-
energy diagrams are built from fully dressed one-particle propagators
G↓ and two-particle propagators  up to self-energy diagram order
N∗. The (red) squares show the polaron energy calculated with
diagrams built with the exact G↓ and a partially dressed interaction
1 containing the sum of all G↓G0

↑ ladders.

For 1/(kF a) = 1.333, we see that dressing the impurity
lines helps to get rid of the residual oscillations in the bare
scheme (see Fig. 6). One might expect that dressing even more,
by using a fully dressed  instead of 0, might lead to even
better convergence. Figure 7 shows, however, that, even for
1/(kF a) = 0, the fully bold series (bold G- scheme) does not
seem to converge (N∗ is the diagram cutoff for both 
 and �,
and a bold DiagMC simulation is done for each N∗), in contrast
to the results in Ref. 8. The data for the fully bold simulation
in Ref. 8 was obtained by using the exact G and  (i.e.,
extrapolated to the N∗ → ∞ limit with resummation factors).
They were not obtained with a self-consistent simulation,
which explains the difference. Moreover, data are not shown
above N∗ = 7, where oscillations do occur. In order to
understand why the series no longer converges, we introduce
an intermediate scheme (which we call bold G-1): the
self-energy is built from the fully converged G↓ and a partially
dressed interaction 1, built from summing the ladders G↓G0

↑.
The result is also shown in Fig. 7, and we again observe
convergence to the same answer as in Fig. 5. The key difference
between both schemes is that in the bold G-1 scheme, both
dominant diagrams shown in Fig. 4 still explicitly contribute
to the self-energy, whereas in the fully bold scheme the upper
dominant diagram becomes reducible and is taken into account
self-consistently. This means that the balance of cancellation
between diagrams is broken, and a single dominant diagram
keeps contributing at each order. So, it turns out that dressing
the diagrams as much as possible is not always a good idea. In
this respect, our findings disagree with Ref. 8.

The second method to cure the bad convergence of the
bare series on the BEC side is to employ series resummation
techniques. We use the Abelian resummation techniques19

which have been used for calculating the equation of state
of a unitary gas with the bold DiagMC.20 This resummation

115133-6



QUASIPARTICLE PROPERTIES OF AN IMPURITY IN A . . . PHYSICAL REVIEW B 87, 115133 (2013)

technique works as follows. One starts from a series f (x) =∑
n dnx

n that has a finite radius of convergence R > 0. The
idea is to sum the series at some point x0 outside of the radius R

by analytically continuing the function f . This provides a good
procedure for summing the divergent series in the sense that it
respects basic operations (sum, multiplication and derivative)
and that it preserves distinctness.19 It is well known that with
analytic continuation, one can encounter problems with the
existence and/or uniqueness of the solution.21 However, one
can formally define a domain called the “Mittag-Leffler star,”
where the function can be analytically continued along straight
lines [0,x0]. Note that this star will always contain the disk of
convergence. It can be shown19 that, for each point x0 of the
Mittag-Leffler star, the limit

lim
ε→0+

∑
n

dnx
n
0 e−ελn , (31)

with λn = nlog(n) for n > 0 and λ0 = 0, exists and is equal to
the analytic continuation of f to the point x0. Note that within
the disk of convergence the procedure works equally well and
can improve the rate of convergence. We apply the Abelian
resummation technique for the expansion of the self-energy 


and �. As the analytic structure of 
 and � is unknown, it
is currently impossible to determine whether there is a finite
radius of convergence and whether we are in the Mittag-Leffler
star. In practice, we apply different resummation techniques
(i.e., different functions λn) and test the uniqueness of the
result.

We use the following λn: (i) Lindelöf 1, λn = nlog(n) for
n > 0 and λ0 = 0; (ii) Lindelöf 2, λn = (n − 1)log(n − 1) for
n > 1 and λ0 = λ1 = 0; (iii) Gauss 1, λn = n2 for n � 0;
(iv) Gauss 2, λn = (n − 1)2 for n � 1 and λ0 = 0; and (iv)
Gauss 3, λn = (n − 2)2 for n � 2 and λ0 = λ1 = 0. Before
applying these resummation techniques to our diagrammatic
series, we illustrate its power with an example for the geometric
series. Figure 8 shows the sums fε(x0 = −3) = ∑

n xn
0 e−ελn

for a few choices of λn. At small ε, the computation of fε

is no longer feasible due to finite computer precision. By
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FIG. 8. (Color online) Illustration of the Abelian resummation
technique for a geometric series. We evaluate fε(x0) = ∑

n xn
0 e−ελn

for x0 = −3 and various choices of λn. The value of the analytically
continued function 1/(1 − x0) is retrieved for ε → 0+.
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FIG. 9. (Color online) Abelian resummation of the bare series
of one-body self-energy diagrams at 1/(kF a) = 1.333. The polaron
energy Ep/εF is extracted in the limit ε = 0+ for different choices
of λn.

extrapolating to ε = 0, we indeed find 1/(1 − x0) with a high
precision. The Lindelöf curve gives a slighly less accurate
extrapolation because it suppresses high-order contributions
in a much smoother fashion than the Gaussian resummation.
When applying these techniques to our diagrammatic series,
it is the growth of the statistical error bars (due to factorial
complexity) that prevents us from going to very small values
of ε. Figure 9 shows the polaron energy calculated with the
resummed self-energy as a function of the control parameter ε

for 1/(kF a) = 1.333. The polaron energy Ep can be extracted
with a high accuracy. The major source of the error bar stems
from the uncertainty in the extrapolation.

Histogramming the different topologies of the two-body
self-energies � revealed a dominant diagram at each order.
This diagram is shown in Fig. 10. Again, it shows a three-body
T -matrix structure that is closed with a single spin-up hole
propagator. Upon increasing the diagram order up to 20, we
observe a steady growth in the contribution of this diagram.
This is illustrated in Fig. 11, where we plot the nth-order
contribution �n to the two-body self-energy as a function of
the imaginary time τ for external momentum 0. Figure 12
illustrates that we can nonetheless get accurate values for the
molecule energy Emol by using different Abelian resummation
techniques and extrapolating to ε = 0+. Again, the Gaussian
resummation methods allow one to reach very small values of
ε. The quoted error bars are rather conservative, as we include
the extrapolated results obtained with all choices for λn.

We also tested the resummability of the fully bold series
(bold G–bold  scheme), since this was used in the bold
DiagMC method for determining the equation of state of the

FIG. 10. At fixed order, there is one dominant diagram for the
two-body self-energy. Here, we draw this diagram at order 6.
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FIG. 11. (Color online) The two-particle self-energy � at external
momentum 0 as a function of imaginary time for kF a = 1. �n values
are the contributions of all nth-order diagrams and are shown for
various n. As n increases, �n keeps on growing. We work in units
kF = 1, m = 1, h̄ = 1, and μ/εF = −3.2. The noise in the curves
indicates the magnitude of the statistical error.

unitary gas.20 Upon application of the Abelian resummation
techniques and extrapolation to ε = 0+ at 1/(kF a) = 0,
the correct polaron energy is retrieved. This constitutes an
independent check for the resummation of the skeleton series.

IV. QUASIPARTICLE PROPERTIES

As an independent cross-check of Ref. 3, which uses
alternate ways of resumming the diagrammatic series, we cal-
culate the ground-state energies of the polaron and molecule.
Figure 13 shows these energies shifted by the vacuum molecule
energy Eb = −1/(ma2) in units of the Fermi energy εF . A
selection of the polaron and molecule energies is also reported
in Table II. We find the transition point at (kF a)c = 1.15(3),
in agreement with Ref. 3. Close to the transition point, we
find polaron energies that differ about 1% from the polaron
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FIG. 12. (Color online) Abelian resummation of the bare series of
two-particle self-energy diagrams at kF a = 1. The molecule energy
Emol/εF is extracted in the limit ε = 0+ for different choices of λn.
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FIG. 13. (Color online) The extracted polaron and molecule
energies as a function of the interaction strength 1/(kF a). Energies are
expressed as (E − Eb)/εF , with Eb = −1/(ma2) the molecule energy
in vacuum. FN-DMC results are from Ref. 6; variational results for
the polaron, from Ref. 9; and variational results for the molecule,
from Ref. 11. DiagMC results of Prokof’ev and Svistunov3 are also
shown.

energies in Ref. 3, which, we believe, is due to a small
systematic error in the lowest order diagram in Ref. 3. The
variational energies obtained from a wave-function ansatz for
the polaron9 and the molecule11 are very close to the MC
results. Note that Chevy’s variational ansatz for the polaron
state is completely equivalent with the non-self-consistent
T -matrix approximation,12 which is exactly our bare series at
N∗ = 1. Fixed node-diffusion MC (FN-DMC) results are also
in good agreement with the DiagMC data. For 1/(kF a) = 2
it seems that systematic errors in the FN-DMC results were

TABLE II. Selection of DiagMC data for the polaron energy Ep ,
molecule energy Emol, and polaron residue Zp for several values of
the interaction strength parameter 1/(kF a).

1/(kF a) Ep/EF Emol/EF Zp

−1.8 −0.1793(1) 0.9727(4)
−1.6 −0.1961(1) 0.9665(5)
−1.4 −0.2159(2) 0.9590(3)
−1.2 −0.2393(2) 0.9502(3)
−1.0 −0.2687(2) 0.9376(4)
−0.8 −0.3052(2) 0.9209(5)
−0.6 −0.3526(2) 0.8978(8)
−0.4 −0.4141(2) 0.8670(10)
−0.2 −0.4976(2) 0.8237(15)
0.0 −0.615(1) 0.7586(27)
0.2 −0.782(1) 0.6720(42)
0.4 −1.028(2) 0.5672(28)
0.6 −1.385(2) −1.180(13) 0.4410(32)
0.8 −1.880(2) −1.830(8) 0.3258(58)
1.0 −2.540(3) −2.618(6) 0.2283(70)
1.2 −3.372(4) −3.554(6) 0.1559(69)
1.4 −4.373(5) −4.633(5) 0.1102(68)
1.6 −5.554(8) −5.867(6) 0.0771(58)
1.8 −6.889(12) −7.251(5) 0.0578(35)
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FIG. 14. (Color online) The effective mass m∗ of the polaron in
units of the bare mass m as a function of the interaction parameter
1/(kF a). Our DiagMC results (open circles) are shown together with
DiagMC results of Prokof’ev and Svistunov3 [filled (blue) circles],
FN-DMC results6,7 [filled (black) triangles], ENS experiment5 [filled
(red) square], and a variational calculation up to two particle-hole
excitations12 (solid black line). We also show m∗ values calculated
from the lowest order self-energy diagram (i.e., N∗ = 1) for the bare
series (solid gray line) and for the fully bold G- series (solid blue
line), which are equivalent to the non-self-consistent and the self-
consistent T -matrix approximations, respectively.

underestimated, since the FN-DMC should, in principle, give
an upper bound to the true ground-state energy.

Figure 14 shows the effective mass of the polaron as
calculated with the DiagMC. We compare it with the
ENS experiment5 at unitarity, the DiagMC calculations by
Prokof’ev and Svistunov,3 the FN-DMC,6,7 a variational
calculation up to two particle-hole excitations,12 and the
first-order (N∗ = 1) result in the bare scheme and the fully
bold G- scheme. The experimental effective mass, which
is in perfect agreement with DiagMC,3 was extracted from
the low-frequency breathing modes, in particular, the Fermi
polaron breathing mode. The lowest order bare calculation,
also known as the T -matrix approximation, is equivalent to
the Chevy ansatz, while the lowest order bold calculation
corresponds to the self-consistent T -matrix approximation.
These results show that including only single particle-hole pair
excitations does not lead to accurate results for the effective
mass, while the variational calculation based on diagrams
taking into account at most two particle-hole pairs excitations
agrees with the DiagMC results.12

Experimental and theoretical quasiparticle residues are
shown in Fig. 15. To create and probe polarons, the MIT
experiment4 starts from a cloud of 6Li atoms, with most atoms
occupying the lowest hyperfine state |1〉 (spin-up) and about
2% of the atoms occupying the hyperfine state |3〉 (spin-down)
in the degenerate regime T ≈ 0.14TF , with TF the Fermi
temperature. A broad Feshbach resonance is used to enhance
the scattering between atoms in state |1〉 and those in state
|3〉. The radio-frequency spectra of the spin-up and spin-down
components are measured. The atoms are transferred to a third
empty state with very weak final-state interactions. Therefore,
the measured transition rate I can be connected with the
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FIG. 15. (Color online) The polaron quasiparticle residue Zp as a
function of the interaction parameter 1/(kF a). DiagMC results (open
circles) are compared with variational ansatz11 (solid black line),
the fully bold G- series at N∗ = 1 or the self-consistent T -matrix
approximation (solid blue line), and the MIT experiment4 [filled
(blue) circles].

impurity’s spectral function ρ↓ in linear response theory,22,23

I (ωL) ∝
∑

k

nF (εk − μ − ωL)ρ↓(k,εk − μ − ωL), (32)

with ωL the frequency of the radio-frequency photons
and nF (x) = 1/(1 + eβx) the Fermi distribution. Note that
the spectral function depends on the temperature. Density
inhomogeneities are taken care of through tomographic
reconstruction.4 At sufficiently weak attractions, the Fermi
polaron is observed as a narrow peak in the impurity spectrum
that is not matched by the broad environment spectrum. The
peak position gives the polaron energy Ep and was found to
be in perfect agreement with the DiagMC results in Ref. 3.
The polaron Z factor was measured by determining the ratio
of the area under the impurity peak that is not matched by the
environment to the total area under the impurity’s spectrum.
The experimental Z factor from Ref. 4 is shown in Fig. 15,
together with the Z factor calculated from Chevy’s ansatz,11,24

the fully self-consistent result to lowest order (N∗ = 1), and
our DiagMC simulation. DiagMC data for the Z factor are also
listed in Table II.

The results obtained via DiagMC simulation agree ex-
tremely well with Chevy’s variational ansatz. This is very
surprising in the strongly interacting regime where Zp is
significantly less than 1. Here, one would expect multiple
particle-hole excitations to be important since the overlap
with the noninteracting wave function is small. Remarkably,
including just single particle-hole excitations on top of the
FS produces almost the exact Zp. When the lowest order
diagram is calculated in a fully self-consistent way, however,
the agreement with DiagMC is less good. This hints at the fact
that the almost-perfect agreement with Chevy’s ansatz (i.e.,
the lowest order bare result) is rather accidental. The Z factors
computed with Chevy’s ansatz and the DiagMC both exceed
the measured ones.

It was suggested in Ref. 11 that the disagreement between
the experiment and the Chevy ansatz is an artifact of
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Chevy’s expansion being restricted to one-particle/one-hole
excitations. As the DiagMC technique includes multiple-
particle/multiple-hole excitations and agrees very well with
Chevy’s ansatz, we see that this is not the case. However, since
the measured Zp might only give a lower bound,4 theory and
experiment might not be in disagreement.

The measured polaron Z factor vanishes beyond a critical
interaction strength. Ignoring issues related to metastability,
once the two-body bound state becomes energetically favor-
able, all polarons disappear and the polaron peak vanishes.
In the experiment T/TF = 0.14(3), and finite-temperature
effects are thus expected to become important. Indeed, close to
(kF a)c = 1.15(3) the energy difference between the molecule
and the polaron state is of the order of 0.1TF (Fig. 13).
Therefore, one expects that T = 0 calculations underestimate
the critical 1/(kF a) measured at T ≈ 0.1TF . Similarly, the
measured 1/(kF a)c can be interpreted as an upper bound for
the T = 0 situation. On the other hand, due to depletion of
the experimental spectrum, the measured Z might only give a
lower bound, which means that the experimentally determined
critical 1/(kF a) might be underestimated. These uncertainties
might explain why the critical 1/(kF a) in the experiment
is lower than the value obtained with DiagMC for a single
impurity. Fixed-node MC simulations for a finite density of
impurities, on the other hand, predict phase separation before
the systems even reaches the polaron-to-molecule transition,6

and the vanishing Z factor might be a manifestation of this
phase separation.

V. CONCLUSIONS

We have considered the Fermi-polaron system in three
dimensions, in which a single spin-down impurity is strongly
coupled to a noninteracting FS of spin-up particles. Although
this system contains strongly interacting fermions, it can be
solved with the DiagMC method. This method is based on
the stochastic evaluation of a series of Feynman diagrams. To
extract ground-state properties, one has to overcome a factorial
complexity due to the increase in the number of diagrams.
Nonetheless, extrapolation to infinite diagram order becomes
possible when the diagrams cancel each other better than the

factorial increase in number. At interaction strength 1/(kF a) =
0, we find such perfect cancellation (within our statistical
errors). When considering the series built on bare propagators
on the BEC side, however, oscillations with diagram order
remain and prevent a controlled extrapolation to the infinite
diagram order. We have followed two strategies around this
problem: the first is to consider skeleton series (built on dressed
propagators); the second, to use resummation techniques.
Though dressed series can be evaluated to higher orders, we
have found that in some cases dressing can destroy a favorable
cancellation of diagrams. For all interaction strengths we found
that the (skeleton) series of the one-body and two-body self-
energies are resummable by means of Abelian resummation.
The bare series, skeleton series, and resummed series give
robust answers in their respective regions of applicability (i.e.,
where the infinite-diagram-order extrapolation is controlled).

We have identified classes of dominant diagrams for the
one-body and two-body self-energy in the crossover region
of strong interaction. The dominant diagrams turn out to be
the leading processes of the strong-coupling limit: scattering
between a dimer and a spin-up fermion, which is diagram-
matically represented by the three-body T-matrix diagrams.
Including just these dominant diagrams gives a quantitatively
good correction to the lowest order result, even away from the
strong-coupling limit.

We have shown that not only do the polaron and molecule
energies agree very well with a variational ansatz from weak
to strong attraction, but also the polaron residue or Z factor.
Though this agreement must be due to strong cancellation of
diagrams, we only observed convergence for the bare series
at 1/(kF a) = 0. A full explanation of the success of the
variational ansatz is still missing, and it is therefore unclear in
which cases the ansatz is appropriate.
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