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Abstract

Chemotherapy induces apoptosis and tumor regression primarily through activation of p53-mediated transcription.
Neuroblastoma is a p53 wild type malignancy at diagnosis and repression of p53 signaling plays an important role in its
pathogenesis. Recently developed small molecule inhibitors of the MDM2-p53 interaction are able to overcome this
repression and potently activate p53 dependent apoptosis in malignancies with intact p53 downstream signaling. We used
the small molecule MDM2 inhibitor, Nutlin-3a, to determine the p53 drug response signature in neuroblastoma cells. In
addition to p53 mediated apoptotic signatures, GSEA and pathway analysis identified a set of p53-repressed genes that
were reciprocally over-expressed in neuroblastoma patients with the worst overall outcome in multiple clinical cohorts.
Multifactorial regression analysis identified a subset of four genes (CHAF1A, RRM2, MCM3, and MCM6) whose expression
together strongly predicted overall and event-free survival (p,0.0001). The expression of these four genes was then
validated by quantitative PCR in a large independent clinical cohort. Our findings further support the concept that
oncogene-driven transcriptional networks opposing p53 activation are essential for the aggressive behavior and poor
response to therapy of high-risk neuroblastoma.
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Introduction

Neuroblastoma (NB), an embryonal tumor arising in tissues of the

sympathetic nervous system, is the most common cancer diagnosed

during the first year of life and accounts for 13% of all deaths due to

childhood malignancies. Despite intense multimodality therapy, at

least half of high-risk patients will experience relapse that is almost

always fatal [1]. Much of the difficulty in devising effective therapies

for this latter group of patients lies in the heterogeneity of their

disease, which can be attributed largely to the interaction of multiple

genetic factors, including both sequence and copy number variants

[2,3]. Amplification of the MYCN gene has emerged as one of the

most reliable indicators of aggressive and treatment-resistant

neuroblastoma, yet 30% to 40% of high-risk tumors lack this

feature [1]. Genomic studies, including massively parallel DNA

sequencing, have failed to reveal additional recurrent molecular

lesions in neuroblastoma, with the exception of ALK mutations

found in a small percentage of high-risk tumors [4,5,6].

A number of previous observations confirm that wild-type p53

alleles are present in the vast majority of cases of newly diagnosed

neuroblastoma, but that p53/MDM2/ARF responses to chemother-

apy are repressed, in part due to unscheduled inhibition of p53 by

MDM2 [7,8,9]. This suggests that down- regulation of the p53 axis

may underlie the treatment resistance typically seen in high-risk

neuroblastoma. To further investigate downstream p53-effector genes

contributing to this cancer phenotype, we used Nutlin-3a, an MDM2

antagonist, which specifically activates p53 leading to apoptosis and

tumor regression of both chemosensitive and chemoresistant

neuroblastoma cell lines [10,11,12]. We compared gene expression

profiles before and after Nutlin treatment and used bioinformatic

approaches to identify p53 drug response genes whose aberrant

expression in high-risk disease may limit p53 activation in response to

genotoxic chemotherapy, increasing the risk of disease progression

and relapse. With this approach we identified four genes that are

highly over expressed in high-risk neuroblastoma (CHAF1A, RRM2,

MCM3, and MCM6) whose expression strongly correlates with poor

outcomes. Importantly, these genes are all directly repressed by

Nutlin-3a-induced p53 activation, are markers of aggressive disease in

other cancers, and have functions related to tumorigenesis and

aberrant DNA replication and transcription [13,14,15,16].

Methods

Tissue Culture
JF (ATCC), IMR32 (ATCC), LAN5 (LS Metelitsa, Houston

TX), and LAN1 (ATCC) human NB lines were maintained in
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RPMI 1640; human colorectal cancer cell line, HCT 116 (ATCC),

and human breast cancer cell line, MCF7 (ATCC), in McCoy’s 5A

and DMEM plus 1% insulin respectively; human osteosarcoma

line, SJSA-1 (ATCC), in RPMI 1640 medium with 10 mM

HEPES, 1 mM sodium pyruvate, 4.5 g/L glucose, 1.5 g/L

sodium bicarbonate; primary neuroblastoma lines (p202, p218,

pH) (Texas Children’s Cancer Center, Houston, TX) and

CHLA255 line (LS Metelitsa) in IMDM with 20% FBS and

0.1% ITS. The p53-mutant NB line, SJ3-12 (21 amino acids

deletion in the DNA binding domain), was provided by Dr. Dirk

Geerts, University of Amsterdam, the Netherlands and used as

control [9]. Nutlin-3a (provided by Dr. Vassilev - Roche, Nutley,

NJ) was used at the concentration of 10 uM (in DMSO).

Oligonucleotide Microarray Data Analysis
Total RNA was isolated using RNAeasy kit (Quiagen) from the

early passage cell line p202 at the 3, 8 and 16 hrs time points.

Using AffymetrixTM U133a microarrays, we compared expression

profiles of Nutlin-3a and Nutlin-3b (inactive enantiomer) treated

p202 primary NB cells over time points. Two biological replicates

Figure 1. MDM2 inhibition stabilizes p53 and induces apoptosis and p53 signaling pathways in neuroblastoma cells. (A) Consistent
with our previously data [11], Western blotting showed an increase in p53 levels within 4 hours exposure to Nutlin-3a in p202, p218, and IMR32 cells,
confirming that the p53 signaling pathway is active in our system. (B) Apoptosis induction was tested in five established neuroblastoma lines (JF,
IMR32), early passage neuroblastoma tumor cultures (p202, p218, H), and four non-neuroblastoma human solid tumors including colorectal (HCT116),
breast (MCF7) and osteosarcoma (SJSA-1). SJSA-1 line differs by the level of MDM2 expression, being amplified 25 fold. A p53 mutant neuroblastoma
line (SJ3-12), which lacks part of the DNA binding domain, was used as control. Proliferating cells were treated with Nutlin-3a for 24 hours and TdT-
positive fraction was measured by flow cytometry. (C) Pathways enriched upon Nutlin-3a treatment: p53 signaling (GSEA ID: M6370), DNA damage
(GSEA ID: M8378), and chemotherapy response (bleo_human_lymph) genes. Vertical columns separate Nutlin-3a versus Nutlin-3b at 3, 8, and
16 hours, horizontal rows indicate genes.
doi:10.1371/journal.pone.0079843.g001
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Figure 2. Correlation of p53 repressed genes and poor prognosis. (A) Heat map of the gene set significantly down-regulated by Nutlin-3a
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were carried out for time-series experiments. Microarray data

were analyzed by an ANOVA time series model using FDR , 0.1

as a statistical cutoff. Class and time comparison analysis identified

probe sets differentially expressed between Nutlin treatments (class

effect) and time points (time effect). Data were clustered using

Cluster 3.0, with centered correlation as distance measure for both

genes and arrays.

Gene Set Enrichment Analysis (GSEA)
For each time point, genes were ranked with respect to the

average expression change upon Nutlin-3a treatment. GSEA was

then performed for each of the three time points using gene

permutation alternative. Enrichment analysis was done with

default parameter settings. An enrichment score was calculated

for each gene set (KS-statistics) reflecting if the genes in the

particular gene set appeared in the top (positive score), in the

bottom (negative score), or were randomly distributed (close to

zero score). These scores were compared with scores calculated

from 1,000 randomly permuted gene lists, in order to calculate

false discovery rates (FDR) (cutoff at FDR = 0.05) [17].

Clinical Patient Cohort Groups
1. Oberthuer set (n = 251), discovery set 1. 251 NB tumors

profiled on custom Agilent 44k arrays and downloaded from

ArrayExpress EBI (http://www.ebi.ac.uk/arrayexpress) (E-

TABM-38) [18].

2. Neuroblastoma Research Consortium (NRC) set (n = 101),

discovery set 2. 101 NB tumors profiled on the Human Exon 1.0

ST Affymetrix array [19].

3. Wang set (n = 99), discovery set 3. 99 NB tumors profiled on

Affymetrix U95Av2 array (Gene Expression Omnibus -GEO-

database, http://www.ncbi.nlm.nih.gov/geo/) [20].

4. Versteeg set (n = 88), discovery set 4. 88 NB tumors profiled

on the Affymetrix HGU133plus2.0 platform (R2 database,

microarray analysis and visualization platform, http://r2.amc.nl).

5. Khan set (n = 56), discovery set 5. 56 primary NB tumors

(Oncogenomics, http://home.ccr.cancer.gov/oncology/oncogenomics)

[21].

6. Vermeulen set (n = 348), discovery set 6. 348 NB tumors

taken from the International Society of Pediatric Oncology,

European Neuroblastoma Group (SIOPEN) and from the

Gesellschaft fuer Paediatrische Onkologie und Haematologie

(GPOH). Patients were only included if primary untreated tumor

RNA samples were available and of sufficient quality [22].

Expression of the four gene signature was evaluated in this cohort

using real-time quantitative PCR.

Data Analysis and Statistics of Gene Expression in
Neuroblastoma Tumors

Gene expression data were evaluated according to methods

previously developed for assessment of gene/survival outcomes

[19,22]. Signature scores of the 25- or 4-gene lists were obtained

by calculating the sum of the ranks of the (standardized) expression

values of the 25 or 4 genes across the different samples in a dataset.

Expression of the gene set correlates with signature score [23].

Alternatively, we performed Prediction Analysis for Microarrays

(PAM) classification using the MCR estimate R package. Kaplan-

Meier survival analysis and log-rank analysis were carried out

using the R survival package (R version 10.1). Multivariate logistic

regression analyses were done using SPSS (version 16). Currently

used risk factors such as age at diagnosis ($12 months vs. ,12

months), International Neuroblastoma Staging System (INSS)

stage (stage 4 vs. other stages), and MYCN status (amplified vs. non-

amplified) were tested. GEMS algorithm [24] was used to

construct support vector machine (SVM) predictors using 20-fold

cross-validation for each clinical factor: death event (DE), relapse

event (RE), and INSS stage. The efficiency of the predictor was

estimated by a receiver operator characteristic (ROC) analysis and

recorded as the area under the curve (AUC).

Real-Time qPCR
A qPCR assay was designed for each of the four genes and five

reference genes by PrimerDesign and went through an extensive in

silico validated analysis using BLAST and BiSearch specificity,

amplicon secondary structure, SNP presence, and splice variant

analysis. The mean amplification efficiency was 98%. Primer

design and real time quantitative PCR analysis were performed as

described [22]: primer sequences are available in RTPrimerDB

[25]: CHAF1A (ID = 8273), RRM2 (ID = 8270), MCM6

(ID = 8271), MCM3 (ID = 8272) and reference genes: HPRT1

(ID = 5), SDHA (ID = 7), UBC (ID = 8), and HMBS (ID = 4). Data

handling and calculations (normalization, rescaling, inter-run

calibration, and error propagation) were done in qBasePlus

version 1?1 (http://www.qbaseplus.com) [26][27].

Plasmids and Antibodies
ShRNA mediated p53 knockdown: To knock down p53

expression, second generation lentiviruses expressing shp53 and

shLuc control were used as described [28]. Briefly, 293T cells were

transfected with pLSLPw construct along with packaging

plasmids, pVSVG and pLV-CMV-delta 8.2 by using lipofecta-

mine. Virus-containing supernatants were collected at 48 and

72 hours and neuroblastoma cells transduced in the presence of

8 mg/ml polybrene (Sigma).

Results

Transcriptional profiling of p53 response in
neuroblastoma identifies important genes with respect
to outcome

To initially assess the p53-dependent response we used the

MDM2 inhibitor Nutlin-3a to stabilize p53 in a panel of primary

(p202, p218, and H) and established neuroblastoma lines and

tested its ability to induce apoptosis in neuroblastoma cells

compared to other solid tumors. At 24 hours all neuroblastoma

lines showed a higher percentage of apoptosis compared to non-

neuroblastoma lines. Consistent with our previously published

data [11], Western blot analysis showed a very rapid increase in

p53 levels within four hours exposure to Nutlin-3a, confirming

that the p53 signaling pathway is active in our lines (Figure 1A
and 1B). Interestingly, p53 levels return to baseline at later time

points, likely due to robust MDM2-mediated ubiquitination and

degradation in these cell lines. We then compared the expression

profiles of a MYCN amplified primary neuroblastoma line (p202)

but not Nutlin-3b. (B) Heat map with hierarchical clustering of the gene set with respect to neuroblastoma prognosis (discovery set 5). (C) Kaplan–
Meier and log-rank analysis for progression-free (PFS) and overall (OS) survival of discovery set 2 based on 25 gene set: survival of 101 neuroblastoma
patients in the 4 quartiles of the signature score. Numbers in parentheses refer to number of patients who experienced an event. (D) Multivariate
logistic regression analysis: Odds Ratio and p-values are shown for disease stage (stage 4 vs. other), age (, or . 12 months), MYCN status (amplified
vs. non-amplified), and the 25-gene signature score according to methods previously published [19].
doi:10.1371/journal.pone.0079843.g002
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Figure 3. The four-gene signature predict neuroblastoma outcome. Kaplan–Meier and log-rank analysis for progression-free (PFS) and
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treated with Nutlin-3a or its inactive enantiomer Nutlin-3b for 3,

8, and 16 hours. As expected for a p53 wild-type tumor, we

identified a large number of genes regulated by p53: 1285 genes

differentially expressed between the two Nutlin treatments (class

effect) and 201 genes differentially expressed between time points

(time effect) (Table S1 and Table S2).

We then used Gene Set Enrichment Analysis (GSEA) to analyze

genes and cellular pathways mainly affected by p53 activation. For

each time point genes were ranked with respect to the average

change in expression. Based on these ranked gene lists GSEA was

performed [17]. As expected, three gene sets, p53 signaling (GSEA

ID: M6370), DNA repair (GSEA ID: M8378), and chemotherapy

response (bleo_human_lymph) were highly up-regulated due to

over expression of known p53 target genes (Figure 1C).

By contrast, a fourth gene set was down-regulated upon p53

activation in neuroblastoma cells. This set (GSEA ID: M18562)

included 57 unique genes described to be repressed both by

HIF1A and hypoxia in endothelial cells (p,0.0001) [29] (Figure
2A). p53 has long been shown to play key roles in responding to

DNA damage, hypoxia, and oncogenic activation. Hypoxia is also

known to modulate the p53 transcriptional activity in a manner

dependent and independent of HIF1A, the main transcription

factor activated by hypoxia [30]. As repression of p53 functions is

critical to neuroblastoma tumorigenesis, we hypothesized that

these p53-repressed genes may be important in neuroblastoma

biology and asked whether they could define patient outcome. We

found that high expression of a subset of this gene set (25 genes)

correlated with poor survival in a cohort of 56 neuroblastoma

tumor samples (discovery set 5) [21] (Figure 2B and Table S3).

We next investigated the prognostic value of this subset of 25

genes in an independent set of 101 neuroblastoma samples

(discovery set 2) by calculating signature scores as previously

described [19]. Increased expression of this gene set significantly

correlated with poor outcome by log-rank analysis (overall survival

(OS) p = 0.00018; progression-free survival (PFS) p = 0.00013)

(Figure 2C). In addition, multivariate analysis incorporating

signature score, MYCN status, stage and age demonstrated that

samples with high expression of this gene set had five times higher

predicted and independent mortality than samples with low

expression (odds ratio: 4.826; p = 0.026) (Figure 2D). The

predictive power of this gene set was then independently validated

in three additional clinical cohorts of high-risk patients with

Kaplan-Meier and log-rank analysis (discovery set 1 [18] - 251

patients: OS p,0.00001, PFS p,0.00001), discovery set 3 [20] -

99 patients: OS p,0.05, PFS p,0.005), and discovery set 4 - 88

patients: OS p,0.005 PFS, p,0.01) (Figure S1).

Identification of a four-gene signature with significant
prognostic value in neuroblastoma patients

We predicted that a subset of these 25 genes reflected a

fundamental aspect of the p53-mediated response, and therefore

we sought to define which p53 repressed genes mostly contributed

to the prognostic power of this signature. Thus, a multivariate

logistic regression analysis of 101 patients of the discovery set 2

(with at least 36 months follow up) was performed as described in

the Methods section. This analysis revealed a subset of four genes

(CHAF1A, RRM2, MCM3, and MCM6) as independent predic-

tor of overall survival (p,0.1). The correlation of survival with

signature score based on the expression of these four genes was

then validated in three independent data sets (discovery set 1- 251

patients: OS p,0.00001, PFS p,0.00001, discovery set 3 - 99

patients: OS p,0.005, PFS p,0.005, and discovery set 4 - 88

patients: OS p,0.00001, PFS p,0.0005) (Figure 3A, 3B and
3C).

We also applied an alternative method based on a discovery and

validation strategy to assess the power of the four genes to predict

mortality, relapse, and INSS stage. A classifier able to predict these

clinical factors was independently generated by the SVM (Support

Vector Machine) algorithm (discovery set 4, n = 88 patients) [24].

The classifier was then validated in two independent patient

cohorts (discovery set 1 - 251 patients and discovery set 5 – 56

patients). ROC-curve analysis (AUC) shows that the classifier

containing only the four genes performs better than the classifier

containing all 25 genes in predicting mortality, relapse, and INSS

stage (Figure 3D and 3E).

Independent validation of the four-gene signature by
quantitative-PCR in a large clinical cohort

Extending these findings to an additional large independent

clinical cohort of neuroblastoma patients, we performed qPCR to

evaluate gene expression of CHAF1A, RRM2, MCM3 and

MCM6 in tumor samples from 384 patients enrolled in the

International Society of Paediatric Oncology Europe Neuroblas-

toma Group (SIOPEN) and the Gesellschaft fuer Paediatrische

Onkologie und Haematologie (GPOH) clinical trials (validation set

6) [22]. Both signature score and PAM classification show that the

expression of these four genes as determined by qRT-PCR

distinguishes patients with respect to progression-free (p,0?0001)

and overall survival (p,0?0001) (Figure 4A and 4B). Progres-

sion-free survival at five years from the date of diagnosis was 0.793

(95% CI 0.742 – 0.847) for the group of patients at low molecular

risk compared with 0.487 (95% CI 0.366– 0.649) for the group of

patients at high molecular risk. The five year overall survival was

0.916 (95% CI: 0.878–0.955) and 0.697 (95% CI 0.574 –0.847) in

the low and high molecular risk groups, respectively.

Currently, the strongest predictive risk factors used for

neuroblastoma risk stratification are age, stage, tumor histology,

and MYCN gene amplification status. Multivariate logistic

regression analysis revealed that high expression of the four genes

predicts poor survival independently of these clinical features (odds

ratio: 2.4; p,0.01) (Figure 4D). To validate that the four-gene

signature was independent of the major risk factor, MYCN status,

we analyzed only the MYCN single copy stage 4 tumors. Indeed,

the signature can efficiently predict survival in this group of

patients lacking MYCN gene amplification (log-rank analysis, p,

0.05) (Figure 4C).

The four-gene signature is repressed by p53 in
neuroblastoma cells

To test that the expression of these four genes is indeed

regulated by p53, gene expression of RRM2, CHAF1A, MCM3,

and MCM6 was assessed in multiple p53 wild-type neuroblastoma

lines treated with Nutlin-3a. Real-time PCR demonstrated robust

and rapid repression of each of these genes upon treatment

(p,0.005). However, this effect was totally abrogated in neuro-

blastoma p53 mutant (LAN1) cell line which lacks a DNA binding

overall (OS) survival in discovery set 1 (A), set 3 (B), and set 4 (C) based on the four-gene signature score. (D, E) Comparison of signature performance
between all 25 and the 4 selected genes. Results from discovery and validation study strategy. (D) Gene predictors made in discovery set 4 and
predictions made in discovery set 1. (E) Gene predictors made in validation set 4 and predictions made in discovery set 5. X axis indicates clinical
factors: death event (DE), relapse event (RE), and INSS stage; Y axis indicates Area Under Curve (AUC).
doi:10.1371/journal.pone.0079843.g003
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Figure 4. Independent validation of the four-gene signature in a large cohort of neuroblastoma patients (SIOPEN/GPOH). (A)
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domain. In addition, we used ShRNA-mediated knockdown of

p53 in several cell lines and confirmed up-regulation of all four

target genes (Figure 5A, 5B and 5C). Furthermore, analysis of

two publically available independent ChIP-seq data sets [31,32]

confirms clear p53 binding to p53 response elements in the

promoters of these four genes in response to p53 activation (data

not shown). Taken together, these data suggest that these genes are

direct p53 transcriptional targets.

Discussion

As noted above, p53 is rarely mutated in neuroblastoma,

suggesting that repression of downstream effector genes is critical

for tumorigenesis. p53 is a potent transcription factor that

positively and negatively modulates a large number of genes

involved in apoptosis, metabolism, epigenetics, and cell cycle

regulation [33,34]. We used Nutlin-3a, a direct inhibitor of the

p53 E-3 ligase MDM2, to investigate how the p53 drug response

signature is regulated in high-risk neuroblastoma. Starting from

Kaplan–Meier and log-rank analysis for progression-free (PFS) and overall (OS) survival of the SIOPEN/GPOH cohort (discovery set 6): survival of 348
neuroblastoma patients in the 4 quartiles of the signature score. (B) Validation of the signature based on the four-gene PAM classifier. (C)
Classification of the SIOPEN stage 4 tumors with MYCN single copy based on the four-gene PAM classifier. (D) Multivariate logistic regression analysis:
Odds Ratio and p-values are shown for disease stage (stage 4 vs. other), age (,. 1y), MYCN status, and the four-gene signature score.
doi:10.1371/journal.pone.0079843.g004

Figure 5. The four-gene signature is regulated by p53 activity. Activation of p53 represses the four-gene signature. (A, B) Quantitative PCR
demonstrates marked decrease of mRNA levels of the four genes after Nutlin-3a treatment (10 uM for 8 hours) in multiple p53 wild-type
neuroblastoma lines (shown here LAN5 and IMR32). However, this effect is completely abrogated after p53 silencing or when the effect of Nutlin-3a is
tested in a p53 mutant neuroblastoma cell line (LAN1) (C). Each error bar represents two biological replicates.
doi:10.1371/journal.pone.0079843.g005
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the analysis of a gene set repressed by p53 activity and highly

expressed in high-risk neuroblastoma, we identified a novel four-

gene signature of prognostic relevance. In our retrospective

analysis of three large independent cohorts of neuroblastoma

patients (540 patients total) and 348 patients enrolled in the

SIOPEN/GPOH, this four-gene signature classifies patients with

respect to survival independently of current clinical classification

scheme based on age, stage, MYCN expression and histological

features (INRG Staging System [3]). Notably, our four-gene

signature shows predictive value in neuroblastoma patients with

stage 4 disease and without MYCN amplification. As over 50% of

these patients will relapse and succumb to neuroblastoma despite

current risk stratifications, there is clearly a need for additional

identification of higher risk subgroups that could be given

alternative or additional therapies.

The four genes constituting the signature are involved in DNA

replication and chromatin remodeling. In addition, along with

other genes involved in cell growth, they have been described as

repressed by HIF1A and hypoxia in endothelial cells [29]. It is well

known that tumor microenvironment is intimately connected with

neuroblastoma biology [35,36,37]. While the influence of HIF1A

on the expression of these four genes in neuroblastoma remains to

be defined, we demonstrated that their expression strongly

correlates with poor outcome.

These four genes are likely to have roles in determining

neuroblastoma behavior. RRM2, MCM3 and MCM6 genes have

all been described as cell cycle regulatory genes repressed by p53

in other models as well [13,38]. Ribonucleotide Reductase M2

subunit (RRM2), which is expressed when DNA replication

occurs, is overexpressed in a number of solid tumors and is an

established anti-cancer target [15]. Additional evidence suggests

that Ribonucleotide Reductase (RR) acts as a positive determinant

for tumor cell proliferation and metastasis as well as the

development of chemoresistance [39]. p53 and RRM2 also

directly interact to regulate DNA damage responses [38]. A

recent phase I clinical trial involving the administration of RRM2

siRNA via nanoparticle to patients with solid cancers showed

promising results [40]. In addition, several inhibitors (like triapine

and GTI-2040) have been studied as potential inhibitors of RRM2

activity and have been evaluated in phase I clinical trials [41]. A

recent study suggests that RRM2 contributes to the stabilization of

Bcl-2, a marker of chemoresistance [42]. BCL2 levels are high in

the majority of neuroblastoma tumors. These observations suggest

that suppression of Bcl-2 by targeting RRM2 may be an effective

strategy for restoring chemo-sensitivity in neuroblastoma.

Growing data support the importance of perturbations of the

DNA replication machinery in driving cancer. The minichromo-

some maintenance (MCM) gene family is essential for DNA

replication and is frequently upregulated in various cancers.

Furthermore, increased expression of MCM genes has been shown

to correlate with poorer patient survival rates in other tumor types

[43,44,45]. Notably, all the MCM genes, including MCM7, are

direct transcriptional targets of MYCN and E2F [16,46]. In

addition, deregulation of G1-S checkpoint and E2F target genes

correlates with poor outcome in neuroblastoma [47], further

supporting a potential oncogenic role of MCM genes in

neuroblastoma.

The histone chaperone molecule, CHAF1A (CAF p150), is a

primary component of the chromatin assembly factor 1 (CAF-1)

which is vital for DNA assembly during S-phase [14,48]. CHAF1A

inactivates cell proliferation, regulates DNA repair, and controls

epigenetic marking in embryonic stem cells [49]. CHAF1A is also

a known epigenetic modifier. By participating in a complex with

MBD1 and SETDB1, CHAF1A promotes H3K9 trimethylation

and heterochromatin formation [48,50]. Importantly, CHAF1A

overexpression has been linked to tumor progression, genomic

instability, and cancer susceptibility in other tumor types including

glioma [51,52,53].

The tumor suppressor p53 is very rarely mutated in primary

neuroblastoma at diagnosis and its downstream effectors are

functionally intact [8,54]. However, multiple hits seem to

cooperate to impair p53 functions in neuroblastoma, including

deregulation of the ARF/MDM2 pathway [55], expression of

microRNAs targeting p53 pathways [56], and repression of p53-

mediated autophagy [57]. We demonstrate here that transcrip-

tional profiles of high-risk neuroblastoma show over- expression of

genes that are repressed by p53, and furthermore, a subset of these

genes has strong prognostic value, suggesting they are involved in

overcoming chemotherapy-induced p53 activity. The therapeutic

approach of ‘reactivating p53’ (e.g. by MDM2 antagonists, or

delivery of wild type p53) for neuroblastoma, which develops in

the context of MYCN-mediated p53 repression is an active area of

investigation with several early phase clinical trials underway

[58,59]. Our data further support these approaches and suggest

additional targets for incorporation into future translational

studies.

Supporting Information

Figure S1 Kaplan-Meier and log-rank analysis for
progression free and overall survival of three indepen-
dent cohorts of NB patients stratified according the
expression of the 25 genes. Survival of 251 patients of

discovery set 1 (A), 99 patients of discovery set 3 (B), and 88

patients of discovery set 4 (C) in the 4 quartiles of the signature

score. Represented is the number of patients at low and high-risk

as predicted by the 25-gene signature. Numbers in parentheses

refer to number of patients who experienced an event.
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Table S1 Selected genes modulated by Nutlin-3a treat-
ment. Genes differentially expressed between Nutlin-3a and

Nutlin-3b treatment (class effect – Table S1) and between time

points (time effect – Table S2) are listed.

(XLSX)

Table S2 Selected genes modulated by Nutlin-3a treat-
ment. Genes differentially expressed between Nutlin-3a and

Nutlin-3b treatment (class effect – Table S1) and between time

points (time effect – Table S2) are listed.

(XLSX)

Table S3 Correlation of the 25 genes with survival in
discovery set 5. The list of the 25 genes repressed by p53 and

the correlation of their expression with stage of disease in 56

neuroblastoma patients are shown.

(XLS)
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