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Abstract. We generalize the notion of submersive second-order differential equa-
tions by relaxing the condition that the decoupling stems from the tangent lift of
a basic distribution. It is shown that this leads to adapted coordinates in which a
number of first-order equations decouple from the remaining second-order ones.

1 Introduction and preliminaries

Second-order ordinary differential equations (SODEs for short) were said to be sub-
mersive by Kossowski and Thompson [6], if they partially decouple into an independent
second-order system of lower dimension, plus a second part which depends on all variables.
SODEs (which we will assume to be autonomous here, for simplicity) are geometrically
represented by vector fields on the tangent bundle TM of a manifold M , and a charac-
terization of a property such as submersiveness only makes sense if it can be described
by intrinsic test criteria, i.e. conditions which can be verified prior to the identification
of coordinates in which the partial decoupling takes place. The conditions described in
[6] come from the identification of suitable distributions on TM which, not surprisingly,
fully exploit the special features of tangent bundle geometry and are constructed, more
specifically, from complete and vertical lifts of vector fields on M . Such specific tangent
bundle characteristics very often have a more compact formulation in terms of the calcu-
lus of so-called vector fields along the tangent bundle projection τ : TM → M (see [10],
[11]), in the sense that a single set of conditions on vector fields along τ can capture the
requirements that have to be met by both complete and vertical lifts, or alternatively,
horizontal and vertical lifts. In fact, a successful first application of the calculus along τ
was the full characterization of complete decoupling of SODEs in [12].

There are many ways in which (partial) decoupling of equations can play a role in appli-
cations. Apart from the obvious direct interest which any form of explicit decoupling of
the given dynamics will have in the integration process, there may also be more indirect
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aspects of separability around. Decoupling can be inherent, for example, in the reduction
of various kinds of mechanical systems through symmetries. A well known and much
investigated feature of separability, which may or may not be related to decoupling of
the dynamical equations, is that of separability of the Hamilton-Jacobi equation. Even
further afield is the so-called separable case, which Douglas distinguished in his celebrated
study of the inverse problem of the calculus of variations for mechanical systems with two
degrees of freedom [5]. There separable refers to decoupling of the integrability conditions
to be satisfied for having a solution of the Helmholtz conditions in the inverse problem.
Yet, as was shown in a generalization of this ‘separable case’ to n degrees of freedom in [3],
there is a perhaps unexpected link with a form of decoupling of the Lagrangian equations
in this situation: these equations are not submersive in the sense described above, but
decouple into a set of n systems of two first-order equations.

In the study of SODEs it is quite natural, both from an analytical and a geometrical point
of view, to focus in the first place on techniques which preserve the second-order character
of the system or, in other words, preserve the tangent bundle structure of the underlying
manifold. Coordinate transformations then are restricted to be point transformations, as
is the case in the concept of submersiveness described above. But as the example of the
inverse problem suggests, there may be situations where it is less appropriate to insist on
the preservation of the second-order character. In the present paper, starting from the
characterization of submersive SODEs in its most economical form, that of the existence
of a distribution along τ which has appropriate invariance properties (section 2), we shall
see that there is a natural way of relaxing those invariance requirements and show that
it leads to a generalized form of submersiveness in which the quotient system does not
preserve its second-order character. A number of related issues will be discussed which
are reflected in the titles of subsequent sections.

In the hope of keeping the paper more or less self-contained, we end this section by
recalling the basics of the geometry of SODEs and the main ingredients of the calculus
along τ relevant for the study of SODEs.

A SODE field on TM , say

Γ = uα
∂

∂qα
+ Fα(q, u)

∂

∂uα
,

comes with a canonically defined connection on τ : TM →M , determined by a horizontal
lift construction which, in coordinates (qα, uα) on TM , is given by

X = Xα(q)
∂

∂qα
7→ XH = XαHα, with Hα =

∂

∂qα
− Γβα

∂

∂uβ
, Γαβ = −1

2

∂Fα

∂uβ
.

The domain of the horizontal lift operator naturally extends to the C∞(TM)-module X(τ)
of vector fields along τ , whose elements have a coordinate expression like the X above, but
with components Xα which are functions on TM . In fact, with the aid of the projection
operators PH and PV of the above non-linear connection on TM , one can construct a
linear connection on the pullback bundle τ ∗τ : τ ∗TM → TM (see e.g. [9]). Vector fields
along τ are sections of τ ∗τ . The linear connection D : X(TM) × X(τ) → X(τ), said to
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be of Berwald type, then essentially defines vertical and horizontal covariant derivative
operators DV

X and DH
X on X(τ). In coordinates these are determined by the following

action on functions F ∈ C∞(TM) and basic vector fields.

DV

XF = Xα Vα(F ), DV

X

∂

∂qα
= 0 (Vα :=

∂

∂uα
)

DH

XF = XαHα(F ), DH

X

∂

∂qα
= XβVα(Γγβ)

∂

∂qγ
.

The action of these covariant derivatives extends to 1-forms along τ by duality and then
further to arbitrary tensor fields along τ as degree zero derivations. For the general theory
of derivations of forms along τ see [10, 11].

Other important operators are: the dynamical covariant derivative ∇, a self-dual deriva-
tion of degree zero on tensor fields along τ , and a (1, 1) tensor Φ along τ called the
Jacobi endomorphism. These can implicitly be defined by the following formula for the
decomposition of the vector field LΓX

H on TM into its horizontal and vertical part:

LΓX
H = (∇X)H + Φ(X)V .

For practical purposes it suffices to know that:

∇F = Γ(F ) ∇ ∂

∂qα
= Γβα

∂

∂qβ
∇dqα = −Γαβdq

β ,

Φα
β = −∂F

α

∂qβ
− ΓαγΓγβ − Γ(Γαβ) .

2 Submersive systems and a natural generalization

Submersiveness of a SODE, as defined in [6], is characterized by the following result (see
[8] or [13]).

Theorem 1. A SODE Γ on TM is (locally) submersive if and only if there exists a
distribution K along τ : TM →M , such that

Φ(K) ⊂ K, ∇K ⊂ K, DV

ZK ⊂ K ∀Z ∈ X(τ).

The third condition expresses that K is a basic distribution, i.e. is generated by a distri-
bution on M . It is also DH-invariant and therefore generated by a Frobenius integrable
distribution. If coordinates on integral submanifolds of K are denoted by xa, and yi

denote transversal coordinates (so we write (qα) = (xa, yi) for a complete set of adapted
coordinates on M and shall denote corresponding fibre coordinates on TM by (va, wi)),
∇- and Φ-invariance of K imply that the forces F i do not depend on (xa, va). Hence, the
equations for the yi decouple from the rest; they will be referred to as the driving system,
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while the equations for the xa then constitute the driven system (adapting this way to
the present situation a suggestive terminology, introduced in [7], and also used in [13]).

A natural question to ask is: “what happens if K is not basic?”. Is there a chance that
the distribution K on TM , spanned by KH and KV remains integrable?

Recall [11] that we have the following general bracket relations:

[Γ, XV ] = −XH + (∇X)V ,

[Γ, XH] = (∇X)H + (ΦX)V ,

[XV , Y V ] = (DV

XY −DV

YX)V , (1)

[XH, Y V ] = (DH

XY )V − (DV

YX)H,

[XH, Y H] = (DH

XY −DH

YX)H +R(X, Y )V ,

where R is the curvature tensor of the non-linear connection. Assume now that K is a
distribution along τ , which is ∇- and Φ-invariant, but not necessarily DV -invariant. It is
clear then that

[Γ,K] ⊂ K.

Keeping the commutator property

[∇,DV

X ] = DV

∇X −DH

X

in mind, if we want K to be integrable on TM , it is clear from the bracket of horizontal
and vertical lifts that we must assume

DV

XY ∈ K, ∀X, Y ∈ K,

which is a weaker assumption though than DV -invariance, whereas it then further follows
that also

DH

XY ∈ K, ∀X, Y ∈ K.

Moreover, since

3R(X, Y ) = DV

XΦ(Y )−DV

Y Φ(X)

= DV

X(ΦY )−DV

Y (ΦX)− Φ(DV

XY ) + Φ(DV

YX),

we automatically have that the bracket of horizontal lifts also preserves K.

Hence, we shall study distributions K along τ , satisfying the conditions

∇K ⊂ K, Φ(K) ⊂ K, DV

ZK ⊂ K ∀Z ∈ K, (2)

and investigate to what extent this represents a generalized notion of submersiveness of
SODEs.
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3 Construction of adapted coordinates for the distri-

bution K

Since K need not be basic and adapted coordinates accordingly are no longer going to be
obtained by a point transformation, it is useful to understand in detail how coordinates
can be selected which preserve as much as possible the tangent bundle structure on TM .
The following account is inspired by the proof of the Frobenius theorem in [2] and is
specifically aimed at preserving a structure of horizontal and vertical lifts in setting up a
local basis for the co-distribution K0 of constraint forms of K.

Let {Xa}a=1,...,k be a basis for K, so that K = sp {Xa
H, Xa

V }. If θ is a constraint form for
K, then so is its image S(θ) under the vertical endomorphism S on TM . Indeed, we have
〈Xa

V , S(θ)〉 = 0 trivially, and 〈Xa
V , θ〉 = 0 implies that 〈Xa

H, S(θ)〉 = 〈S(Xa
H), θ〉 = 0.

Hence the constraint forms also come in pairs, say {θi, S(θi)}, i = 1, . . . , l (k + l = n =
dimM).

Without loss of generality (using an appropriate matrix multiplication if necessary) we
can arrange that each constraint form starts with a corresponding coordinate 1-form.
Specifically, this can be done pairwise again, i.e. we can take θi of the form

θi = dui + Γiαdq
α + θia(du

a + Γaβdq
β),

summation over repeated indices always being understood (from 1 to n for Greek indices,
1 to k for indices such as a, b, . . ., and from 1 to l for indices such as i, j, . . .). We then
have

S(θi) = dqi + θiadq
a,

and, if Xα
a are the components of the basis vector Xa of K, we have the constraint relations

X i
a + θibX

b
a = 0, i = 1, . . . , l, a = 1, . . . , k.

It is easy to verify that these are the relations which guarantee that the forms θi and
S(θi) vanish on Xa

V and Xa
H, spanning K.

Now Frobenius guarantees that there exist combinations of the constraint forms which
are exact, meaning that there exists a non-singular 2l× 2l matrix such that, say(

Aij Bi
j

Ci
j Di

j

)(
S(θj)

θj

)
=

(
df i

dgi

)
, i = 1, . . . , l,

for some functions f i, gi. In turn, this implies that

∂f i

∂uj
= Bi

j,
∂f i

∂qj
= Aij +Bi

k(Γ
k
j + θkaΓ

a
j ),

∂gi

∂uj
= Di

j,
∂gi

∂qj
= Ci

j +Di
k(Γ

k
j + θkaΓ

a
j ),

from which it follows that the Jacobian ∂(f i, gi)/∂(qj, uj) is non-singular. The level sets
of the functions (f i, gi), i = 1, . . . , l, define the integral submanifolds of K and the non-
singularity of the Jacobian just discussed further implies that the (qa, ua), a = 1, . . . , k can
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be used as local coordinates on the leaves. As before we now write coordinates, adapted
to the distribution K, as (xa, yi, va, wi). It is clear that transformation formulas from the
original variables (qα, uα) to those new coordinates can be taken to be of the form

xa = qa, va = ua, a = 1, . . . , k
yi = f i(q, u), wi = gi(q, u), i = 1, . . . , l,

and (∂/∂xa, ∂/∂va) should span K. As a matter of fact, using the constraint relations
mentioned above, one easily obtains that in the new coordinates:

Xa
V = Xb

a

∂

∂vb
, Xa

H = Xb
a

(
∂

∂xb
− Γcb

∂

∂vc

)
−X i

aΓ
b
i

∂

∂vb
.

The given SODE Γ transforms in the following way:

Γ = uα
∂

∂qα
+ Fα ∂

∂uα
= va

∂

∂xa
+ F a ∂

∂va
+ F̃ i ∂

∂yi
+ G̃i ∂

∂wi
, (3)

where we keep the original notation F a for force functions which are merely expressed
in the new variables, while F̃ i = Γ(f i), G̃i = Γ(gi). We know that Γ preserves the
distribution K, hence [

Γ,
∂

∂xa

]
,

[
Γ,

∂

∂va

]
∈ sp

{
∂

∂xa
,
∂

∂va

}
.

It follows that the functions F̃ i, G̃i do not depend on the variables (xa, va). The result is
a submersive system, where the driving part is a first-order system, while the driven part,
representing the dynamics on the leaves, preserves its second-order character. Explicitly,

ẏi = F̃ i(yj, wj), ẇi = G̃i(yj, wj), i = 1, . . . , l
ẋa = va, v̇a = F a(xb, vb, yi, wi), a = 1, . . . , k.

We summarize the results in the following theorem.

Theorem 2. Let Γ be a given second-order vector field on TM with its associated horizon-
tal distribution. Denote by ∇ and Φ the corresponding dynamical covariant derivative and
Jacobi endomorphism, respectively, and assume K is a distribution along τ : TM → M ,
satisfying the conditions

∇K ⊂ K, Φ(K) ⊂ K, DV

ZK ⊂ K ∀Z ∈ K.

Then the distribution K on TM , spanned by KH, KV , is integrable and invariant under Γ.
It follows that there exist adapted coordinates in which Γ partially decouples into a driving
system of first-order equations and a driven second-order system.
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4 The almost tangent structure on each leaf of K

Consider the restriction of S to a leaf L of K. The tangent space to L at any point p ∈ L
has the basis {Xa

H(p), Xa
V (p)}. Now

Sp(Xa
H(p)) = Xa

V (p),

Sp(Xa
V (p)) = 0.

Thus, firstly, Sp maps TpL into itself, and so S defines by restriction a type (1, 1) tensor
field on L, which we denote by S. Secondly, kerSp = imSp, so S defines an almost
tangent structure on L. Thirdly, since the bracket of vector fields tangent to L is also
tangent to L, it easily follows that the Nijenhuis torsion NS, which is also the restriction
of NS to L, vanishes; thus the almost tangent structure on L is integrable. That is to say,
the vertical endomorphism S (which is of course an integrable almost tangent structure
on TM) defines by restriction an integrable almost tangent structure S on each leaf of K.

It is well-known (see e.g. [4]) that, on any manifold with an integrable almost tangent
structure, local coordinates (xa, va) may be found with respect to which the tensor defining
the structure takes the form

∂

∂va
⊗ dxa.

We now take an alternative (dual) look at the construction of adapted coordinates with
this in mind.

We could first normalize the given basis of K to vector fields along τ of the form

Xa =
∂

∂qa
+X i

a

∂

∂qi
.

Then,

Xa
V =

∂

∂ua
+X i

a

∂

∂ui
,

and in order to complete the basis for the lifted distribution K, one may choose to replace
the horizontal vector fields Xa

H by

X̂a
H = Xa

H + (Γba +X i
aΓ

b
i)Xb

V .

The effect of this shift to a new basis of K (which no longer consists of horizontal and

vertical lifts of a basis of K) is that integrability of K will now imply that X̂a
H and Xa

V

commute. Of course we still have that S(Xa
V ) = 0 and S(X̂a

H) = Xa
V . On the one

hand, integrability of K still means that there exist functions (f i, gi) which are killed by

(X̂a
H, Xa

V ); on the other, X̂a
H and Xa

V , since they commute, can be straightened out
simultaneously to vector fields of the form (∂/∂xa, ∂/∂va) say. In fact, this is precisely
what the same type of coordinate transformation

xa = qa, va = ua,
yi = f i(q, u), wi = gi(q, u),

7



will achieve in this case, since 〈X̂a
H, dxb〉 = 〈X̂a

H, dqb〉 = δba and likewise 〈Xa
V , dvb〉 =

〈Xa
V , dub〉 = δba. It then follows that, as desired, S will take the form

S =
∂

∂va
⊗ dxa

in these coordinates.

A remark about the coordinates of the previous section: we could have modified the basis
for K0 in the previous section in a similar way, by putting simply

θ̂i = θi − (Γij + θiaΓ
a
j )S(θj).

Which of these alternative constructions of adapted coordinates is the better one, will
probably be dictated by the kind of application one has in mind. As will be briefly
discussed in the final section, one can think of applications where, for example, the distri-
bution K comes from eigenspaces of Φ and it will then be more transparent to keep the
structure of horizontal and vertical lifts in choosing a local basis for K.

5 Geometrical meaning of generalized submersive-

ness

Section 2 showed us the way to a natural generalization of the necessary and sufficient
conditions for local submersiveness of a SODE. In sections 2 and 3, we have understood
the details of the effect of relaxing the conditions, so that we can come now to a proper
definition of what ‘generalized submersiveness’ geometrically means, in comparison to the
original concept, as defined in [6] and [8].

Definition 1. A SODE Γ on TM is said to have the generalized submersiveness prop-
erty, if there exists a surjective submersion ψ of TM onto some manifold N , such that:

(i) There exists a vector field X on N which is ψ-related to Γ.

(ii) The vertical endomorphism S on TM defines by restriction an almost tangent struc-
ture S on each fibre of ψ.

Note that it follows from the assumption (ii) that the restricted almost tangent structure
S will be integrable also (as argued in the previous section). It is further worth mentioning
in relation to the first assumption that the following general property holds: if ψ : N ′ → N
is a surjective submersion (fibration), and K = kerTψ denotes the distribution tangent
to the fibres of ψ, then for any vector field Z on N ′ which is projectable, we have that
LZK ⊂ K.

Obviously, as explored in detail in the previous sections, the content of theorem 2 is that
the conditions (2) imply that a SODE locally matches the criteria of the above definition.
We now show that these conditions are actually also necessary for having local generalized
submersiveness. In other words we have the following generalization of theorem 1.
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Theorem 3. A SODE Γ locally has the generalized submersiveness property if and only
if there exists a distribution K along τ : TM →M having the invariance properties (2).

Proof. As indicated above, it follows from assumption (i) in the definition that LΓK ⊂ K,
where K = kerTψ. Furthermore, from

LΓS(K) = LΓ(S(K))− S(LΓK) ⊂ K,

we conclude that also LΓS(K) ⊂ K. Since the horizontal projector of the Ehresmann
connection defined by Γ is given by PH = 1

2
(I − LΓS), this means that the horizontal

and vertical parts of vector fields in K both belong to K. Take p ∈ TM , and consider
Kp ⊂ TpTM . Let Vp and Hp be the vertical and horizontal subspaces of TpTM , and set
V (Kp) = Vp ∩ Kp, H(Kp) = Hp ∩ Kp. We know that each of these subspaces contains
nonzero vectors, by the remark above. Furthermore, Sp maps H(Kp) into V (Kp); thus Sp
defines by restriction a linear map H(Kp) → V (Kp), say S; and S is injective. Now S is
an almost tangent structure, so V (Kp) = kerSp = imSp; that is to say, for any ξ ∈ V (Kp)
there is some η ∈ Kp such that ξ = Sp(η). Let ζ be the horizontal component of η: then
ζ ∈ H(Kp), and S(ζ) = Sp(ζ) = Sp(η) = ξ. Thus S : H(Kp) → V (Kp) is surjective as
well as injective, and is therefore an isomorphism. We have Kp = H(Kp)⊕ V (Kp), where
the two summands are isomorphic via S.

Now define K by H(Kp) = KH
p . Then V (Kp) = S(H(Kp)) = KV

p . The Γ-invariance of K
then implies (from the first of the bracket relations (1)) that ∇K ⊂ K. Subsequently, the
second of the bracket relations (1) shows that Φ(K) ⊂ K. Finally, since the distribution
K is integrable, if XH ∈ K and Y V ∈ K then [XH, Y V ] ∈ K. It then follows from the fourth
bracket relation in (1) that DV

ZK ⊂ K for all Z ∈ K, which completes the proof.

6 Generalized submersiveness by stages

Let K1 be a k1-dimensional distribution along τ satisfying the conditions (2). Assume
that a second distribution K2, which may or may not have a non-empty intersection with
K1, has the properties

∇K2 ⊂ K1 +K2, Φ(K2) ⊂ K1 +K2, DV

Z(K1 +K2) ⊂ K1 +K2 ∀Z ∈ K1 +K2,

and let k2 denote the dimension of K1 + K2. It follows from the commutator [∇,DV
X ]

that also DH
Z(K1 + K2) ⊂ K1 + K2 ∀Z ∈ K1 + K2. In turn, the bracket relations of

section 2 imply that bothK1 = sp{K1
H, K1

V } andK1+K2 = sp{(K1 +K2)H, (K1 +K2)V }
are integrable distributions on TM , invariant under Γ. Consider the annihilating co-
distributions

(K1 +K2)0 ⊂ K1
0.

Let {df i2 , dgi2}, i2 = 1, . . . , l2 (with l2+k2 = n) be a set of exact forms spanning (K1+K2)0

and extend this to a basis for the module K1
0. Since K1

0 is also integrable, we know that
there exists a further number of exact 1-forms, {df i1 , dgi1}, i1 = 1, . . . , l1 say, linear
combinations of the basis elements just constructed, which together with the {df i2 , dgi2}
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will span K1
0 (here l1 + l2 + k1 = n). Extending the constructions which were described

in detail in section 3, we define now a coordinate transformation of the following form:

xa = qa, va = ua, a = 1, . . . , k1,
yi2 = f i2(q, u), wi2 = gi2(q, u), i2 = 1, . . . , l2,
yi1 = f i1(q, u), wi1 = gi1(q, u), i1 = 1, . . . , l1.

We then have that

K1 = sp

{
∂

∂xa
,
∂

∂va

}
, K1 +K2 = sp

{
∂

∂xa
,
∂

∂yi1
,
∂

∂va
,
∂

∂wi1

}
,

and Γ takes the form

Γ = va
∂

∂xa
+ F a ∂

∂va
+ F̃ i1

∂

∂yi1
+ G̃i1

∂

∂wi1
+ F̃ i2

∂

∂yi2
+ G̃i2

∂

∂wi2
,

with
F̃ ik = Γ(f ik), G̃ik = Γ(gik), k = 1, 2.

Now, since Γ preserves K1, it follows that

∂F̃ ik

∂xa
=
∂F̃ ik

∂va
=
∂G̃ik

∂xa
=
∂G̃ik

∂va
= 0, k = 1, 2,

and the invariance of K1 +K2 further implies that also

∂F̃ i2

∂yi1
=
∂F̃ i2

∂wi1
=
∂G̃i2

∂yi1
=
∂G̃i2

∂wi1
= 0.

Hence, the transformed differential equations partially decouple in stages, in the following
way:

ẏi2 = F̃ i2(yj2 , wj2), ẇi2 = G̃i2(yj2 , wj2), i2 = 1, . . . , l2
ẏi1 = F̃ i1(yj2 , wj2 , yj1 , wj1), ẇi1 = G̃i1(yj2 , wj2 , yj1 , wj1), i1 = 1, . . . , l1
ẋa = va, v̇a = F a(xb, vb, yi, wi), a = 1, . . . , k1.

Proceeding in the same way to more than two distributions, we reach the following con-
clusion.

Theorem 4. Let Γ be a given second-order vector field on TM with its associated hori-
zontal distribution. Denote by ∇ and Φ the corresponding dynamical covariant derivative
and Jacobi endomorphism, respectively. Assume that K1, . . . , Ks are distributions along
τ : TM →M , satisfying the conditions

∇Kr ⊂
r∑
i=1

Ki, Φ(Kr) ⊂
r∑
i=1

Ki, DV

Z(
r∑
i=1

Ki) ⊂
r∑
i=1

Ki ∀Z ∈
r∑
i=1

Ki,

for r = 1, . . . s. Then all distributions
∑r

i=1Ki on TM are integrable and invariant under
Γ. It follows that there exist adapted coordinates in which Γ decouples in stages into a
hierarchy of first-order systems, each driving the next one, and a second-order system
driven by all the first-order ones.
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7 Examples and other forms of submersiveness

We shall illustrate first that, in the construction of the previous section, K1 and K2 indeed
may or may not have a non-empty intersection.

Suppose we are in dimension three and start from a local basis (X1, X2, X3) for X(τ),
with dual basis (φ1, φ2, φ3). Assume that distributions, satisfying the conditions of the
previous section are:

K1 = sp{X3
H, X3

V } K2 = sp{X2
H, X2

V },

so that
(K1 +K2)0 = sp{φ1

H, φ1
V }, K1

0 = sp{φ1
H, φ1

V , φ2
H, φ2

V }.
Then, the result is that, in suitable coordinates, the equations will decouple by stages
into two first-order and one second-order system:

ẏ1 = F̃ 1(y1, w1), ẇ1 = G̃1(y1, w1),

ẏ2 = F̃ 2(y1, y2, w1, w2), ẇ2 = G̃2(y1, y2, w1, w2),
ẋ = v, v̇ = F (x, y, v, w).

In dimension four, for example, take

K1 = sp{X3
H, X4

H, X3
V , X4

V } K2 = sp{X2
H, X4

H, X2
V , X4

V },

with again

(K1 +K2)0 = sp{φ1
H, φ1

V }, K1
0 = sp{φ1

H, φ1
V , φ2

H, φ2
V }.

This time, there will be two first-order systems and a two-degree-of-freedom second-order
system of the following form:

ẏ1 = F̃ 1(y1, w1), ẇ1 = G̃1(y1, w1),

ẏ2 = F̃ 2(y1, y2, w1, w2), ẇ2 = G̃2(y1, y2, w1, w2),
ẋ1 = v1, v̇1 = F 1(x, y, v, w),
ẋ2 = v2, v̇2 = F 2(x, y, v, w).

It is pretty clear that we can model also other types of partial decoupling of the system,
in which, for example, a number of first-order systems decouple individually from all the
rest and together serve as the driving system for the surviving second-order part. Take
for example the case n = 3 again, but assume this time that both

K1 = sp{X2, X3} and K2 = sp{X1, X3}

satisfy the conditions (2). It follows that sp{φ1
H, φ1

V } and sp{φ2
H, φ2

V } are integrable
co-distributions, which therefore can be spanned by exact 1-forms, say (df 1, dg1) and
(df 2, dg2) respectively. In new coordinates (yi = f i(q, u), wi = gi(q, u), x = q3, v = u3), Γ
will take the form

Γ = v
∂

∂x
+ F

∂

∂v
+ F̃ i ∂

∂yi
+ G̃i ∂

∂wi
,
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and since Γ must preserve the two distributions

K1 = sp

{
∂

∂y2
,
∂

∂w2
,
∂

∂y3
,
∂

∂w3

}
, K2 = sp

{
∂

∂y1
,
∂

∂w1
,
∂

∂y3
,
∂

∂w3

}
,

it follows that the functions F̃ 1, G̃1 will depend on (y1, w1) only, and similarly F̃ 2, G̃2 will
depend on (y2, w2) only. Obviously, this can be generalized to arbitrary dimension and
any number of integrable co-distributions sp{φiH, φiV }.
We end this section with an explicit example, which exhibits both the features of submer-
siveness and generalized submersiveness. Consider the following system of second-order
equations (we use lower indices for coordinates here, to avoid confusion with powers):

q̈1 = 0,

q̈2 = 2q̇1q̇2 + eq1 q̇2
1.

A set of eigenvectors of the Jacobi endomorphism Φ is given by

X1 = u1
∂

∂q1

+ u2
∂

∂q2

, X2 =
∂

∂q2

.

Obviously, K1 = sp{X1} and K2 = sp{X2} are invariant under Φ. Moreover we have

∇X1 = 0, and ∇X2 = −u1X2,

so that both distributions along τ are invariant under ∇ as well. Finally,

DV

X1
X1 = X1 and DV

X2
X2 = 0,

so that K1 and K2 satisfy all conditions (2).

K2 is spanned by a basic vector field and therefore actually matches the requirements of
standard submersiveness. The integrable distributionK2 on TM is spanned by {∂/∂q2, ∂/∂u2}
and the SODE Γ projects on the quotient to q̈1 = 0. In other words, the given system
is already written in coordinates adapted to this foliation and displays the corresponding
partial decoupling.

Since DV
X2
X1 = X2 and so is not in K1, this distribution is not basic and determines a true

case of generalized submersiveness. According to the general theory, it must be possible to
find adapted coordinates (y, w) on the quotient manifold N of the foliation determined by
K1, such that a decoupled system of first-order equations for (y, w) becomes the driving
system, and q̈1 = 0 plays the role of the driven part, albeit of a very special nature. It
turns out that also the driving part will be of a particularly simple form here. This is due
to the fact that Γ itself belongs to the integrable distribution K1 in this case: we have
X1

V = ∆, the dilation vector field on TM , and X1
H = Γ (because Γ is a quadratic spray).

As a result, the new coordinates (y, w) are bound to be first integrals of Γ, homogeneous of
degree zero in the u-coordinates, and the functions (F̃ , G̃) determining the right-hand sides
of the first-order equations for (y, w) will be zero as well. The computer algebra packages
DIMSYM [15] and EXCALC [14] have been very efficient tools to actually compute two
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exact forms which span the co-distribution of K1. The corresponding first integrals are
found to be

y =
u2

u1

e−2q1 + e−q1 ,

w = eq1 + 2q2 −
u2

u1

.

8 Discussion and areas of application

The theory outlined in the previous sections offers a kind of general scheme, which can
then be applied to various situations where the integrable distributions actually come
from additional geometrical data.

One such situation occurs in the study of degenerate Lagrangian systems (see e.g. [1]). For
a Lagrangian L denote by ωL its Cartan 2-form. If L is not regular then the characteristic
distribution of ωL, charωL, is nonzero; it is integrable, and S(charωL) ⊂ charωL. Any
vector field Z such that LZωL = 0 has the property that LZ(charωL) ⊂ charωL. Let
V (charωL) be the vertical part of charωL. Degenerate Lagrangians are said to be of
type II if dim(charωL) = 2 dim(V (charωL)), and it is shown in [1] that this is equivalent
to S(charωL) = V (charωL). Under the general assumptions that L admits a global
dynamics, i.e. that the equation iZωL = −dEL (where EL is the energy function associated
to L) has solutions, and that charωL defines a fibration, one further shows that there is
a SODE Γ among the dynamical fields Z, and each such Z is Γ mod charωL. Then
S defines an almost tangent structure on the leaves of the fibration defined by charωL,
and LΓ(charωL) ⊂ charωL. Most of the analysis in [1] in fact is concerned with the
case in which charωL is the tangent distribution of a distribution on the base, and thus
with the usual case of submersiveness in the sense of [6]. But if one does not impose this
extra assumption, one clearly would be looking at a case of generalized submersiveness,
as discussed in the present paper.

Another potential area of application is the inverse problem of the calculus of variation,
where the additional geometrical element is the availability of (or search for) a suitable
metric g along τ . In fact, part of the inspiration for the general set-up we have explained
comes from the inverse problem, more specifically from the so-called separable case, re-
ferred to already in the introduction (see [3]), and the explicit example of the preceding
section actually belongs to this category of systems. Work is in progress to use the tools
and insights which have been developed in the present paper to identify more of such
classes of SODEs of arbitrary dimension, for which a Lagrangian exists. We content
ourselves here to some general considerations about the way in which distributions along
τ can make their appearance in the inverse problem, and about the interaction of the
Helmholtz conditions with the assumptions of generalized submersiveness. The classifi-
cation of different cases in the study of the inverse problem is most of the time carried
out in terms of properties of eigenspaces of the Jacobi endomorphism Φ. So let KA be an
eigenspace of Φ, corresponding to the eigenvalue λA. Assume KA satisfies the conditions
of generalized submersiveness, meaning here that we impose two more restrictions. One
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easily verifies that these restrictions require that

[∇Φ,Φ]|KA
= 0 and R(KA, KA) ⊂ KA.

These are assumptions on Φ and the curvature tensor R, which are natural generalizations
of assumptions made in previous case studies in the inverse problem. A different source
of interesting distributions might arise as follows. Let g be a (non-degenerate) symmetric
type (0, 2) tensor field along τ and assume K is a distribution satisfying the conditions of
generalized submersiveness. In fact, let’s assume that g is positive definite for simplicity,
so that K has a disjunct orthogonal complement K⊥ and K⊕K⊥ spans the whole tangent
space. The question of interest then becomes how the Helmholtz conditions for g can help
to transfer properties from K to K⊥. Obviously, ∇g = 0 will imply that also ∇K⊥ ⊂ K⊥,
whereas the symmetry of Φ with respect to g will bring about that also Φ(K⊥) ⊂ K⊥.
The remaining Helmholtz condition, however, namely DV

Xg (Y, Z) = DV
Y g (X,Z), does not

immediately imply that DV -invariance is inherited by K⊥ as well.

Note that in a different context, the interplay between a distribution K and a Riemannian
metric g is the key to understanding so-called “driven cofactor systems”, introduced in
[7], from a geometrical perspective (see [13]).
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