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Consensus for Quantum Networks:
Symmetry From Gossip Interactions

Luca Mazzarella, Alain Sarlette, and Francesco Ticozzi

Abstract—This paper extends the consensus framework, widely
studied in the literature on distributed computing and control
algorithms, to networks of quantum systems. We define consensus
situations on the basis of invariance and symmetry properties,
finding four different generalizations of classical consensus states.
This new viewpoint can be directly used to study consensus for
probability distributions, as these can be seen as a particular case
of quantum statistical states: in this light, our analysis is also
relevant for classical problems. We then extend the gossip consen-
sus algorithm to the quantum setting and prove it converges to
symmetric states while preserving the expectation of permutation-
invariant global observables. Applications of the framework and
the algorithms to estimation and control problems on quantum
networks are discussed.

Index Terms—Consensus, distributed algorithms, Markov pro-
cesses, quantum information and control.

I. INTRODUCTION

AMONG the recent trends in control and systems theory,
the field of distributed control, estimation and optimiza-

tion on networks has stimulated an impressive amount of re-
search. A basic task for distributed information processing is
reaching consensus on some common control objective, shared
value or slack variable. The present paper extends this well-
studied consensus problem (see, e.g., [1], [2]) to networks of
quantum systems, a special case of which would be classical
probability distributions. We therefore try to make the main
message accessible to non-quantum experts (see end of the
Introduction).

Exploring the links between information processing tasks
and stochastic dynamics on networks has recently opened
new research directions towards “distributed” quantum infor-
mation applications. In essence, these involve an interplay
between symmetry, locality constraints, and engineered dis-
sipation. These are the key ingredients in many quantum
information applications, among which noise protection and
dynamical error-correction [3]–[6], open-system quantum sim-
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ulators [7], [8] and quantum computers [9], entanglement gen-
eration through stabilizing dissipative dynamics [10], [11] as
well as most tasks in the stabilization of open multipartite
quantum systems [12]–[14].

In this spirit, we here develop a framework for quantum
consensus: we identify and characterize a hierarchy of quan-
tum consensus situations and study how these can be reached
by suitable dissipative quantum dynamics, while preserving
some global information on the network state. Our work offers
not only a formal generalization of the well-known classical
consensus problem, but also a potentially new viewpoint on a
number of issues in quantum information. More specifically, it
ties the structure of symmetric states and correlations [15], [16]
to their potential generation via locality constrained resources,
similarly in spirit to what has been recently done by char-
acterizing another relevant class of states, namely frustration-
free ground states of quasi-local Hamiltonians with dissipative
generators [11]. In addition, the ideas and methods we present
can be directly employed to symmetrize the state of a large
system towards permutation-invariant statistics, guarantee ef-
fective sampling from large networks of quantum systems,
achieve robust broadcast of information, or realize purification
and cooling with limited resources. More details about three
possible direct applications of our gossip-type algorithm are
presented in the following sections.

An attempt to lift the consensus problem to the quantum
domain has been presented in [17]. It is based on a “cone
geometry” approach, viewing quantum Kraus maps as the non-
commutative generalization of Markov chain transition mech-
anisms that model consensus algorithms. The authors show
how Birkhoff’s Theorem and Hilbert’s projective metric lead to
a general convergence result and contraction ratio estimation.
However, by describing the dynamics of the whole system of
interest as governed by a single Markov transition mechanism,
this formulation does not account for subsystem structure or
network connections in the quantum setting. It therefore defines
consensus as asymptotic convergence to a scalar multiple of
the identity: for quantum states this corresponds to a fully
mixed, most uncertain state which is rarely the desired target
for applications.

In the present paper, we approach quantum consensus from
an “operational,” multi-agent control perspective, starting from
the basic classical ingredients: a network of subsystems, an in-
teraction protocol with locality constraints, and a target consen-
sus situation. As a first step, Section II provides four possible
ways to generalize the concept of a consensus state to the quan-
tum domain and explores their connections, establishing a hier-
archy of quantum consensus definitions. Section III presents the
quantum open-system dynamics and the locality notions that
we employ to describe the interactions between the quantum
“agents.” Typical methods for interaction selection and timing
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are also introduced, in analogy with classical consensus. This
provides all the ingredients needed to specify the general
properties of an evolution that achieves quantum average con-
sensus. The symmetry-based reformulations at each step pro-
vide an alternative interpretation of classical consensus, and in
Section IV this leads us to a quantum generalization of
the classical gossip algorithm. We prove its convergence to
symmetric-state consensus while preserving the expectation of
any permutation-invariant observable. We further show how
the algorithm can be explicitly seen as a generalization of the
classical one and the classical convergence results can be used
to prove a weaker convergence property. The section concludes
with an example of the gossip algorithm working on a four-
qubit network. Section V presents two potential applications
of the framework and method. In Section VI, we summarize
the main results and provide an outlook on possible further
developments and applications.

For the readers who do not have prior knowledge of quantum
theory: a brief tutorial on quantum systems modeling is given
in Appendix A, along with an overview of the notations and
conventions we use. In essence, the paper can be read more or
less verbatim with the translation table shown at the bottom of
the page.

Correspondingly, the (adjoint) † symbol indicates the
transpose-conjugate in matrix representation, and the tensor
product ⊗ is associated to the Kronecker matrix product.

A quantum state is in general associated with a density op-
erator ρ, that is represented with a positive-semidefinite, trace-
one Hermitian matrix. The eigenvalues of such a matrix can
be interpreted as the probabilities of n mutually-exclusive out-
comes of a real random variable x. Consider a basis in which ρ
is diagonal: the Kronecker product of m such matrices then is a
diagonal nm × nm matrix representing the product of marginal
distributions of m measurements of the random variable x.
The space of all joint probability distributions for m subsys-
tems is larger than the product of marginals, since it allows
for arbitrary correlations, and it is represented by all diag-
onal trace-one positive nm × nm matrices (not necessarily
Kronecker-factorizable). The quantum context adds to this pic-
ture the possibility to arbitrarily “rotate” the bases in which
things are expressed, and hence consider non-diagonal matrices
and “non-commutative probabilities” (see, e.g., [18], [19] for
a formal introduction to this viewpoint). However, our results
can be applied in particular to diagonal states, and can hence be
directly translated to classical probability distributions.

II. CONSENSUS STATES

A classical consensus state for a multipartite system is one in
which the states of all the subsystems, often called agents, are
the same (although not necessarily stationary). Since in general
a quantum state for a multipartite system cannot be factorized

into subsystem states (see Appendix A), the definition of con-
sensus must be reconsidered. We here present an operational
approach that leads to a hierarchy of definitions for what can be
claimed to be “quantum consensus.” The resources needed for
discriminating between them are discussed in Appendix C.

A. Defining Classical Consensus

Consensus for classical systems is typically formulated along
the following lines [1], [2]. Consider m subsystems, each one
associated to a state given by a configuration variable xk ∈ R

n.
These subsystems evolve through bilateral interactions, accord-
ing to some networking scheme and dynamics (see Section IV),
and reach a consensus state if they converge to the set C =
{(x1, x2, . . . , xm) : xj = xk∀j, k}. Furthermore, the agents
are said to compute an average consensus if for given initial
states (x1(0), x2(0), . . . , xm(0)) they converge to the particular
equilibrium (x̄, x̄, . . . , x̄) ∈ C where x̄ = (1/m)

∑m
i=1 xi(0).

Alternatively, consensus can be characterized as invariance
with respect to subsystem permutations. Let P denote the set
of all subsystem permutation operators, i.e., each Pπ ∈ P is
associated to some permutation π of the integers 1, 2, . . .m
such that Pπ(x1, x2, . . . , xm) = (xπ(1), xπ(2), . . . , xπ(m)) for
any x1, x2, . . . , xm. Denoting the joint state of the xk ∈ R

n by
a vector x ∈ R

mn, each Pπ ∈ P can be written as an mn×mn
matrix resulting from the Kronecker product of some m×m
permutation matrix with the n× n identity matrix. Then we
can define consensus as

C = {x ∈ R
mn : Pπx = x for all Pπ ∈ B}. (1)

Obviously, checking Pπx = x for all pairwise permutations Pπ

is sufficient to guarantee Pπx = x for all Pπ ∈ P.
Average consensus algorithms represent a useful tool for

many tasks in distributed control and computation because for
each linear function Q : Rmn → R which is invariant under
all subsystem permutations, there exists q : Rn → R such that
Qx = qx̄, where x̄ is the single subsystem state at consensus.
This means that the value of such linear functional Q of a
global, m · n dimensional variable, can be obtained locally
by each agent once they have reached average consensus, by
evaluating an n-dimensional functional q. The fact that all
permutations can be obtained by concatenating pairwise permu-
tations, already suggests that average consensus is computable
with distributed algorithms.

B. Quantum Consensus Definitions and Their Relationships

Defining what a consensus situation ought to be in a quantum
“network” is not a straightforward task. More than one defi-
nition may be appropriate depending on the type of symmetry
we are seeking. Following the analogy with the classical case
can help, but quantum measurement outcomes are intrinsically

H, n-dimensional Hilbert space → C
n

|x〉 ∈ H → column vector, x ∈ C
n

〈x| ∈ H† → row vector, x†

X, operator → X, complex matrix.
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stochastic, so we must consider probabilistic consensus situa-
tions from the beginning. Let us explore different options by
first discussing a simple case. We refer to Appendix A2 for a
short introduction to the standard notation for composite quan-
tum systems, qubits, and Pauli matrices as used in the following.

Example 1—When is a Quantum Network in Consensus?:
Consider a multipartite quantum system composed of three
qubits, with associated Hilbert space H3 = C

2 ⊗ C
2 ⊗ C

2

spanned by 23 basis vectors denoted by {|a, b, c〉 = |a〉 ⊗ |b〉 ⊗
|c〉 : a, b, c ∈ {0, 1}}, and three observables of the form σ(1) =
σz ⊗ I ⊗ I , σ(2) = I ⊗ σz ⊗ I , σ(3) = I ⊗ I ⊗ σz , where the
Pauli matrix σz = diag(1,−1) with respect to the ordered basis
{|0〉, |1〉}. These correspond to observables of the quantity
associated to σz for each of the subsystems, i.e., measuring σ(3)

gives result +1 (resp. −1) if the third qubit is in state |0〉 (resp.
|1〉). It seems natural to say that the system is in consensus with
respect to the expectation of σz if

Tr(ρσ(1)) = Tr(ρσ(2)) = Tr(ρσ(3)). (2)

The conditions for this to happen can be worked out explicitly
in terms of the diagonal elements of the state ρ. In particular it
is easy to check that all the following states satisfy (2):

ρA =
1

8
I ⊗ (|0〉+ |1〉)(〈0|+ 〈1|)⊗ (|0〉+ |1〉)(〈0|+ 〈1|)

ρB =
1

2
(|0, 0, 1〉〈0, 0, 1|+ |1, 1, 0〉〈1, 1, 0|)

ρC =
1

8
I ⊗ I ⊗ I

ρD =
1

2
(|0, 0, 0〉〈0, 0, 0|+ |1, 1, 1〉〈1, 1, 1|)

ρE = |0, 0, 0〉〈0, 0, 0|

ρF =
1

2
(|0, 0, 0〉+ |1, 1, 1〉)(〉0, 0, 0|+ 〈1, 1, 1|).

All these states, except ρE , have Tr(ρσ(i)) = 0 for i = 1, 2, 3.
The states ρB , ρC , ρD, ρE are diagonal in the canonical basis
and hence can be interpreted as classical probabilities on the set
{−1,+1} × {−1,+1} × {−1,+1} of possible outcomes for
the joint measurements of σ(j), j = 1, 2, 3.

The requirement (2) can be strengthened by requesting it
to hold when σz is replaced by any observable σ ∈ H(C2) in
the definition of σ(1), σ(2), σ(3). This is equivalent to imposing
that the reduced states for the three subsystems are the same.
It is then easy to check that ρB , ρC , ρD, ρE , ρF satisfy this
requirement, while ρA does not. In fact the reduced states for
ρA are

ρA1 =
1

2
I, ρA2 = ρA3 =

1

2
(|0〉+ |1〉)(〈0|+ 〈1|).

In the light of (1), another potential definition of quantum
consensus would require the state to be symmetric, i.e., invari-
ant under any permutations of the subsystems. This choice can
be motivated by the classical case, where the consensus state
is indeed permutation invariant. Among the states defined in
Example 1, only ρC , ρD, ρE , ρF are permutation invariant.

Lastly, one might want subsystem agreement not only on
the observable averages, but on each realization of a stochastic
measurement (see Appendix A2); namely, that each projective
measurement of the (commuting and hence compatible) ob-
servables σ(1), σ(2), σ(3) gives perfectly correlated results for

the three subsystems. Thus, among all possible measurement
results {−1,+1}×3, one wants that only (−1,−1,−1) and
(+1,+1,+1) have a nonzero probability to occur.1 The states
ρA, ρB , and ρC do not satisfy this definition of consensus;
indeed, for these three states, the distribution of measurement
results for qubit 1 is either independent (ρA, ρC) or anti-
correlated (ρB) to the measurements of at least another qubit.
On the other hand, ρD, ρE , ρF always yield perfectly correlated
results. Note that mixed states can lead to correlated results,
when they express perfect classical correlations as ρD does. �

Let us formalize the ideas emerging from the former ex-
ample. Consider a multipartite system composed of m iso-
morphic subsystems, labeled with indices i = 1, . . . ,m, with
associated Hilbert space Hm := H1 ⊗ . . .⊗Hm � H⊗m, with
dim(Hi) = dim(H) = n and n � 2. We shall refer to this mul-
tipartite system as to our quantum network. For any operator
X ∈ B(H), we will denote by X⊗m the tensor product X ⊗
X ⊗ . . .⊗X with m factors. Given an operator σ ∈ B(H), we
denote by σ(i) the local operator

σ(i) := I⊗(i−1) ⊗ σ ⊗ I⊗(m−i).

Permutations of quantum subsystems are expressed by a unitary
operator Uπ ∈ U(H), which is uniquely defined by

Uπ(X1 ⊗ . . .⊗Xm)U †
π = Xπ(1) ⊗ . . .⊗Xπ(m)

for any operators X1, . . . Xm in B(H), where π is a permu-
tation of the first m integers. A state or observable is said to
be permutation invariant if it commutes with all the subsystem
permutations. It is worth noting that given any observable Q ∈
H(Hm), we can define a permutation invariant observable X
by considering

X =
1

m!

∑
π∈P

U †
πQUπ. (3)

Definition 1 (σEC): Given σ ∈ B(H), a state ρ ∈ D(Hm)
is in σ-Expectation Consensus (σEC) if

Tr(σ(1)ρ) = . . . = Tr(σ(k)ρ).

The reduced state (analog of a marginal distribution) of
subsystem k for an overall system state ρ is defined by ρ̄k =
Tr(⊗j �=kHj)(ρ).

Definition 2 (RSC): A state ρ ∈ D(Hm) is in Reduced State
Consensus (RSC) if

ρ̄1 = ρ̄2 = . . . = ρ̄m.

Definition 3 (SSC): A state ρ ∈ D(Hm) is in Symmetric
State Consensus (SSC) if, for each unitary permutation Uπ

UπρU
†
π = ρ.

Definition 4: (σSMC) Given an observable σ with spectral
decomposition σ =

∑d
j=1 sjΠj ∈ H(H),2 a state ρ ∈ D(Hm)

1The set {c1, c2, c3, . . .}×n is the Cartesian product of {c1, c2, c3, . . .}
by itself n times, i.e., the set of n-tuples with components taken from
{c1, c2, c3, . . .}.

2We here assume that all sj are different, so d ≤ n. See Appendix A2 for
more on observables and related stochastic measurement results.
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is in Single σ-Measurement Consensus (σSMC) if

Tr
(
Π

(k)
j Π

(�)
j ρ

)
= Tr

(
Π

(�)
j ρ

)
(4)

for all k, � ∈ {1, . . . ,m}, and for each j.
The definition of σSMC requires that the outcomes of σ

measurements on different subsystems be exactly the same for
each trial. Indeed, in this last definition, the right-hand side of
(4) is the probability of obtaining sj as a measurement result

on both subsystems � and k (note that Π(k)
j and Π

(�)
j commute,

so this joint measurement Π(k)
j Π

(�)
j is well-defined). Then if (4)

holds, the probability of sj on k conditional to observing sj

on � is one (assuming that Π(�)
j ρΠ

(�)
j 	= 0; that special case is

trivial and can be treated separately).
All the states in our example satisfy σzEC, all but ρA satisfy

RSC, ρC to ρF satisfy SSC, and ρD to ρF satisfy σzSMC. There
obviously seems to be a hierarchy in these definitions, and the
following properties are meant to better characterize them.

Theorem 1: The following chain of implications holds:

SSC =⇒ RSC =⇒ σEC

while the converse implications are not true in general.
Proof—SSC =⇒ RSC: If UπρU

†
π = ρ for each permu-

tation, consider in particular U(�,k) that swaps subsystems � and
k. Then

ρ̄k = Tr⊗j �=kHj
(ρ) = Tr⊗j �=kHj

(
U(�,k)ρU

†
(�,k)

)
= ρ̄�

and the reasoning can be repeated for any pair. RSC =⇒ σEC
is immediate by definition. States ρB and ρA from Example 1
provide counterexamples for the converse of the first and of the
second implication, respectively. �

In order to obtain converse relations one has to add some
hypotheses:

Proposition 1: The following hold:
1) A state is RSC if and only if it is σEC for all σ ∈ H(H);
2) If ρ is in RSC, with ρ̄k a pure state for each k, then it is

also in SSC.
The proof is given in Appendix B. We next characterize

the notion of σSMC, and explore its relationship with the
other notions. Consider the set of projections {Πj}dj=1 as in

Definition 4, and let us define Πsym =
∑d

j=1 Π
⊗m
j .

Theorem 2: A state is in σSMC if and only if it holds

Tr(Πsymρ) = 1 (5)

or equivalently

ΠsymρΠsym = Πsymρ = ρ. (6)

Furthermore:
a) σSMC implies σEC;
b) σSMC for σ with non-degenerate spectrum implies RSC;
c) σSMC for σ with non-degenerate spectrum implies SSC;
d) The converse implications of a), b), or c) do not hold;
e) It is impossible for a state to be σSMC with respect to all

σ ∈ H(H).
The proof is given in Appendix B. We thus have, as could

be expected, that σSMC is in general a stronger notion of
consensus, as long as σ has non-degenerate spectrum.

Remark: It is worth remarking how all these definitions
could be given for classical systems, in the context of consensus
for random variables or for probability distributions of the state
values. In this case, for example, σEC would require the ex-
pectation of a set of random variables, each one associated to a
subsystem, to be the same in all subsystems; RSC would require
the marginal distributions on each subsystem to be equal; and
SSC would require that the joint probability distribution is
invariant with respect to subsystem permutations.

III. QUANTUM EVOLUTIONS ON NETWORKS AND

THEIR ASYMPTOTIC PROPERTIES

So far we have been concerned with discussing “static” prop-
erties of consensus states. However, the core of the problem is
the design of discrete-time dynamical systems (or algorithms)
that drive the system to consensus. In the following sections, we
will establish which dynamics are needed to drive an arbitrary
initial state towards a consensus state. In addition to this, as
in the classical consensus problems, we shall require the final
state to preserve or express some property dependent on the
initial state. For example, when classical average consensus is
reached, each agent locally holds (“has computed”) the average
of the initial state values, which is a global property. In the
quantum case as well, a goal when reaching consensus would
often be to retrieve, in the final state of any local subsystem,
some global information about the initial state.

A. Classical Dynamics and Locality

For classical consensus, the starting point is a first-order
integrator dynamics for each individual agent, of the type

xk(t+ 1) = xk(t) + uk(t) or
d

dt
xk(t) = uk(t) (7)

for k = 1, 2, . . . ,m. In this paper we focus on the discrete-
time case. The inputs uk(t) for the agents can take different
forms, but they are all based on local information. A notion
of locality is traditionally introduced by specifying a directed
graph G(V,E) whose vertices are the agents 1, 2, . . . ,m and
where an edge (j, k) ∈ E (ordered pair of vertices) indicates
that agent j can send information to agent k. Then for each k,
input uk is restricted to depend only on xk and on the states
xj of agents j for which (j, k) ∈ E. We consider uk written
as the sum of contributions from different edges, uk(t) =∑

j:(j,k)∈E fj,k(xk(t), xj(t)). Weights w(j,k) can be associated
to the edges to model their relative strengths. Besides the given
asymmetry through edge weights, one usually forbids uk to
explicitly use agent identifiers and apply a different treatment to
information coming from or going towards different neighbors.
This implies

uk(t) =
∑

j:(j,k)∈E
w(j,k)f(xj , xk) (8)

where now f must be independent of j, k. Finally, one may
request that the influence of agent j on agent k be exactly equiv-
alent to the reverse influence, of agent k on agent j. Then uk

of the type (8) features symmetric weights, w(j,k) = w(k,j)—
leading to an undirected weighted graph—and the antisym-
metry property f(x, y) = −f(y, x) for any x, y ∈ R

n. Such
evolution would preserve the average of the state values.
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More generally, locality can be defined with quasi-local
operators. Instead of considering a graph, we define a set
of neighborhoods Nj ⊆ {1, . . . ,m} for j = 1, . . . ,M , and
a quasi-local operator is one that leaves all subsystems un-
changed except those of one neighborhood Nj . Then a simple
dynamics with local coupling would write

x(t+ 1) =

M∑
j=1

Vj (x(t)) (9)

where Vj : R
mn → R

mn for each j is a quasi-local operator
acting on the neighborhood Nj . Treating all involved agents
equivalently can be formulated as requiring that for each j, the
quasi-local operator satisfies PVj = VjP for all agent permu-
tations P . The classical consensus algorithm (7), (8) is obtained
by taking two-agent neighborhoods only, and identifying each
Nj with an edge of the graph.

B. Quantum Dynamics and Locality

According to Schrödinger’s equation, isolated quantum sys-
tems evolve unitarily [20], [21]. However, unitary dynamics are
not enough when we are interested in studying or engineering
convergence features for a quantum system. A more general
framework that includes (Markovian) open-system evolutions
is offered by quantum channels [21], [22], that is, linear,
completely positive (CP) and trace preserving (TP) maps from
density operators to density operators E : D(Hm) → D(Hm).
It can be shown that such maps admit an operator sum repre-
sentation (OSR), also known as Kraus decomposition:

E(ρ) =
K∑

k=1

AkρA
†
k with

K∑
k=1

A†
kAk = I (10)

where K � (dim(H))2. The representation is not unique, how-
ever the relation between all the possible different represen-
tations is well known (see [21, Theorem 8.2]). A CPTP map
is said unital if E(I) = I . These maps represent the quantum
equivalent of doubly-stochastic transition matrices for Markov
processes. A particular set of unital quantum channels is given
by random unitaries [23]. A channel belongs to this class when
it admits an OSR with K operators Ak =

√
pkUk, with Uk ∈

U(Hm) and pk ≥ 0 such that
∑K

k=1 pk = 1:

E(ρ) =
K∑

k=1

pkUkρU
†
k.

Such a map can be thought of as a probabilistic mixture of
unitary evolutions.

Given a CPTP map E , we can define its dual map with
respect to the Hilbert–Schmidt inner product E† : B(H) →
B(H) through the relation:

Tr[AE(ρ)] = Tr
[
E†(A)ρ

]
. (11)

This dual map is still linear and completely positive, while the
fact that E is trace preserving implies that E† is always unital.
Considering the dynamics in the dual picture, i.e., with time-
invariant states and maps acting on the observables, is called
Heisenberg’s picture in the physics literature and provides an
equivalent description of quantum system evolution.

We now introduce locality notions for the quantum network.
Consider the multipartite system introduced in Section II-B:
following [11], we say that an operator in B(H) is quasi-
local if it acts nontrivially only on one neighborhood Nj ⊆
{1, . . . ,m}:

Definition 5 (Quantum Quasi-Local Operator): An operator
V is quasi-local with respect to a set of neighborhoods {Nj , j =
1, 2, . . . ,M}, if and only if there exists j ∈ {1, 2, . . . ,M}
such that

V = VNj
⊗ IN j

(12)

where, with a slight abuse of notation, VNj
accounts for the

nontrivial action on HNj
and INj

=
⊗

k 	∈Nj
Ik.

C. Timing of Operations and Evolution Types

In classical consensus, an important aspect is that the graph
(and the related interaction law) can be time-varying. For
instance one can assume that all edges are activated for the
whole time (synchronous update), at the other extreme that they
are activated one at a time, or some at each time (asynchronous
update), according to some predefined time-varying sequence
or by random selection of edges. Interestingly, convergence
properties for all these cases can be linked to the connectedness
of the “average graph” [24].

In the quantum case also this distinction can be made. The
elementary dynamical interaction that we consider, replacing
“one edge” of the classical case, is a CPTP map involving one
neighborhood only:

ENj
(ρ) =

K∑
k=1

pkVk(t)ρV
†
k (t) (13)

where all the Vk(t) ∈ U(Hm) are quasi-local with respect to
the neighborhood Nj , j ∈ {1, 2, . . . ,M}. One of the reasons
for focusing on this class of evolutions stems directly from
applications: methods for implementing unitary evolutions, as
well as related unital channels with the aid of some ancillary
systems, are available in a number of diverse experimental
settings. On the other hand, constructing arbitrary quantum
channels is a more challenging task [25], and can be generally
done with good approximation only in the limit of fast control
and/or short time scales [7]. The building block (13) can lead
to different evolutions for the whole system, depending on
neighborhood selection:

• Random single interactions: at each time t one neighbor-
hood Nj(t) is selected at random, j(t) being a single-
valued random variable onto the neighborhood index set.

• Cyclic single interactions: at each time t one neighborhood
Nj(t) is selected deterministically, for example periodi-
cally cycling between the available j.

• Random or cyclic asynchronous interactions: similar to the
previous options, but a subset of several neighborhoods
is selected at each time t. We can request the selected
neighborhoods to be disjoint or not. This choice may
have consequences for the implementation and conver-
gence speed, but not for the convergence property of our
algorithm, so we will not consider it further.

• Synchronous interactions: all the available interactions are
activated at each time, weighted by some qj ≥ 0 with
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∑M
j=1 qj = 1 to maintain a trace-preserving map:

E(ρ) =
M∑
j=1

qjENj
(ρ). (14)

• Expected evolution: we study the evolution in expectation
of the random interaction protocol which selects neigh-
borhood Nj with probability qj at each t. Remarkably,
the evolution to ρt+1 given ρt then follows the same law
(14) as the synchronous case. Note that convergence of
the expected evolution to consensus does not guarantee
(at all) that a(ny) single evolution, determined by a real-
ization of the random process {j(t)}t≥0, would converge
to consensus. Nevertheless, the first order statistics of any
measurements performed at any time on the system will
be exactly the same for (14) as for the associated random
evolution. In this sense, convergence in expectation is
indistinguishable from trajectory-wise convergence.

The last two cases involve a time-independent map. Another
time-independent map is obtained if we consider cyclic interac-
tions of period T and we focus on the state at the end of every
cycle:

ρt+T = EC(ρt) = ENT
◦ . . . ◦ EN1

(ρt). (15)

The consensus goal can now be specified formally.
Let d(ρa, C) = infρ∈C ‖ρa − ρ‖, where C ⊂ D(H) and ‖ · ‖

is any p-norm on B(H). Given a sequence of channels
{Et(·)}∞t=0, define Êt(ρ0) = ρt = Et ◦ Et−1 ◦ · · · ◦ E1(ρ0), and
CσEC to be the set of states in σEC consensus.

Definition 6 (Asymptotic Consensus): A sequence of chan-
nels {Et(·)}∞t=0, is said to asymptotically achieve σEC if

lim
t→∞

d
(
Êt(ρ0), CσEC

)
= 0 (16)

for all initial states ρ0.
The same definition holds for RSC, SSC, and σSMC by

substituting the corresponding state sets in (16).
Definition 7 (Asymptotic Average Consensus): We say that

the sequence of channels {Et(·)}∞t=0 asymptotically achieves
S-average σEC for some S ∈ H(Hm) if it asymptotically
achieves σEC and for all ρ0, it holds

lim
t→∞

Tr (σρ̄�(t)) = lim
t→∞

Tr
(
σ(�)ρ(t)

)
= lim

t→∞
Tr (Sρ(t))

=Tr(Sρ0) (17)

for all � ∈ {1, . . . ,m}. The same definition holds for σSMC.
We say that the sequence of channels {Et(·)}∞t=0 asymptot-

ically achieves S-average RSC (resp. SSC) if it asymptotically
achieves RSC (resp. SSC) and for S ∈ H(Hm) there exists a
σ ∈ H(H) such that (17) holds for all ρ0.

By expressing the action of quantum channels in the dual
(Heisenberg) picture, it is possible to obtain a clear characteri-
zation of the dynamics that satisfy (17).

Proposition 2: Consider a sequence of CPTP channels
{Et(·)}∞t=0, and call Êt = Et ◦ Et−1 ◦ . . . ◦ E1. The associated
dynamics satisfies (17) if and only if

S = lim
t→∞

Ê†
t (S) and lim

t→∞
Ê†
t

(
σ(�)

)
= S (18)

for � = 1, 2, . . . ,m, where Ê †
t = E†

1 ◦ E
†
2 ◦ . . . ◦ E

†
t .

Proof: The conditions (18) clearly imply (17). On the
other hand, if (17) holds for all ρ0, it is easy to obtain (18) by
duality, taking the limit inside the trace functional. �

The first of the equalities in (18) holds in particular for the
natural situation where E†

t (S) = S for all t. Similarly to the
classical case, average quantum consensus algorithms could be
a useful tool towards locally estimating collective quantities of
an ensemble of many subsystems. Typically in large-ensemble
quantum experiments, only few subsystems might be accessi-
ble by a measurement apparatus, and then applying a robust
consensus procedure to the final state of the system could allow
local measurements to provide a kind of “average state” knowl-
edge of the whole ensemble—including potentially quantum
correlations that survive throughout the network, e.g., satis-
fying pairwise Bell-inequalities, if several subsystems can be
conditionally measured. Section V discusses this in more detail.

IV. A GOSSIP ALGORITHM FOR QUANTUM CONSENSUS

We now propose actual interactions that drive the quantum
network to average consensus. As a building block, we focus on
the interaction between two subsystems while the others remain
unchanged; all neighborhood-activation options build on this
elementary case, as explained above.

A. Another Viewpoint on the Classical Gossip Algorithm

The standard linear consensus algorithm corresponds to (7),
(8) with f(x, y) = α(x− y). Its form with a single interaction
activated at any time—also called gossip algorithm—is usually
described as follows [26]. At each iteration, a single edge (j, k)
is selected from the set E(t) of available edges at that time. The
associated agents move towards each other or their mean value,
according to

xj(t+ 1) =xj(t) + α (xk(t)− xj(t))

= (1− β)xj(t) + β
xj(t) + xk(t)

2
xk(t+ 1) =xk(t) + α (xj(t)− xk(t))

= (1− β)xk(t) + β
xj(t) + xk(t)

2
x�(t+ 1) =x�(t) for all � 	∈ {j, k} (19)

where α ∈ (0, 1) to have meaningful results,3 and β = 2α. An
alternative viewpoint on this behavior is that the interacting
agents take a weighted average between two discrete opera-
tions: [keep your state] and [swap your state]; namely,

(xj(t+ 1), xk(t+ 1)) = (1− α) (xj(t), xk(t))
+ α (xk(t), xj(t))

x�(t+ 1) =x�(t) for all � 	∈ {j, k}. (20)

This latter viewpoint turns out to have a natural quantum
counterpart. Working with neighborhoods, one could also apply
multi-agent permutations, e.g.,

(xj , xk, xl)t+1 = (1− α− β)(xj , xk, xl)t + α(xk, xl, xj)t
+ β(xl, xj , xk)t.

The following result (see, e.g., [26]) characterizes convergence
to consensus with the gossip algorithm. While it is a known

3That is, the new states are an interpolation and not extrapolation between
xj(t) and xk(t).
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result, we nonetheless provide a proof that will be useful to
our aim, i.e., proving the convergence of the quantum gossip
algorithm, and makes our presentation more self-contained.

Proposition 3: Consider G(V,E) an undirected graph that
is connected, i.e., for any pair of vertices a, b ∈ V , there exists
a sequence of vertices v0 = a, v1, v2, . . . , vn−1, vn = b such
that (vk−1, vk) ∈ E for all k = 0, 1, . . . , n. If one step of the
classical gossip algorithm (19) is applied at each time, selecting
the updated edge by cyclically running through all the edges of
G(V,E), then the system exponentially converges to average
consensus. Moreover, if the updated edge (j, k) is selected
randomly according to a fixed probability distribution {qj,k},
with all qj,k > 0, then asymptotic average consensus is ensured
with probability one, in the sense that: for any δ, ε > 0, there
exists a time T > 0 such that

P

[
‖xk(T )− x̄)‖2 > ε ‖xk(0)− x̄‖2

]
< δ

where P denotes the probability measure induced by the ran-
domization, ‖x‖2=

∑m
k=1 x

T
k xk and x̄=(1/m)

∑m
k=1 xk(t) =∑m

k=1 xk(0) for any choice of the edges.
Proof: We denote xTx = ‖x‖2 for short and |E| the

number of edges in G(V,E). At any step of the gossip algo-
rithm, W := (1/2m)

∑m
k,j=1 ‖xk − xj‖2 =

∑m
k=1 ‖xk − x̄‖2

can only remain unchanged (if the two nodes of the selected
edge have the same value) or decrease (as soon as an edge with
different node values is selected). Therefore, W is a (non-strict)
Lyapunov function for the system dynamics, and when the
edges of a connected graph are selected in a cyclic way, a direct
application of the LaSalle invariance theorem (see, e.g., [27])
shows that the system asymptotically converges to the con-
sensus set. Since the map associated to one full cycle of edge
selections is linear and time-invariant, this convergence is expo-
nential. For such convergence to be possible, there must exist
some λ > 0 and integer M > 0 such that W (T ) ≤ W (0)λ if
the edge choice between t = 0 and t = T = M |E| corresponds
to M cycles of gossip. When edges are selected randomly,
any particular sequence of b consecutive edge selections has
a probability greater than q̄b > 0 to appear at least once during
any time interval of length at least b, where q̄ = min(j,k)∈E qj,k.
In particular, if we target W (T ) < εW (0) = λrW (0), we can
say that there is a probability at least q̄rM |E| to select r times
a succession of M cyclic interactions between t = t0 and t =
t0 + rM |E|. If this happens once, any preceding or following
edge choice can only improve W (because of our first statement
in this proof). We conclude by noting that over a time interval
brM |E|, there is then a probability < (1− q̄rM |E|)b to have
never selected r times a succession of M cyclic interactions,
and thus potentially miss W (T ) < εW (0); the probability that
this happens can be made arbitrarily small by taking b (thus T )
sufficiently large. �

B. Quantum Gossip Interactions

Let us introduce a way to implement gossip-type interactions
in a fully quantum way. In a controlled quantum network, one
can typically engineer unitary transformations that implement
the “identity” evolution and the swapping of two neighboring
subsystem states; let us denote the latter operator by U(j,k)

for swapping subsystems j and k. To develop our analysis,
it will be convenient to introduce the graph G associated

to the multipartite system: its nodes 1, . . . ,m correspond to
the “physical” subsystems, the edge (j, k) is included if the
subsystems j and k have a nonzero probability to interact.

Assume edge (j, k) is selected at a certain step t. We then
consider an auxiliary two-level system Q and the joint unitary
evolution I ⊗ |ξI〉〈ξI |+ U(j,k) ⊗ |ξS〉〈ξS | of the quantum net-
work and the auxiliary system. This conditionally associates
the two operations I, U(j,k) on the network to the orthogonal
states |ξI〉 and |ξS〉 of Q. Denoting by ρ the initial state of the
quantum network and by ρξ = (1− α)|ξI〉〈ξI |+ α|ξS〉〈ξS |+
β|ξS〉〈ξI |+ β∗|ξI〉〈ξS | the generic initial state of Q, the joint
state after the evolution gets

ρ⊗ ρξ → (1− α)ρ⊗ |ξI〉〈ξI |+ αU(j,k)ρU
†
(j,k) ⊗ |ξS〉〈ξS |

+ βU(j,k)ρ⊗ |ξS〉〈ξI |+ β∗ρU †
(j,k) ⊗ |ξI〉〈ξS |.

Taking the partial trace over the auxiliary system, we obtain
as evolution for the quantum network a quantum channel that
represents our fundamental quantum gossip interaction:

ρ(t+ 1)=Ej,k (ρ(t))=(1−α)ρ(t) + αU(j,k)ρ(t)U
†
(j,k) (21)

with α ∈ (0, 1). Note that the conditional swapping only in-
volves purely local interactions among subsystems j and k of
the quantum network, plus the auxiliary system Q associated to
this pair. The state of Q after interaction is discarded; hence, it
does not need measurement equipment. Moreover, any choice
of α 	∈ {0, 1} is sufficient to introduce some degree of dissi-
pation (non-unitary evolution) on ρ(t), which is necessary for
convergence [9]. In accurately controlled settings [8], one may
assume to have an actual resettable ancillary system associated
to each link, or one or more “moving” ancillary systems that
activate the desired links. Then resetting the ancilla to an initial
state with α = 1/2 would optimize quasi-local mixing.

C. Convergence to Consensus

We study convergence under three types of gossip dynamics:
cyclic interactions, expectation of random interactions, and
trajectory-wise for the random interactions. In all these cases,
quantum gossip can be described by unital CPTP maps. We
begin by recalling a characterization of the fixed points of such
maps (see, e.g., [4]).

Proposition 4: Let {Vi}Ki=1 the Kraus decomposition of a
unital CP map E(·) and define

AE = {X ∈ B(Hm)|XVi−ViX = 0 ∀ i = 1, . . . ,K} . (22)

Then X̄ ∈ B(Hm) is a fixed point of E , i.e., E(X̄) = X̄ , if and
only if X̄ ∈ AE . �

This helps determine the set of fixed points for the CP maps
of interest in quantum gossip.

Lemma 1: Let U(j,k) denote the pairwise swap operation
of subsystems (j, k) on Hm. If the graph G associated to the
system is connected, then the set of fixed points of any CP unital
map of the form

E(X) = q0X +
∑

(j,k)∈E
qj,kU

†
(j,k)XU(j,k)

with q0 +
∑

(j,k)∈E
qj,k = 1, q0, {qj,k} > 0 (23)

coincides with the set of permutation-invariant operators.
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Fig. 1. Delimitation of the (closed) domains for the eigenvalues {μk} of F
(blue) and {λk} of E (red).

Proof: According to Proposition 4 above, the fixed points
are the X satisfying XU(j,k) = U(j,k)X , or equivalently

U †
(j,k)XU(j,k) = X . The latter expresses that X is invariant

with respect to pairwise swaps on all the graph edges. It is
well known that sequences of pairwise swaps on the edges of a
connected graph generate the full set of permutations on the set
of nodes, and so we get the conclusion. �

The following lemma shows how the contribution of the
identity, i.e., the trivial permutation, in the CP map plays a
crucial role in the proof of convergence.

Lemma 2: Consider a linear completely positive map E
on B(H) that admits an operator-sum representation {Ak}
with one operator proportional to identity, i.e., A1 =

√
αI > 0.

Then, if λ is an eigenvalue of E , |λ| = 1 implies λ = 1.
Proof: If E is a CPTP map it is a contraction in trace

norm [21], [28], so its eigenvalues λk belong to the closed unit
disk. By virtue of the Kraus–Stinespring representation theorem
(see, e.g., [22]), also F = (1/(1− α))(E − αI) is CPTP and
thus has eigenvalues μk in the closed unit disk. Therefore,
the eigenvalues λk = (1− α)μk + α of E = (1− α)F + αI
in fact belong to the circle of radius (1− α) centered at α,
which is strictly inside the unit circle except for a tangency
point at 1 ∈ C, see Fig. 1. �

In other words, Lemma 2 excludes eigenvalues of unit norm
different from +1, those which would cause limit cycles.

By combining the above properties, we get the follow-
ing convergence result for quantum gossip. It shows that S-
average SSC can be attained for global operators that are the
permutation-invariant average of local ones; this is similar to
classical gossip, where distributed computation of the average
of individual states actually gives access to the value of any
linear permutation-invariant function of these states.

Theorem 3: If the graph associated to possible interactions
is connected, then the quantum gossip algorithm (21) ensures
global convergence towards SSC: deterministically, when the
edges on which a gossip interaction occurs at a given time are
selected by periodically cycling, in any predefined way, through
the set of edges; in expectation, when the edges on which a
gossip interaction occurs at a given time are selected randomly
from a fixed probability distribution {qj,k > 0|

∑
(j,k)∈E qj,k =

1}; with probability one on any trajectory, with the same edge-
selection strategy of the previous point. Explicitly, there exists
a state ρ∗ ∈ CSSC for which for any δ, ε > 0, there exists a time
T > 0 such that

P

[
Tr

(
(ρ(T )− ρ∗)

2
)
> ε

]
< δ.

In any of the above cases, the system converges to

ρ∗ =
1

m!

∑
π∈P

Uπρ0U
†
π, (24)

where ρ0 is the initial state of the network. Furthermore, S-
average SSC is attained if and only if S ∈ H(H⊗m) can be
written, for some σ ∈ H(H), in the form

S =
1

m

m∑
i=1

σ(i). (25)

Proof: First notice that all the operators in the OSR of
the map (15) are self-adjoint. This implies that permutation-
invariant observables S are fixed points for the associated dual
map, and hence for the gossip interaction associated to any edge
(j, k) and ∀ρ:

U(j,k)SU
†
(j,k)=S ⇒ Tr [Ej,k(ρ)S]=Tr

[
ρE†

j,k(S)
]
=Tr[ρS].

(26)
For the cyclic evolution map EC , we notice that all the simple

two-subsystem swaps are still present with a weight different
from zero in the OSR of the cyclic map (15), thanks to the pres-
ence of the identity in the OSR of each gossip interaction step.
Therefore, by Lemma 1 the fixed points are the permutation-
invariant operators. Now consider the dynamics associated to
EC as a linear, time-invariant map acting on the subspace of
hermitian matrices. From Lemma 2 and the fact that the time-
invariant linear map leaves D(Hm) invariant (excluding unsta-
ble Jordan blocks), we have that all the modes of the LTI system
are asymptotically stable except those corresponding to the
fixed-point set, namely the permutation-invariant set: every ini-
tial state converges to a fixed point ρ∞ in this set. Thus the SSC
set is globally asymptotically stable, and in fact exponentially
stable since the map is linear. Let us now prove that ρ∞ has
the form (24). For all permutation invariant X , from (26) we
have that

Tr [XEC(ρ0)] = Tr[Xρ0] ∀ t. (27)

Combining the latter with the fact that ρ∞ is permutation-
invariant, that the set of all permutations is self-adjoint, and
using (3), we get for arbitrary Q ∈ H(Hm):

Tr[Qρ∞]=Tr

⎡
⎣Q 1

m!

∑
π∈P

Uπρ∞U †
π

⎤
⎦=Tr

⎡
⎣ 1

m!

∑
π∈P

UπQU †
πρ∞

⎤
⎦

=Tr

⎡
⎣ 1

m!

∑
π∈P

UπQU †
πρ0

⎤
⎦=Tr

⎡
⎣ 1

m!

∑
π∈P

QUπρ0U
†
π

⎤
⎦ .

This implies that indeed ρ∞ = ρ∗ as stated.
For the expectation of random evolution, the CPTP map E is

exactly of the form of Lemma 1 and the same reasoning can be
repeated.

For the random trajectory evolution, we repeat a proof
similar to that of Proposition 3. Since E for a single evolution
step is linear, self-adjoint with respect to the Hilbert–Schmidt
inner product, and thus with eigenvalues in the closed unit disk,
it is a contraction for the Frobenius norm distance Tr((ρA −
ρB)

2) between any two states ρA, ρB ∈ D(Hm). Indeed, E
has non-increasing orthonormal modes, so by writing any
operator X ∈ H(Hm) in the modal basis we directly get
Tr(E(X)†E(X)) ≤ Tr(X†X); taking X = ρA − ρB yields the



166 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 1, JANUARY 2015

contraction.4 Now taking in particular ρA = ρ and ρB = ρ∗,
we get that the Frobenius distance from ρ to ρ∗ can never
increase. Moreover, by transitivity of the permutation operators,
(1/m!)

∑
π∈P UπρU

†
π = (1/m!)

∑
π∈P Uπρ0U

†
π = ρ∗ for any

ρ along the trajectory of the gossip algorithm. Now given
the convergence under cyclic evolution, there must exist some
λ < 1 and integer M > 0 such that

Tr
((

EM
C (ρ)− ρ∗

)2) ≤ λTr
(
(ρ− ρ∗)

2
)

for any ρ for which (1/m!)
∑

π∈P UπρU
†
π = ρ∗. The proof

then concludes along the same lines as Proposition 3, namely
the probability to obtain an edge sequence which includes
successions of M cyclic evolutions a sufficiently large number
of times to have ε-convergence, gets arbitrarily close to 1 if we
wait long enough.

Finally let us prove that we attain S-average consensus if and
only if S can be decomposed as in (25). We know from the first
part of the proof that all permutation-invariant observables S

are fixed points for the associated dual map E†
t . Then according

to Proposition 2 we have S-average consensus if and only if
there exists a local observable σ such that

lim
t→∞

Ê†
t (σ

(�)) = S (28)

for � = 1, 2, . . . ,m. Because of (26) and (24), by duality we
have that for every local operator σ(�)

lim
t→∞

Ê†
t (σ

(�)) =
1

m!

∑
π∈P

U †
πσ

(�)Uπ =
1

m

m∑
i=1

σ(i). (29)

This is the form (25), concluding the proof. �
Remark: This shows that the mean value of a (global)

observable S = (1/m)
∑m

�=1 σ
(�), with arbitrary σ, can be

asymptotically retrieved from the state of any single subsystem
after having applied one of the quantum gossip algorithms.

On the other hand, unlike for classical consensus, there are
permutation-invariant operators that do not attain S-average
consensus, because they cannot be written in the form (25). This
is the case among others if S is orthogonal to the linear span of
all the local observables. For instance if S̃ = σ⊗m

z , given the
orthogonal basis {σk}k=0,x,y,z for B(H), we have

Tr
[
S̃σ

(�)
k

]
= 0 ∀ k ∈ {0, x, y, z} and ∀ l ∈ {1, . . . ,m}.

Therefore, S̃ cannot be written in the form (25); hence, although
S̃ is conserved by the gossip algorithm, the latter cannot lead to
S̃-average consensus in the sense of Definition 7.

D. Classical Equivalent to Observable Consensus Dynamics

We next show how the quantum gossip algorithm (21) in fact
implements in a quantum fashion the classical gossip as we
restrict to σEC. According to Definition 1, a quantum state ρ
belongs to CσEC if:

Tr
[
σ(1)ρ

]
= . . . = Tr

[
σ(m)ρ

]
. (30)

In view of this, it seems reasonable to attempt a convergence
study of the algorithm (21) directly in terms of the evolution of

4This is analogous to the non-increasing Euclidean norm xT x = ‖x‖2
under a classical consensus iteration with an undirected graph, and the related
contraction of ‖xA − xB‖2.

the expectation values of the σ(�) operators. This is not possible
for arbitrary quantum evolutions, since a quantum state is far
from fully specified by a single set of commuting observable
expectations, and different states with the same expectation
may lead to very different evolutions. However, our quantum
gossip algorithm remarkably allows us to write a model for the
average dynamics of the σ(�) in closed form. More precisely, let
us define z�(t) := Tr[Et(ρ0)σ

(�)] = Tr[ρtσ
(�)]. Note that for

one subsystem swap U(j,k), we have

Tr
[
σ(�)U(j,k)ρU

†
(j,k)

]
=

⎧⎨
⎩

z� if � 	∈ {j, k}
zk if � = j
zj if � = k.

(31)

According to (31) and (21), the random gossip algorithm up-
date yields, with probability qj,k, i.e., when the edge (j, k) is
selected

(zj(t+1), zk(t+1)) = (1− α) (zj(t), zk(t))+α (zk(t), zj(t))

z�(t+ 1) = z�(t) for all � 	∈ {j, k}.
This last expression is exactly the classical gossip algorithm

(20). Therefore, Proposition 3 readily implies:
Corollary 1: Under all the various edge selection strate-

gies for quantum consensus algorithm (21), the z�(t), � =
1, 2, . . . ,m asymptotically converge towards

lim
t→∞

z�(t) =
1

m

m∑
k=1

zk(0) for all � ∈ {1, 2, . . . ,m}.

�
We remark that this only proves average σ-Expectation Con-

sensus of the quantum gossip algorithm, while our previous
Theorem 3 shows that the algorithm in fact ensures the stronger
average Symmetric State Consensus.

E. Gossip Algorithm Example

In this section, we briefly discuss the evolution induced
by random quantum gossip interactions (21) on a four-qubit
network whose associated graph is a path.5 We observe its
convergence toward average σEC, average RSC and average
SSC. In particular we consider as a “target” global observable:

S =
1

4

(
σ(1)
z + σ(2)

z + σ(3)
z + σ(4)

z

)
. (32)

Let the initial state be

ρ = |1, 0, 1, 0〉〈1, 0, 1, 0| (33)

which is pure, and does not satisfy any of the consensus
definitions provided in Section II.

By Theorem 3 the state asymptotically converges to

ρ∞ = lim
t−→∞

ρ(t) =
1

3!

∑
π∈P

Uπρ0U
†
π

=
1

6
(|1, 1, 0, 0〉〈1, 1, 0, 0|+|1, 0, 1, 0〉〈1, 0, 1, 0|

+ |1, 0, 0, 1〉〈1, 0, 0, 1|+|0, 1, 1, 0〉〈0, 1, 1, 0|
+ |0, 1, 0, 1〉〈0, 1, 0, 1|+|0, 0, 1, 1〉〈0, 0, 1, 1|). (34)

This expression is clearly invariant under all the subsystem
permutations, i.e., ρ∞ is in SSC, and therefore also in RSC

5I.e. the available neighborhoods, labeling the subsystems as {1,2,3,4}, are
{1,2}, {2,3}, and {3,4}.
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Fig. 2. Evolution toward σ-Expectation Consensus for a four-qubit network
arranged in a path graph.

and σEC for all σ. The expectation value of S is preserved at
any step, and by Theorem 3 the algorithm drives the system to
S-average consensus, with σ = σz .

However, ρ∞ is not in σSMC for any σ 	= αI . Indeed,
according to Proposition 2, ρ∞ is in σSMC if and only if
Tr[ρ∞Πsym] = 1. Now let {Πi}6i=1 denote the orthonormal
rank-one projectors in (34) and define the orthonormal projector
Π̄ =

∑6
i=1 Πi, such that ρ∞ = (1/6)

∑6
i=1 Πi = (1/6)Π̄. We

then get

Tr[ρ∞Πsym] =
1

6
Tr

[
6∑

i=1

ΠiΠsym

]
=

1

6
Tr[ΠsymΠ̄]. (35)

This last expression is equal to 1 if and only if Tr[ΠsymΠ̄] = 6.
However, excluding the trivial case σ = αI , for qubit networks
Πsym is always a two dimensional projector, so Tr[ΠsymΠ̄] ≤
2. Hence, ρ∞ cannot be in σSMC for any nontrivial σ.

Fig. 2 shows the evolution of the expectation values of the
local and of the global observables related to σz as the iterations
proceed for one run. The edges are selected at random with
uniform probability, and the mixing parameter α is taken to be
1/2. With this particular choice, the reduced density operators of
two subsystems that have just interacted are equal; this explains
why a maximum of three points are visible on the graph at any
time. The plot shows that asymptotically the expectation of the
local observables σz tend to the expectation value of the global
observable S, while the expectation value of S is preserved at
each step.

V. APPLICATIONS

We now briefly outline three possible applications of the
ideas developed in the paper. We want to emphasize the wide
flexibility and intrinsic robustness in engineering dynamics that
leads to consensus. For example, in our algorithm the strength
of mixing, the order of the interactions and the neighborhood
topology can be allowed to vary, within the limits imposed by
Theorem 3. In this sense, consensus is a robust behavior, that
does not have to be tightly controlled. It could, e.g., naturally
appear in a large lattice of sites where quantum particles can be
found and, because of free or (purposefully) perturbed dynam-
ics, particles are allowed to stochastically move around the lat-
tice; hence, effectively exchanging states between lattice nodes.

In the examples below, we shall assume that such a
consensus-yielding process is present in a large network of

interest, while accurate control and/or measurement is only
possible on a limited number of subsystems—say, those on the
boundary of the lattice, or temporarily removed from it to allow
interactions with other pieces of laboratory equipments. With
experimental quantum systems, this is typically the case when
measurement processes are concerned. Thanks to our consensus
results, we show how the mixing induced by the consensus
dynamics can be exploited to achieve some network-wide tasks
with such restricted local control access.

A. Estimation of a Global Variable From a Subsample

Consider a quantum system composed of a large number m
of identical quantum subsystems, initially prepared by some
experiment in an unknown global state ρ. We are interested
in estimating the “average value of a physical property Q over
all subsystems,” that is the expected value q̄ of the observable
Q̄ = (1/m)

∑m
j=1 Q

(j), for the state ρ, but we are allowed
to perform measurements only on a fixed subset of p ≥ 1
subsystems that are accessible to our measurement apparatus.

Let qj be the random variable (RV) describing the outcome
of a local measurement of Q(j) on ρ. Since Q(j) and Q(k)

commute for j 	= k, we can perform a joint measurement of
Q(1) to Q(p) on a single realization of ρ. A natural estimator
for the expectation q̄ = Tr(ρQ̄) would then be of course the
sampled average

q̂(p) =
1

p

p∑
j=1

qj . (36)

If we can repeat the same experiment, producing k times the
same ρ and denoting qj(z) the respective measurement out-
comes of RV qj for z = 1, 2, . . . , k, then a better estimate
would be

q̂(p, k) =
1

pk

p∑
j=1

k∑
z=1

qj(z). (37)

By letting k grow large enough, we can make the variance of
q̂ arbitrarily small. However, in all practical situations where
there might be local variations in the network, the p accessible
subsystems are not bound to be representative of the whole
ensemble, and q̂ is unavoidably biased, unless p = m.

This problem is resolved if our gossip-type algorithm can be
first enacted on the whole network of m subsystems. Indeed,
the measurement statistics obtained from the p fixed subsystems
after reaching the consensus state ρ∗ = (1/m!)

∑
π∈P UπρU

†
π

are equal to the measurement statistics if we had access to p
randomly selected subsystems before consensus.6 In particular,
the expected value of an estimate q̄(p) of Q from our p
subsystems becomes

E[q̄(p)]=
1

pm!
Tr

⎡
⎣ p∑
j=1

∑
π∈B

Q(j)UπρU
†
π

⎤
⎦= 1

pm!
Tr

⎡
⎣ p∑
j=1

∑
π∈B

Q(π(j))ρ

⎤
⎦

=
1

m
Tr

⎡
⎣ m∑
j=1

Q(j)ρ

⎤
⎦ = Tr[Q̄ρ].

6This follows from the standard statistical mixture interpretation of a convex
combination of density operators.
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Thus, q̄(p) provides an unbiased estimator for q̄, irrespective of
the value of p.

Further computations along the lines of statistical sampling
without replacement then allow to analyze the variance of q̄(p).

For k independent measurements, the result can be extended
as in (37). Note that RSC would be sufficient to guarantee that
the estimation is unbiased for any local Q. In addition, SSC
would allow to generalize the present setting to situations where
the local operator Q is replaced by a collective operator on less
than p particles. We could then probe different types of average,
symmetric correlations in the experimental state ρ.

B. Purifying and Cooling of a Sample by Local
Feedback Actions

It is known that unitary control and projective measurements
are enough for the preparation of any pure state for a single
system [29]. We here show how local access to an arbitrarily
small subset of a quantum network, in conjunction with our
gossip interactions, is enough to asymptotically prepare a class
of factorized, pure states on the whole network.

Consider again a set of m identical subsystems, of which
only the first p are accessible via measurements of identical,
non-degenerate Q =

∑d
x=1 λxΠx. Further assume that, after

each measurement, we can apply any desired unitary control
on these p subsystems, possibly dependent on the measurement
result [25], [29], while some (weaker, unsupervised) control
procedure allows us to reach global SSC on the m subsystems.
For simplicity we will make explicit reference to our gossip
interactions.

We are interested in preparing the whole quantum network in
a pure state. It can be shown that any pure, factorized state of
the form

ρ̂ = |ψ〉〈ψ| ⊗ · · · ⊗ |ψ〉〈ψ|
can be asymptotically obtained with the control resources de-
scribed above, by cyclically iterating the following two steps:

Step I Apply a finite number M > 0 of gossip interactions.
Step II Perform measurements of Q on each of the p probe

subsystems. This brings the network into a state

Πx1
⊗Πx2

. . .⊗Πxp
⊗ ρ\p

where x1 to xp are the measurement results and ρ\p is an
unknown state on m− p subsystems. Then for each
k = 1, 2, . . . , p, use a unitary control action Uk on sub-
system k such that UkΠxk

U †
k = |ψ〉〈ψ|.

At each iteration of Step II the expectation V (ρ) = 1−
Tr[ρ̂ρ] is either left unchanged, if the p subsystems are al-
ready all prepared in |ψ〉〈ψ|, or else it must decrease. During
Step I, V (ρ) is not changed, since ρ̂ is a permutation-invariant
operator. If the conditions of Theorem 3 hold, then it is easy
to show that the largest invariant set for the whole procedure is
contained in the kernel of I − ρ̂. Hence, by LaSalle invariance
theorem we conclude that ρ̂ is prepared asymptotically.

If the global Hamiltonian of the network is of the form
Htot =

∑m
j=1 Q

(j) or, more generally, admits a ground state
of the form ρ̂, then this procedure can be used to obtain ground-
state cooling.

By variations of the above protocol, the same control capa-
bilities can be used to engineer dynamics that asymptotically

drive the state of the quantum network to have support on an
arbitrary target subspace of the network’s joint Hilbert space,
provided it is invariant with respect to subsystem permutations.

C. Estimating the Size of a Sample

Consider again a set of m identical subsystems, with the
same control capabilities as in the previous application: only
the first p are accessible via measurements of identical, non-
degenerate observables Q and feedback unitary control, while
SSC can be reached on the whole network. We are now inter-
ested in estimating the number m of subsystems in the quantum
network.

For this, we will first prepare the network in a state ρ′ that has
support in a subspace which is orthogonal to some “marker”
eigenstate |ψ〉 of Q, such that Tr[ρ′(|ψ〉〈ψ|)(j)] = 0 for all
j. Such a state can be asymptotically reached with an easy
adaptation of the protocol described in the last section.

In order to estimate the size of the sample, we next apply the
following procedure.

Step 1) Perform measurements of Q on each of the p probe
subsystems, and use fast unitary control on each of
them in order to prepare them all in the marker
eigenstate |ψ〉 of Q.

Step 2) Let the network evolve with gossip to SSC.
Step 3) Perform again measurements of Q on the p probe

subsystems, recording how many times |ψ〉 is
obtained.

Step 1 prepares the network into a state

|ψ〉〈ψ| ⊗ . . .⊗ |ψ〉〈ψ| ⊗ ρ\p

where ρ\p is an unknown state on m− p subsystems (with
m unknown), but still satisfying Tr[ρ\p(|ψ〉〈ψ|)(j)] = 0 for all
j > p. As shown in Section V-A, the statistics of measuring Q
on the p probe subsystems after Step 2, equals the statistics of
measuring Q before Step 2 on p uniformly randomly selected
subsystems. In the latter case, whenever one of the first p
subsystems was selected we would get outcome |ψ〉, while
whenever a subsystem j > p is selected we would certainly not
get |ψ〉. The random variable K counting the number k of times
|ψ〉 is detected in Step 3 therefore follows a hypergeometric
distribution,

K = k with probability

(
p

k

)(
m− p

p− k

)/(
m

p

)
where

(
b
a

)
= b!/(a!(b− a)!). We thus have

E[K]=p2/m, Var(K)=E|!
[
(K−E(K))2

]
=

p2(m−p)2

m2(m−1)
.

Then, the estimator can be chosen to be m̂ = p2/K̂, where K̂ is
the sampled value of K. It is then easier to study the statistical
properties of m̂−1, being just a rescaling of the measured K̂.
The relative error (m̂−1 −m−1)/m−1 of m̂−1 then has mean
zero, i.e., it is an unbiased estimator. We can then compute its
variance

E

[(
m̂−1 −m−1

m−1

)2]
=E

⎡
⎣m2

(
K̂

p2
− 1

m

)2⎤⎦=
m2

p4
Var(K)

=
m2

p4
· p

2(m− p)2

m2(m− 1)
=

(m− p)2

p2(m− 1)
.



MAZZARELLA et al.: CONSENSUS FOR QUANTUM NETWORKS: SYMMETRY FROM GOSSIP INTERACTIONS 169

This shows that if we pick p = α ·m to be a fixed yet
unknown fraction of the total population, when the population
increases the relative accuracy of m̂−1 improves since the above
variance goes to zero as 1/m. Then for the limit of large m, we
can conclude that the variance of m̂ also goes to zero as 1/m.

VI. CONCLUSION AND RESEARCH DIRECTIONS

In this paper, we develop a general framework for posing and
studying consensus problems in the quantum domain, and illus-
trate how it could be used for distributed control and estimation
problems. In particular, we build on the statistical property of
the states with respect to local observables and their symmetry
with respect to permutation operations to derive four different
generalizations of a consensus state to quantum systems—
namely σ-expectation consensus, reduced state consen-
sus, symmetric state consensus, and single σ-measurement
consensus—and establish their hierarchy. We highlight at each
step the symmetry considerations underlying the results, mak-
ing explicit connection with the usual multi-agent consensus
problem. These ideas can be directly translated in order to
obtain a “consensus on probabilities” framework for classical
systems. With respect to the existing work on non-commutative
consensus [17], our approach follows the analogy with the
classical setting as closely as possible, maintaining an op-
erational viewpoint and working with a multipartite system
(a quantum network). We propose and analyze a quantum
gossip-type algorithm that asymptotically prepares symmetric-
state consensus states while preserving the expectation of any
permutation invariant observable.

A number of questions remain open. Among these, we be-
lieve that it would be particularly interesting to further explore
the link between single σ-measurement consensus states and
entangled states [21], and to determine if, and under which
conditions, it is possible to achieve this type of consensus
with a distributed algorithm. This could potentially lead to a
class of algorithms that prepare entangled states in a robust
and distributed way. Another interesting point is to assess the
potential of continuous-time dynamics for consensus: a first
dissipative proposal has been presented in [30], but we believe
it would be worth exploring also time-averages of Hamiltonian
dynamics, which could lead to connections with physically
relevant many-body dynamics.

Lastly, let us remark that in this paper we proposed a
quantum algorithm in which the gossip-type interactions are
selected in a classical way. The advantage of a fully quantum
implementation, along with its potential speedup by using
quantum random walks and their fast mixing properties [31],
[32], is definitely worth further investigation.

APPENDIX

A. Description of Quantum Systems and Notations

1) Quantum Systems Basics: This paper considers networks
of quantum systems. The mathematical description of a single
quantum system starts by considering a complex Hilbert space
H. In order to be consistent with most of the literature on
quantum control and quantum information, we shall employ
Dirac’s notation, where |ψ〉 denotes an element of H (called
a ket), while 〈ψ| = |ψ〉† is used for its dual (a bra), and 〈ψ|ϕ〉
for the associated inner product. We denote the set of linear

operators on H by B(H). The adjoint operator X† ∈ B(H)
of an operator X ∈ B(H) is the unique operator that satisfies
(X|ψ〉)†|χ〉 = 〈ψ|(X†|χ〉) for all |ψ〉, |χ〉 ∈ H. We then de-
note H(H) the subset of B(H) of self-adjoint operators, and
U(H) ⊂ B(H) the subset of unitary operators. The natural in-
ner product in B(H) is the Hilbert–Schmidt product 〈X,Y 〉 =
Tr(X†Y ), where Tr is the usual trace functional (which is
canonically defined in a finite dimensional setting). We denote
by I the identity operator.

While most of our results can be straightforwardly extended
to a finite network of infinite-dimensional subsystems, for
the sake of simplicity we restrict the presentation to finite-
dimensional systems. That is we shall assume H ≈ C

n for
some n. Working in a finite dimensional setting, we can con-
veniently fix a basis in H and represent vectors and operators
as complex matrices of suitable dimensions:

1) |ψ〉 ∈ H � C
n are represented by column vectors;

2) 〈φ| ∈ H† � C
n are row vectors;

3) X ∈ B(H) � C
n×n are n× n complex matrices.

The adjoint X† is then the transpose conjugate of X , and
self-adjoint and unitary properties carry over to the associated
matrices (Hermitian and unitary, respectively). Readers that
are not familiar with quantum theory can keep in mind this
representation and follow this paper in linear algebraic terms.

In statistical quantum theory, the state of a quantum system
is represented by a density operator ρ, that is any self-adjoint,
positive semi-definite operator with trace one. We denote the
convex set of these operators (the state space) by D(H). The
extreme points of this set, namely the rank-one operators ρ =
|ψ〉〈ψ| with |ψ〉 ∈ H and 〈ψ|ψ〉 = 1, are called pure states.

A projective (or von Neumann) observation, or measurement,
of a quantum system is characterized by a so-called observable,
that is a self-adjoint operator σ ∈ H(H), see, e.g., [20]. Its
spectral decomposition σ =

∑d
j=1 sjΠj , with d ≤ n distinct

eigenvalues {sj} and projectors onto associated eigenspaces
{Πj}, governs the stochastic outcome of the measurement and
the possibly modified state of the system after measurement:
having state ρ before the measurement, the latter’s outcome
will be sj with probability Pρ(sj) = Tr(Πjρ) =: pj ; and if
outcome sj is obtained, then the state after the measurement is
ρ|j = ΠjρΠj/pj . The probability to observe s′k in a subsequent

measurement of σ′ =
∑d′

k=1 s
′
kΠ

′
k, with eigenvalues {s′k} and

projectors onto associated eigenspaces {Π′
k} that do not neces-

sarily commute with the Πj , is then

Pρ|j (Π
′
k) = Tr(Π′

kΠjρΠj)/pj .

It follows that the probability of observing the ordered sequence
of two events first sj , then s′k, given the initial ρ, is

Pρ(Πj ,Π
′
k) = Tr(Π′

kΠjρΠj).

If Πj and Π′
k do not commute, a different ordering in a sequence

of measurements can change the resulting probability. If Πj

and Π′
k do commute, and only then, the joint probability of

observing sj , sk is independent of the measurement order for
all ρ, and simplifies to

Pρ(Πj ,Π
′
k) = Tr(Π′

kΠjρ).

2) Two-Level Quantum Systems as Qubits: A qubit is
a (generic, abstract) quantum system associated to a two-
dimensional Hilbert space H ∼ C

2; a standard basis for the
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latter is conventionally given by two vectors denoted |0〉 ∼
[1, 0]T and |1〉 ∼ [0, 1]T .

The traceless unitary hermitian Pauli operators σx, σy, σz

and the identity operator I together form an orthonormal basis
for all hermitians operators on H. Explicitly, σx = |1〉〈0|+
|0〉〈1|, σy = i|1〉〈0| − i|0〉〈1|, σz = |0〉〈0| − |1〉〈1|. With the
standard basis, these are associated to the matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

These all have eigenvalues 1,−1.
We briefly illustrate quantum projective measurement for this

example.
Assume for instance that the initial state is ρ=(1/3)|0〉〈0|+

(2/3)|1〉〈1| and we perform a measurement of σz = |0〉〈0| −
|1〉〈1| = s1Π1 + s2Π2, where Π1 = |0〉〈0| and Π2 = |1〉〈1|.
Then we get outcome s1 = 1 with probability Tr(ρΠ1) =
1/3, and if that is recorded, we update the state to Π1ρΠ1/
Tr(Π1ρΠ1) = |0〉〈0|. Outcome s2 = −1 will appear with prob-
ability 2/3, and in that case we shall transform the state to
Π2ρΠ2/Tr(Π2ρΠ2) = |1〉〈1|. Consider now the same initial
state ρ but we perform a measurement of σx. Then similar
calculations yield that we get outcome s1 = 1 with probability
Tr(ρΠ1) = 1/2, with now Π1 = (1/2)(|0〉+ |1〉)(〈0|+ 〈1|),
while the post-measurement state gets updated to Π1; and with
probability Tr(ρΠ2) = 1/2 we get outcome s2 = −1, with
Π2 = (1/2)(|0〉 − |1〉)(〈0| − 〈1|), and update the state to Π2.
If we perform a measurement of I instead, then we always
get the unique result 1 and the state ρ does not change. For
systems on higher-dimensional Hilbert spaces, measurements
associated to degenerate operators can project the state to a
subspace of dimension >1, leading after measurement to a
modified state which depends on the initial state. This is always
the case when carrying out a measurement on one part of a
multipartite quantum system.

3) Multipartite Systems and Partial Trace: For simplicity,
we present the interaction of two quantum systems; the case of
n > 2 systems is easily obtained by iteration. If two quantum
systems, with associated Hilbert spaces H1 and H2, respec-
tively, are taken together to form a larger bipartite quantum
system, the Hilbert space H1,2 associated to the composite
quantum system is the tensor product of the individual quantum
subsystem Hilbert spaces, H1 ⊗H2.

Let {|ψk〉}n1

k=1 and {|φl〉}n2

l=1 be orthonormal bases for H1

and H2, respectively, then an orthonormal basis for H1,2 is

{|ψk〉 ⊗ |φl〉}n1,n2

k,l=1 (38)

from which we get that dim(H1,2) = dim(H1) dim(H2) =
n1n2. We use the short notation |ψ, φ〉 := |ψ〉 ⊗ |φ〉 for any
|ψ〉 ∈ H1 and |φ〉 ∈ H2. The composite Hilbert space is
naturally endowed with the inner-product 〈u1, u2|v1, v2〉 :=
〈u1|v1〉〈u2|v2〉. A representation and basis for operators in
B(H1,2) is derived from its vector counterpart in the standard
way. In particular, given two operators X1 ∈ B(H1) and X2 ∈
B(H2), one can define X1 ⊗X2 ∈ B(H1,2) as the linear
operator such that ∀|u1〉 ∈ H1, |u2〉 ∈ H2:

X1 ⊗X2(|u1〉 ⊗ |u2〉) = X1|u1〉 ⊗X2|u2〉. (39)

If two operators are in the form X1 ⊗ I2 and I1 ⊗X2, i.e., they
act nontrivially only on different parts of the multipartite sys-

tem, then they commute for any X1 and X2. It is worth noting
that in matrix representation, the tensor product corresponds to
the Kronecker product.

The partial trace over H1 is the unique linear map

TrH1
: B(H1 ⊗H2) −→ B(H2)

such that, for any X1,2 ∈ B(H1,2) and any X2 ∈ B(H2),

Tr [TrH1
[X1,2]X2] = Tr [X1,2(I1 ⊗X2)] .

If {|ψk〉}n1

k=1 and {|φl〉}n2

l=1 are orthonormal bases for H1 and
H2, respectively, the partial trace over H1 can be written as

TrH1
[X1,2] =

n1∑
k=1

n2∑
l,i=1

〈ψk ⊗ φl|X1,2|ψk ⊗ φi〉|φl〉〈φi|. (40)

The partial trace over H2 writes in a similar fashion.

B. Proofs of Results in Section II-B

Proof of Proposition 1: By considering an hermitian basis
for B(H), it is clear that a state is RSC if it is σEC for all
σ ∈ B(H).

If ρ̄k is a pure state for each k, then necessarily ρ =
|ψ〉〈ψ| with |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψm〉 for some |ψk〉,
k = 1, 2, . . . ,m. If in addition we require RSC, then we need
|ψk〉〈ψk| = ρ̄k = ρ̄j = |ψj〉〈ψj | for all j, k; thus, |ψk〉 = |ψj〉
up to an irrelevant phase factor for all j, k and particle permu-
tation indeed leaves |ψ〉 invariant. �

Proof of Theorem 2: Note that the properties Tr(Πsymρ) =
1 and ΠsymρΠsym = Πsymρ = ρ are equivalent because Πsym

is an orthonormal projector and ρ is self-adjoint positive semi-
definite with unit trace. Assume (5) to hold. Along with the
identities Π(k)

j Πsym = Π
(k)
j Π⊗m

j = Π⊗m
j , this gives

Tr(Π
(�)
j Π

(k)
j ρ) =Tr(Π

(�)
j Π

(k)
j Πsymρ) = Tr(Π

(�)
j Π⊗m

j ρ)

=Tr(Π
(�)
j Πsymρ) = Tr(Π

(�)
j ρ)

for all j, k, �. Hence, the σSMC definition (4) indeed holds.
On the other hand, suppose that (5) does not hold. This means

that Tr((I −Πsym)ρ) > 0. We want to show that this implies

Tr(Π
(k)
j Π

(�)
j ρ) 	= Tr(Π

(�)
j ρ)

for some j, k, �. Let us write

I −Πsym =
∑

j1,...,jm∈{1,2,...,d}
except {j1=...=jm}

Πj1 ⊗ . . .⊗Πjm .

Since Tr((I −Πsym)ρ) > 0 implies that Tr(Πj1 ⊗ . . .⊗
Πjmρ) > 0 for at least one of the terms in the above sum, let
us take one such term, denote the corresponding indices as
{j̄s} and denote by k, � two subsystems such that j̄k 	= j̄� in
that term. Now writing Πj̄1 ⊗ . . .⊗Πj̄m = Π

(1)

j̄1
Π

(2)

j̄2
. . .Π

(m)

j̄m
,

where all factors commute, we have

Tr(Π
(k)

j̄k
Π

(�)

j̄�
ρ) ≥ Tr(Π

(1)

j̄1
Π

(2)

j̄2
. . .Π

(m)

j̄m
ρ) > 0.

By mutual orthogonality of {Π(k)

j̄a
: a = 1, 2, . . . ,m} for fixed

k, and knowing that the trace of an operator cannot increase
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under multiplication by a projection operator, we thus get

Tr(Π
(k)

j̄�
Π

(�)

j̄�
ρ) ≤Tr

((
1−Π

(k)

j̄k

)
Π

(�)

j̄�
ρ
)

=Tr
(
Π

(�)

j̄�
ρ
)
− Tr

(
Π

(k)

j̄k
Π

(�)

j̄�
ρ
)

≤Tr
(
Π

(�)

j̄�
ρ
)
− Tr

(
Π

(1)

j̄1
Π

(2)

j̄2
. . .Π

(m)

j̄m
ρ
)

<Tr
(
Π

(�)

j̄�
ρ
)
.

For (a), we have since (4) holds for all k, �:

Tr
(
Π

(k)
j ρ

)
= Tr

(
Π

(k)
j Π

(�)
j ρ

)
= Tr

(
Π

(�)
j ρ

)
.

By linearity, we thus have

Tr
(
σ(k)ρ

)
=

d∑
j=1

sjTr
(
Π

(k)
j ρ

)
=

d∑
j=1

sjTr
(
Π

(�)
j ρ

)
=Tr

(
σ(�)ρ

)
.

A counterexample for the converse is state ρA in Example 1.
Counterexamples for the converse of (b) and (c) are, respec-

tively, states ρB and ρC in Example 1. For the direct statements,
given Proposition 1, we know that if (c) is true, then (b) must
be true as well. Let us then focus on (c). Take the representation
of ρ in the basis associated to σ =

∑n
j=1 sj |j〉〈j|, where thus

|j〉〈j| = Πj , that reads

ρ =
∑

j1,j2,...jm∈D,
k1,k2,...km∈D

r j1,j2,...jm
k1,k2,...km

|j1, j2, . . . , jm〉〈k1, k2, . . . , km|

with D = {1, 2, . . . , n}. From Proposition 2, the condition for
σSMC writes ∑

k,j∈D
(|k〉〈k|)⊗mρ (|j〉〈j|)⊗m = ρ

so (41) must reduce to

ρ =
∑

k,j∈D
pkj |kk . . . k〉〈jj . . . j| (41)

for some pkj ∈ C. It is straightforward to see that a ρ of this
form satisfies SSC, since any element in the sum is invariant
w.r.t. subsystem permutations. Regarding point (e), the defini-
tion of σSMC involves Tr(Π(k)

j Π
(�)
j ρ), which takes the partial

trace over the state of all subsystems except the pair {k, �}. So
we can effectively discard all but two subsystems, and show
without loss of generality that it is impossible to make σSMC
hold for all σ on two subsystems k = 1, � = 2. In Proposition 2,
we say that σSMC for a particular σ requires Πsymρ = ρ

with Πsym =
∑d

j=1 Π
⊗m
j , and {Πj} the spectral projectors

associated to σ. So if σSMC has to hold for both σ and σ′,
we must have in particular

ΠsymΠ
′
symΠsymρ = ρ

where Π′
sym is associated to σ′. Since H := ΠsymΠ

′
symΠsym

and ρ both are self-adjoint positive semidefinite, the only
way to have Hρ = ρ 	= 0 is if H has at least one eigenvalue
≥1. Now take in particular σ =

∑n
k=1 k|xk〉〈xk| and σ′ =∑n

k=1 k|pk〉〈pk|, with pk = (1/
√
n)

∑n−1
j=0 e

jk2πi/n|xj+1〉
(thus the |pk〉-basis is related to the |xk〉-basis by Fourier
transform). A few computations show that H then has all
eigenvalues < 1, except for n = 2 that is the case of two qbits.

For the latter particular case, one can prove the property by
showing, e.g., that there is no state which would satisfy σSMC
for all σ ∈ {σx, σy, σz}. �

C. On Detecting Quantum Consensus

In the quantum setting, there exists no state ρ for which all
measurement outcomes are deterministically defined. Even a
maximal information state, i.e., ρ = |ψ〉〈ψ| a rank one pro-
jector, leads to probabilistic outcomes for all observables of
which |ψ〉 is not an eigenstate. As we are thus compelled to
use probabilistic notions, consensus can only be inferred from
stochastic measurement records, and checking different types
of consensus requires different types of measurement statistics.

The σEC, requiring only equal expectations for a particu-
lar observable σ on the different subsystems, simply requires
measurements of local σ-measurements results, but no corre-
lations between measurement results on different subsystems
are needed. Checking RSC requires statistics for a basis of
observables for each subsystem; as for σEC, correlations be-
tween measurement results on different subsystems play no
role. On the other hand, distinguishing SSC from RSC does
require to inspect correlations between measurement outcomes
at different subsystems.

Proposition 5: Except for the case of reduced pure states
considered in Proposition 1, SSC can only be distinguished
from RSC by inspecting correlations between measurement
outcomes at different subsystems.

Proof: The statement builds on the standard fact that the
statistics of a local observable σ1 ⊗ σ2 ⊗ . . .⊗ σm only depend
on reduced states ρ̄1, ρ̄2, . . . , ρ̄m. So repeated local measure-
ments can, at their best, fully characterize the ρ̄k. Checking
RSC, i.e., that these ρ̄k are all equal, is thus straightforward.
On the other hand, reduced states ρ̄k are the best that can be
extracted by local measurements in trying to distinguish RSC
from SSC states. If ρ̄1 = ρ̄2 = . . . =: ρ̄ have rank one, we have
the special case that is always SSC. If instead ρ̄ has rank at least
2, we can write it as ρ̄ = p1R1 + p2R2 where R1, R2 ∈ B(H),
p1, p2 are positive scalars, R2 is positive semidefinite, and R1

is a projector on a 2-D subspace V2. Consider R1 = |e1〉〈e1|+
|e2〉〈e2| = |f1〉〈|f1 + |f2〉〈f2|, where |e1〉, |e2〉 and |f1〉, |f2〉
are two orthonormal bases for V2 with 〈e1|f1〉 	∈ {0, 1}. Then
ρ̄ could equally well reflect the state

ρ = ρ̄⊗m

which is SSC, or, e.g., a state of the form

ρ = p2R
⊗m
2 + p1 (|e1〉|f1〉+ |e2〉|f2〉) (|e1〉|f1〉+ |e2〉|f2〉)†

⊗R
⊗(m−2)
1

where the first two subsystems are entangled. This state is not
SSC, even for m = 2. Thus, the local knowledge of ρ̄ does not
allow to distinguish if the state is SSC or not. �

For instance, considering the state ρB of Example 1, mea-
surements of σz on the three subsystems would quickly show
that the results on subsystems 2 and 3 are always perfectly
correlated, and show no correlation at all with the results on
the first subsystem. This difference in correlations rules out ρB

as a candidate for SSC.
The definition of σSMC is all about correlations between

measurement outcomes at different subsystems: the latter must
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be fully correlated for a particular observable σ. Positively
detecting states in SSC but not in SMC, however, appears to
be less obvious (except through full state tomography).
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