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ABSTRACT: Local stiffness of Euler–Bernoulli beams can be identified by dividing the bending moment of a deformed beam by the local
curvature. Curvature and moment distributions can be derived from the modal shape of a beam vibrating at resonance. In this article, the modal
shape of test beams is measured by both scanning laser vibrometry (SLV) and shearography. Shearography is an interferometric optical method
that produces full-field displacement gradients of the inspected surface. Curvature can be obtained by two steps of derivation of the modal
amplitude (in the case of SLV) or one step of derivation of the modal shape slope (in the case of shearography). Three specially prepared
aluminium beams with a known stiffness distribution are used for the validation of both techniques. The uncertainty of the identified stiffness
distributions with both techniques is compared and related to their signal-to-noise ratios. A strength and weakness overview at the end of
the article reveals that the shearography is the technique that shows the most advantages.
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Introduction

Data collection for local stiffness identification of beams can
be divided into dynamic-based and static-based methods.
The literature and applications of static-response-based
identification is relatively limited. Most authors compute
the curvature of test beams from measured displacements.
The displacements under a known static loading are curve
fitted or directly compared with numerical models [1–4].
Yang et al. [5] and Li et al. [6] used inverse procedures for
reconstructing the stiffness distribution in beams using static
responses. The deflection profile was obtained by processing
digital images of the beam and was next utilised as the input
for inverse computational procedures. An inverse method
based on a finite element model and an optically measured
displacement field was used by Sztefek and Olsson [7].
Grédiac et al. used full-field techniques in combination with
the virtual field method to evaluate distributed material
stiffness [8]. Devivier et al. used full-field slopemeasurements
in combination with the virtual field method to evaluate
stiffness and damage in composite material plates [9].

The literature on dynamic methods for the identification
of distributed stiffness is much more extended. Dynamic
methods use characteristics such as natural frequencies
[10], displacement modal shapes [11], modal shape
derivatives [12, 13], wavelet analysis of dynamic signals
[14] and harmonic responses [15, 16]. An overview of
dynamic-response-based methods using inverse techniques
can be found in [17]. An important application of stiffness
identification in beams, plates and shells is the analysis of
damage profiles. It is accepted by many authors that local
stiffness is a good quantity tomonitor local damage. Damage
accumulation in structures can be associated to stiffness

reduction and expressed mathematically as a stiffness factor
or a damage variable related to the stiffness [18–21]. The
induced damage can be translated into a modification of
structural mass, damping and stiffness. A vast amount of
methods exists that examine changes in measured vibration
response to detect, locate and characterise damage in
structural systems. The basic idea behind these methods is
that natural vibration parameters (notably natural
frequencies, modal shapes and modal damping ratios) are
functions of the physical properties of the structure (mass,
damping and stiffness). Therefore, changes in the physical
properties will cause detectable changes in the modal
properties. Literature overview of damage identification
methods using vibration analysis is given, among others,
by Doebling et al. [18] and Farrar et al. [19–21].

It is a well-known fact that differentiation of measured
data can lead to noisy results. The computation of curvatures
frommeasured modal shapes requires the second derivative,
hence, two steps of differentiation. In all the methods found
in the previously cited literature using curvatures, the
measured modal shapes or modal shape slopes are first curve
fitted with polynomial expressions to overcome the errors
due to differentiation. Curve fitting, however, is not straight
forward: curve fitting with too low order polynomials
destroys the useful information and curve fitting with too
high order polynomials tends to fit the noise as well. The
optical technique shearography (described later in the text)
offers the advantage that modal shape slopes are measured
instead of modal shapes. The computation of the curvature
hence requires only a single step of differentiation.

This paper describes a method for identifying the local
stiffness distribution of beams by measuring the free–free
modal bending shape associated with the first natural
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frequency. Thin beam Euler–Bernoulli behaviour is
assumed. The local bending moments are divided by the
local curvatures to yield the local beam stiffness. In the test
set-up, the beams are freely suspended by thin wires and
are acoustically excited.
The performance of the proposed identification method is

validated with experiments on aluminium beams with a
known stiffness distribution. Different beam shapes with
respect to the thickness distribution are tested: flat, concave
and convex specimens.
Two different optical methods are used for data acquisition:

scanning laser vibrometry (SLV) and shearography. The SLV
yields the modal shape, and shearography yields the gradient
(slope) of the first modal shape of test beams. In both cases,
the measured values are curve fitted with a high-degree
polynomial. Curve fitting enables differentiation and is also
used to estimate the noise level, as will be explained later in
this paper.
Shearography [22, 23] is an interferometric full-field imaging

technique that can produce the gradient of deformation of the
inspected surface. From its conception [24, 25], it was
envisioned as a quantitative technique to determine strain,
but presently, it is mostly used as a qualitative technique, to
visualise defects inmaterial [26]. It is used in healthmonitoring
of aircraft structures [27–29], for inspection of bonding quality
in joints [30] and for reinforcement of concrete beams [31].
Shearography has become widely used for defect detection in
the pneumatic tire industry [32]. Visual inspection can be
enhanced to numerically determine the size and depth of a
defect [33].
Shearography can be used quantitatively, to measure the

surface strain directly [22]. Depending on the optical
arrangement of the light source(s) and the camera(s),
shearography can be made sensitive to out-of-plane or
in-plane deformation [23], and three of six independent
components of the strain tensor can be measured directly.
However, in this paper, only the out-of-plane deformation
gradient was sufficient to characterise the beam stiffness.
Vibrational analysis is also possible, through the use of
stroboscopic illumination [34]. An error analysis of
shearography as a quantitative tool has been done by Goto
and Groves [35, 36].
Shearography falls into a group of modern optical full-field

methods for strain evaluation, which includes deflectometry
[37, 38], digital image correlation (DIC) [39] and electronic
speckle pattern interferometry (ESPI) [40]. Deflectometry uses
a rectangular grid projected on the surface of a test object and
observed with a charge-coupled device (CCD) camera. By
comparing the grid in a deformed position with a reference
(undeformed) position, the deformation gradients of the
surface can be captured by the shift of the grid and used for
stiffness identification. Shearography is derived from
ESPI [25]. The main difference between shearography and
ESPI is that ESPI output is related to the deformation,

while shearography output is related to the gradient of
deformation. ESPI is, however, much more sensitive to
outside disturbances. DIC is not an interferometric but a
purely optical technique, thus viable for a different scale of
deformations. While shearography and ESPI operate at
micrometre scale deformations, DIC is most often used at
0.1–10mm deformation scales [41].

The configuration used in this paper is sensitive to out-
of-plane deformations. The vibrating beams are placed so that
their vibrations occur as out-of-plane deformations. The
vibrating beams are illuminated by stroboscopic illumination,
allowing shearography to image only a certain phase of the
modal shape. This way, the gradient of deformation is the
slope of the amplitude of the modal shape. The shearography
system used is the isi-sys SE3 [42].

Scanning laser vibrometry uses a directed laser beam to
measure the vibrational response of a point on a surface.
With the implementation of a scanning head, it has the
ability to consecutively scan points, thus creating a two-
dimensional distribution of vibrations. SLV system Polytec
PSV-400 is used for data acquisition.

The first section of this paper describes the principles of
shearography. The second section describes briefly the
principles of SLV. In the third section, the principle of
identifying the beam stiffness from the measured modal
shapes is illustrated. The next sections present the
validation procedure on the aluminium beams. It will be
shown that the information contents of only the first
bending modal shape is sufficient for the identification of
the local stiffness between 25% and 75% (the central 50%)
of the beam length.

Shearography

A schematic of the shearography procedure that acquires
the out-of-plane gradient of deformation is presented in
Figure 1. This is the set-up used for measurements in this
paper. The points A, B and C, lying on the surface of the
observed object, are illuminated by coherent laser light.
The light from two points – A1 and C1 – on the surface of
the inspected object is guided by the shearing device onto
the same point (pixel at {i,j}) of the CCD sensor. The two
points A1 and C1 are separated by a shear distance in the
x-direction, δx. This shearing distance is controlled by the
shearing device and can be set to be in either x-direction or
y-direction, or both. Depending on the shearing setting, a
different gradient of out-of-plane deformation is acquired.
In this paper, shearing is set only in the x-direction, so the
acquired data are only the gradient of deformation ∂W/∂x,
with W representing the deformation in the z-direction.

In the state 1, which represents the undeformed state, the
two light waves coming from A1 and C1 are in phase. The
light waves will constructively interfere and will register as
a maximum intensity on the CCD. The intensity captured
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by the CCD camera can be evaluated [22] into the difference
of phases of the two light waves, φ. For the undeformed
state, as illustrated in Figure 1, the phase difference will be
evaluated to φ1 = 0 (in radians). When the surface is
deformed – state 2 – two points A2 and C2 are out of phase,
and the CCD at that pixel will register a smaller intensity.
The phase difference between A2 and C2 is φ2. The relative
phase change (in radians) is defined as Δ=φ2�φ1 and
encodes the gradient of deformation.
The gradient of deformation is calculated from relative

displacements of points A and C and is valid for the point B.
In the 1D case presented in Figure 1, where W is the
displacement in the z-direction, the displacement gradient
∂W/∂x of a point on the surface at {x} will be encoded by the
relative phase change of its neighbouring points {x+ δx/2}
and {x� δx/2}. The whole surface of the inspected object is
registered as a Δ-image with each point at pixel {i,j} encoding
the local gradient of deformation. In order for the point to
have its gradient of deformation properly captured, it needs
to have points {x+ δx/2} and {x� δx/2} on the same surface.
The edges of the scanned surface in the region (0, δx/2) do
not satisfy this condition, so in the Δ-image, they are not
captured. In this paper, the missing gradient values at the
edges are estimated by linear extrapolation.
The shearing distance, δx, is variable and can be set to a

desired value. As the shearing distance δx is increased,
keeping the deformation constant, Δ is increased, effectively
increasing the sensitivity to deformations. The values of Δ
are relative to the wavelength of the used light, λ, so the
value of the displacement difference will be λΔ/2π. The
gradient of deformation can be calculated as [22]

∂W
∂x

¼ λΔ
2πkzδx

; (1)

where kz is the sensitivity vector in the range (0,2),
dependent on the positions of the light source and the

camera, relative to the measured surface. Both the sensitivity
vector kz and the shearing distance δx can have locally
varying values, which can influence the accuracy of the
measurement. In this paper, they are assumed to be
constant as they do not influence the noise in the produced
Δ-image. The locally varying sensitivity kz and the shearing
distance δx will be addressed in future papers, similar to
[35] and [36]. Equation (1) is valid for small δx.

To acquire deformation gradients from harmonically
vibrating objects, stroboscopic illumination can be used [34].
When the light pulses are synchronised with the excitation
signal, only the vibrations at a fixed vibration phase are
observed. This effectively freezes the vibration and enables
modal shape slope acquisition for the beams vibrating at the
first resonant frequency. The measured gradient of
deformation ∂W/∂xwill thus be the slope of themeasured first
modal shape.

The images that shearography is producing have a certain
amount of noise, so image filtering is required in post-
processing. As with other interferometric optical techniques,
the produced images are also wrapped to one wavelength of
the light – the gradient of deformations of (∂W/∂x) +nλ, where
n is an arbitrary integer value, appears to have the same value.
This results in the characteristic appearance of ‘fringes’.
Unwrapping algorithms [43] are used to remove the fringes,
thus expand the maximum range of deformation the system
can register. Unwrapping is the second step in the
post-processing routine and is applied after the filtering.

Figure 2A shows a Δ-image of a vibrating beam. The
x-direction represents the length of the beam, while the
y-direction is the width. The image needs to be unwrapped
before further processing. The shearography imaging sensor
has a resolution of 1392×1040 pixels, but since a beam cannot
fill the whole field of view of the sensor, a practical useful
resolution will be lower. For a typical measurement, shown in
Figure 2A, the measurement image is a matrix of approximate
size 1150×125 (columns× rows). Each row can independently

Figure 1: Deformation of the observed surface creates a phase difference, which is registered as an intensity difference on the CCD sensor
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describe the gradient of deformation if Euler–Bernoulli beam
theory is assumed, meaning that the 125 rows can be seen as
sets of redundant data. This redundancy is used to eliminate
noise, by averaging the beam data width-wise (averaging the
rows). The image shown in Figure 2A is first unwrapped and
then averaged width-wise. The result after averaging width-
wise can be seen in Figure 2B. Notice the lack of data at the left
and right edges of the beam equivalent to δx/2. By assuming
that the beam is infinitely stiff in these small sections at both
ends, the missing slopes can be taken equal to the first and last
measured slope values respectively. Modal shape (Figure 2C)
can be easily integrated from the gradient provided the
integration constant is known. This integration constant is
calculated during the stiffness identification, described in the
subsequent section.
The images captured by the shearography have a speckled

appearance due to the interference pattern created by the
coherent light reflected from the object with a certain surface
roughness. This ‘speckle pattern’ is required for the operation
of shearography as the displacement is calculated on pixel-
by-pixel basis from it. In case the in-plane displacement is
large, the speckle pattern will shift within the pixel, and the
calculation of the Δ-image will not be possible. In-plane
displacement is the main reason for the speckle pattern
decorrelation, but large out-of-plane displacement can also
cause problems as it can distort the speckle pattern. Excessive
shifting or distorting of the speckle pattern will result in the

areas of the Δ-images to appear as random noise, making the
images unusable for further computations. The speckle
decorrelation is the main limiting factor for the maximum
deformation shearography can measure.

Scanning laser vibrometry

Like shearography, SLV allows for non-contact vibration
measurements of a moving surface. A laser beam is a
non-contacting transducer and avoids the problem of
mass loading of the test specimen with hardware sensors.
The vibration amplitude and frequency are extracted from
the Doppler shift of the laser beam frequency due to the
motion of the surface. The output of the SLV is a
continuous analogue voltage that is directly proportional
to the target velocity component along the direction of
the laser beam.

A vibrometer is a two-beam laser interferometer that
measures the frequency (or phase) difference between an
internal reference beam and a test beam. The test beam is
directed to the target, and scattered light from the target is
collected and interfered with the reference beam on a
CCD chip. The SLV adds a set of X-Y scanning mirrors,
allowing the single laser beam to be moved across the
surface of interest.

A Polytec scanning laser vibrometer is used to measure the
response of the beam to the excitation signal. The Polytec
system is a full-field system for automated vibration
measurement, mapping, visualisation and analysis. It
measures the modal amplitudes point by point in a
scanning mode. The Polytec Scanning LVM software version
8.7.3.0 is used for analysing the signals used in this paper.

Local stiffness identification

The equation of motion of a continuous beam for a free
vibration is [44, 45]

∂2

∂x2
EI xð Þ ∂

2w xð Þ
∂x2

� �
þ ρA xð Þ ∂

2w x; tð Þ
∂t2

¼ 0; (2)

where A is the cross section area, ρ is the specific mass, E is
the Young’s modulus, I is the section inertia, x is the
independent spatial coordinate and t is the time. The
solution can be written as a product of a time-dependent
function T(t) and a spatial-dependent function W(x):

w x; tð Þ ¼ W xð ÞT tð Þ (3)

Consider again a free–free beam vibrating in resonance at
a circular frequency ω. The time-independent differential
equation describing the geometry of the modal shape W
(x), assuming a constant specific mass, is

y

x

(A)

−92
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/∂
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Figure 2: The Δ-image of the vibrating beam (A) is filtered and
unwrapped. Using Equation (1), the gradient of deformation (B) is
calculated. The modal shape (C) is acquired by integrating the
deformation gradient
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d2

dx2
EI xð Þd

2W xð Þ
dx2

" #
� ρA xð Þω2W xð Þ ¼ 0: (4)

This equation can be seen as the differential
equation of a beam loaded statically with a distributed
pressure p(x) = ρAω2W(x). Hence, the equation can be
rewritten as

d2

dx2
EI xð Þd

2W xð Þ
dx2

" #
¼ p xð Þ; (5)

p xð Þ ¼ ρAω2W xð Þ: (6)

Integration of the pressure yields

d
dx

EI xð Þd
2W xð Þ
dx2

" #
¼ Q xð Þ; (7)

Q xð Þ ¼
Z x

0
p ξð Þdξ: (8)

Q(x) is the transverse shear force at position x. In case of a
free–free beam with length L, the shear force is zero at the
beam boundaries x=0 and x=L.
Integration of the transverse shear force gives

EI xð Þd
2W xð Þ
dx2

¼ M xð Þ; (9)

M xð Þ ¼
Z x

0
Q ξð Þdξ: (10)

The identification of the local beam stiffness EI(x) uses the
relation between the bending moment M and the curvature
in the considered point [12]:

EI xið Þd
2W xið Þ
dx2

¼ M xið Þ (11)

EI xið Þ ¼ M xið Þ
d2W xið Þ

dx2

(12)

The evaluation of EI in a single point xi requires the
knowledge of M(xi) and the second derivative of the modal
shape W (in the case of SLV) or the derivative of the modal
shape slope (in the case of shearography).
Once the bending moment M(x) is derived, the beam

stiffness EI of the beam can be evaluated point by point by
means of Equation (12).
Figure 3 shows the mutual relations between the pressure

p, the transverse shear force Q and the bending moment M.
In the case of SLV, all are derived from the modal shape W,
while in case of shearography, they are consecutively
integrated from the slope of the modal shape ∂W/∂x.

Experimental data usually contain a vast amount of noise.
Due to the presence of this noise, the measured raw data
cannot be used directly. In this research, the raw data were
smoothed byfitting the experimental datawith a superposition
of high-degree Lagrange shape functions. Lagrange shape
functions are polynomials capable of producing highly
accurate fits with a small number of nodal points. The fitting
of the measured points is based on a least squares procedure
and establishes the displacement values in the nodal points. If
the displacement values (in the case of SLV) or the slope values
(in the case of shearography) in the nodal points are known,
the value of a point in an arbitrary position can be interpolated.

The measured values are fitted by a superposition of
M Lagrange polynomials Lj. M is the number of selected
nodal points:

V xð Þ ¼
XM
j¼1

LjVj (13)

V(x) can represent the displacement as well as the slope:

Lj ¼
Y

1≤k≤M

k≠j

x� xk
xj � xk

(14)

As can be verified in the above expression, the Lagrange
polynomials Lj take the value 1 for x= xj and the value 0 in
all other nodal points xj.

The principle of dividing the beam into a regular grid of
nodal points for the Lagrange functions, including the end
points, guarantees stability of the curve fit over the whole
beam. The number of selected nodal points M defines the
polynomial degree of the curve fitting function. A more
complex modal shape requires more nodal points. The
complexity of the modal shape is a function of the variation
of the local beam stiffness distribution. The lowest
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Figure 3: The modal shape W and the slope of the modal shape
∂W/∂x, along with pressure p, transverse shear force Q and bending
moment M of a flat beam, in normalised units
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complexity case is a beam with an overall constant stiffness.
The interpolation capacity of Lagrange functions was
investigated in [46] where it was shown that the modal
shape of homogeneous beams and plates can be exactly
curve fitted with Lagrange functions with a polynomial
degree of 7. More variations of the local stiffness will require
a higher polynomial degree. Since the variation of the local
stiffness (hence curvature) is not a priori known, the best
way to establish a suitable value for M is to increase
systematically the number until the computed value of the
signal-to-noise ratio (SNR) is not changing any more by
the further increase of M. The number of experimental
points N must be much higher than the number of nodal
points M, to avoid the influence of measurement noise on
the curve fitting. A factor 10 in theN/M ratio guarantees that
the modal shape is properly fitted while avoiding the
influence of measurement noise. In this paper, the value of
M=19 is used for all curve fitting purposes, along with an
N/M ratio of 20 or more.
The coefficients Vj in the expression (13) are found by

curve fitting of the measured values. Vj can be found by
the minimisation of the least square error ε between the
fitted and measured values Ve

i , summed over the N
measurement points:

ε ¼
XN
i¼1

XM
j¼1

Lj xið ÞVj � Ve
i

2
4

3
5
2

(15)

Minimisation of ε with respect to the parameters Vk gives

∂ε
∂Vk

¼
XN
i¼1

2
XM
j¼1

Lj xið ÞVj � Ve
i

2
4

3
5Lk xið Þ ¼ 0; (16)

which leads to a set of M linear equations in Vj:

AjkVj ¼ bk; (17)

where

Ajk ¼
XM
j¼1

XN
i¼1

Lj xið ÞLk xið Þ;

bk ¼
XN
i¼1

Ve
i Lk xið Þ:

The free–free boundary conditions of the test beam require a
translational and rotational equilibrium. If this is not the case,
the shear force Q and the bending moment M computed with
Equations (8) and (10) will not be zero at x=L.
Deviations from these equilibrium conditions can occur

due to experimental errors, the curve fit procedure and the
integration procedure.

In order to impose translational and rotational
equilibrium, the curve fitted results are superposed by two
rigid body modes – a pure translation and a pure rotation
in x=L/2:

W xð Þcorrected ¼ W xð Þfitted þ aW xð Þtranslation
þ bW xð Þrotation

(18)

with

W xð Þtranslation ¼ 1;

W xð Þrotation ¼ 2x
L

� 1:

The requirements are as follows:

Q x ¼ Lð Þ ¼ ρAω2
Z L

0
Wcorrected xð Þdx ¼ 0 (19)

M x ¼ Lð Þ ¼ ρAw2
Z L

0
xWcorrected xð Þdx¼0 (20)

The parameters a and b in Equation (18) must be
determined in such a way that the requirements (19)
and (20) are fulfilled. This leads to the following:

a ¼ �Q x ¼ Lð Þ
ω2ρAL

(21)

b ¼ �6M x ¼ Lð Þ
ω2ρAL2 � 3a (22)

In the above expression, Q and M are computed with the
uncorrected smoothed and curve fitted data.

Measurement Set-ups
The test specimens are aluminium beams in three different
geometries – the flat, convex and concave beam. The flat
beam has a constant thickness of 4mm, the convex has a
thickness varying from 2mm at the edges to 4mm in the
centre and the concave beam’s thickness is 4mm at the
edges and 2mm in the centre. The Young’s modulus of the
aluminium is measured to be E=68.8GPa, using the
resonalyser method [47]. The exact geometries of the beams
are measured precisely. The thickness distribution is used to
calculate the distribution of the local flexural rigidity, EI,
which in turn is used for comparison to the identified
results. For example, the flat beam with thickness T=4mm
has a constant flexural rigidity of EI=8.9Nm2. Other
properties are summarised in Table 1.

To properly image the beam vibrations with shearography,
the surface needs to be diffusely reflective. The aluminium
beams have a shinymetallic surface, so a thin coating ofwhite
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powder is sprayed over the surface in order to be able to image
it properly. The coating is very thin (20–30μm), so it does not
influence the stiffness or the mass of the beam. The SLV does
not need this kind of surface treatment.
To approach the required free–free boundary condition,

the beam is suspended on a rigid frame by very soft elastic
cords. Additionally, the beam rests against two small pins
wrapped with soft material to prevent rigid body oscillations
during the measurement. The cords and the pins have little
influence on the natural frequency or the modal shape, even
if they are slightly misaligned to the nodal points. Their
purpose is to limit rigid body oscillations which can cause
local spikes in the modal shape in case of SLV measurements
and excessive noise in case of shearography. For the sake of
precise measurements, however, the nodal points are located
as accurately as possible. In case of a beam with unknown
stiffness distribution, the position of cords and pins can be
iteratively improved before the actual measurements by using
high excitation levels (millimetre instead ofmicrometres). For

such high amplitudes, a non-correct position causes the beam
to bounce off the pins, which can be visually observed.
Figure 4 shows a suspended test beam on the set-up.

To isolate the outside vibrations, the shearography
camera, along with the frame holding the beam, is placed
on an active vibration isolating table. The table is kept level
and vibration free using pneumatically actuated legs.

The beam is excited acoustically with a sinusoidal signal
using a small loudspeaker (Figure 4A). An acoustical excitation
is used in order to avoid physical contact and thus avoid mass
loading of the test beam. In this paper, it is shown that the
identification can be successful by only using the first
resonant frequency. The associated first modal shape is also
the most easy to excite acoustically. The vibration amplitude
can be controlled by the volume of the loudspeaker.

The data acquired from shearography come in the form of a
Δ-image, representing the gradient of deformation ∂W/∂x. For
a typical measurement presented in this paper, the
measurement image is a matrix of approximate size
1150×125. When the data are averaging width-wise, the
resulting ∂W/∂x is captured at approximately 1150 points.
The number of points the SLV set-up can acquire is limited
by the angular resolution of the scanner head. For our set-
up, the scanning was performed at maximum density – 360
points per length of the beam. The shearography can thus
acquire information on the modal shape of the vibrating
beam in three times higher density than SLV.

The acquisition time for both techniques can vary, but
typically for shearography, a Δ-image is acquired in 3–4 s.
An SLV scan of 360 points lasts around 6min.

Table 1: Properties of the aluminium test beams used for tests

Beam Length Width Mass Resonant frequency

L [mm] B [mm] m [g] f1 [Hz]

Flat 220.5 25.0 58.3 427.5

Convex 220.1 25.0 49.1 453.6

Concave 220.1 25.0 39.6 196.7

(A)

(B) (C)

Figure 4: Measurement set-ups for shearography (B) and the SLV (C), with a close-up on the vibrating beam (A)

© 2013 Wiley Publishing Ltd | Strain (2013)
doi: 10.1111/str.12069

F. Zastavnik et al. : Comparison of Shearography to SLV as Methods for Local Stiffness Identification



Estimating the Noise
The amount of noise in the acquired modal shape
information for both shearography and the SLV is
quantified using the SNR. The definition used to compute
the SNR is [48]

SNR ¼ μ Sð Þ
σ Nð Þ ; (23)

where the μ(S) is the mean value of the signal S and σ(N) is
the standard deviation of the estimate of the noise N. Signal
S is the scanned modal shape, W, in case of the SLV, or the
acquired gradient of the modal shape, ∂W/∂x, in case of
shearography. Furthermore, only signals in the range
(0.25,0.75) of the beam length L are used as only in this
range of the beam length the stiffness will actually be
identified. The curvature outside this range is nearly zero
and hence cannot be used for accurate identification of the
stiffness. The noise N is estimated as the difference between
the signal and its curve fit,

N xð Þ ¼ W xð Þ �Wfit xð Þ for SLV; (24)

N xð Þ ¼ ∂W
∂x

xð Þ � ∂W
∂x

� �
fit

xð Þ for shearography: (25)

SNR needs to be defined as a positive value. The gradient
of the modal shape, ∂W/∂x, and the modal shape W can
have both positive and negative values, so the absolute
value of the ratio of the mean μ(S) to σ(S� Sfit) is used:

SNR ¼ μ Sð Þ
σðS� SfitÞ
����

���� (26)

In Figure 5A,B, the most important parameters when
calculating the SNR for both SLV and shearography
measurements are illustrated.
For SLV, a series of measurements were made by varying

the volume of the acoustic excitation of the beams. The
measured mean amplitudes, μ|W|, were recorded from 3 to
0.5mm, proving the ability of the SLV to acquire a broad
range of vibrations. For the lowest amplitude levels, the
SNR is, predictably, low. At mean amplitudes, μ|W|>1μm
values of SNR>1000 are recorded. As the volume of the
acoustic excitation is increased further, the amplitudes
increase up to 0.5mm. However, this increase in amplitude
does not improve the SNR. For the flat beam, the SNR
actually decreases significantly at amplitudes above 10μm.
Possible reasons include the loss of focus of the laser and
vibrational interaction with the frame the beam is attached
to. As the vibrations approach the millimetre amplitude
level, the non-linear effects become more pronounced
so the displacements cannot be assumed to be limited to

out-of-plane. The excitation for the measurements with
SLV was increased until the sound volume in the laboratory
became uncomfortably high. From Figure 6, it can be
concluded that the vibration amplitudes in the range from
1 to 10μm give the best results. For that level of excitation,
the SNR is consistently high and the sound volume is at
the limit of audible sound.

The shearography measurements depend on the shearing
distance that is introduced by the measurement set-up. The
higher the shearing distance, the higher the sensitivity of the
method. But, high shearing distances carry the problemof large
edge areas that cannot be resolved, and the unwrapping
algorithm might have problems since the high sensitivity
results in more fringes. For this reasons, different shearing
distances were used to select the one which works best for our
problem case. The shearing can be controlled by the angle of
the shearing mirror but is measured on the specimen itself as
the distance between the two sheared images. Shearing was
selected to be 10, 20 and 40% of themaximum shearing angle,
αmax≈0.5°. This corresponds to δx= {2.4,4.9,9.8}mm, as
measured on the object at 1.4m distance. Higher shearing
distances were not used as this would increase the unresolved
edge area to unacceptable values for stiffness identification.
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Figure 5: Signal, S, is curve fitted to calculate the noise, N. The
examples with low SNR are given for SLV, SNR=27, (A) and
shearography, SNR=31, (B)

© 2013 Wiley Publishing Ltd | Strain (2013)
doi: 10.1111/str.12069

Comparison of Shearography to SLV as Methods for Local Stiffness Identification : F. Zastavnik et al.



Figure 7A shows the influence different shearing distance
values have on the SNR. It can be expected that higher shearing
distance value would have higher SNR since the signal will be
increased (higher sensitivity) and the noise would remain
constant. The highest shearing distance (δx=9.8mm) did
indeed yield the highest SNR values, so this value was used in
subsequent measurements, seen in Figure 7B,C.
In Figure 7, an increase of the SNR as the amplitude of

excitation can be observed. At a certain point, however,
the amplitude that the beam is vibrating at (particularly
the ends of the beam) starts causing the speckle
decorrelation. Speckle decorrelation is a phenomenon

where large out-of-plane or in-plane deformations cause
speckles to move as observed by the sensor of shearography.
In that case, the speckles cannot be directly compared, and
the shearography algorithm fails. The areas of the beam
which crosses the threshold for speckle decorrelation appear
as pure noise, so even the mean value μ|∂W/∂x| does not give
reliable results. As the excitation is increased past the
threshold where speckle decorrelation appears, the
registered value of μ|∂W/∂x| appears to stay unchanged. This
can be seen as a sudden drop in SNR at μ|∂W/∂x| ˜150μrad.
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Figure 6: SNR for SLV measurements of the flat (A), convex (B) and
concave (C) beams
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Figure 7: SNR for shearography measurements of the flat (A),
convex (B) and concave (C) beams. The flat beam is measured using
several shearing distances. The highest shearing distance, δx=9.8
mm, was chosen for measurements of convex and concave beams
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The best results acquired by shearography in our
experiments (there is some variability depending on the
beam used for measurements) are those in the range
(50, 100)μrad. The modal shape slope ∂W/∂x can be
integrated to obtain the modal shape, so that the modal

shape amplitude can be directly compared to the one of
SLV. The range of μ|∂W/∂x| = (50,100) μrad corresponds
to the range of μ|W| = (7,15)μm. The range of shearography
is clearly more limited than the one of SLV. Since the
acoustic excitation volume can be freely adjusted to put
the vibrations of the beam in the optimal acquisition range,
this limitation of shearography is not significant for
our application.

Still, results of shearography have a lower SNR than
the measurements under the same conditions, on the
same specimens using SLV. As seen in Table 2, the SLV can
obtain 1.7–2.4 times higher SNR values. Shearography also
has a problem at the edges of the beam where the gradient
∂W/∂x cannot be measured. These differences will be further
discussed in the following section where the results for the
stiffness identification are compared.
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Figure 8: Best results of stiffness identifications from SLV and shearography for the three types of beams

Table 2: Comparison of highest achieved SNR for both methods

Beam

Shearography SLV

maximal SNR [/] maximal SNR [/]

Flat 675 1191

Convex 434 811

Concave 619 1477
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Identification Error
The correct EI is calculated from E, measured by the resonalyser
test [47], and from the moment of inertia I of a section as

EIcorrect xið Þ ¼ Eresonalyser I xið Þ

¼ Eresonalyser
B xið ÞT xið Þ3

12

(27)

where B is the measured local width and T the measured
local thickness of the beam.
The error of the identification is calculated as the mean

value of the absolute error ratio in the range 0.25–0.75 of
the beam length:

εEI ¼ 1
N

XN
i¼1

EIidentified xið Þ � EIcorrect xið Þj j
EIcorrect xið Þ (28)

In Figure 8, the results for the most successful
identifications using data from both SLV and shearography
are presented. Qualitatively, it can be seen that the stiffness
EI is identified very accurately. Errors of identification εEI are
quantified in Table 3. The flat and convex beams show the
mean identification error εEI between 1 and 2%. Concave
beam shows comparably a high error εEI for both SLV and
shearography. The concave beam is the most flexible and
as such the most fragile of the three beams, and some
micro-cracks in the surface can occur during manufacturing.
Effects of imperfections in the beam are not taken into
account in Equation (27), so some deviations between real
stiffness and the EIcorrect can occur. These deviations would
increase the apparent identification error.
SLV consistently produces higher SNR (approximately by

a factor of 2) for a given specimen and amplitude of
vibrations. However, the information per length of the
beam produced by shearography is three times denser,
compared to the SLV. The computation of the curvature
with only one step differentiation also improves the values
of the stiffness distribution obtained by shearography.
Despite consistently having lower SNR values, identification

from slopes using shearography produces lower errors εEI for
all the beams, compared to SLV. The good accuracy obtained
from results of shearography also indicates that the lack of
information at the ends of the beam, of width δx/2 at each
end, does not pose a hindrance.

For a given specimen, using either shearography or SLV,
the SNR of the measurement is a very good indicator and
predictor whether the stiffness identification will be
successful. Measurements with low SNR values are giving
bad identification results. The results with the best εEI are
the ones with the highest SNR.

Conclusion and Further Work
Identification of the local stiffness distribution of beams is
possible by dividing the bending moment by the curvature.
The bending moment can be computed by double integration
of the dynamic pressure caused by a modal shape vibration at
the first natural frequency. Only the central 50% of the beam
shows enough curvature for stiffness identification. The modal
shape can be obtained both by SLV and by shearography. A
good operating range for the amplitude values for SLV and
slope values for shearography has been established in this
paper. The uncertainty of the obtained stiffness values was
always lower than 7.5% for SLV and lower than 5% for
shearography. SLV has the advantage of having a better SNR;
it yields complete modal information, needs no vibration
isolation and needs no surface treatment of the test beams.
Disadvantages of SLV, as compared to shearography, are the
lower density of measurement points, the much longer
measurement time (6min versus 4 s for shearography) and
the necessity for a two-step differentiation of the modal
amplitudes to obtain the local curvatures. Shearography’s
advantages are the lower equipment cost and the ability to
quickly produce full-field results. Shearography’s lower SNR is
compensated for by a three times denser grid of measurement
points. The data from shearography require only one
derivation step to obtain the local values of the curvatures.

In this paper, a conclusion is established that
shearography is a more suitable method for stiffness
identification of beams than SLV. The advantage of the
full-field measurements by shearography will be even more
pronounced in case of 2D stiffness identification of plates.
The scanning time for a 360×360 grid of points with the
SLV would need 360×6min, which is 36h. Our future
research on plate stiffness distributions will hence be
conducted with shearography, while SLV can be used as a
supporting and validation technique.

The use of shearography for the local 2D stiffness
distribution will provide additional difficulties as compared
with 1D case of beams presented in this paper. A major
difficulty to overcome is computing all six components of
the plate stiffness for each point, in the case of the assumed
anisotropy (which must be assumed in the case of damage).

Table 3: Comparison of best achieved εEI along with their SNR for
both methods

Beam Method SNR [/] εEI [%]

Flat Shearography 645 1.43

SLV 1191 1.77

Convex Shearography 434 0.82

SLV 757 0.83

Concave Shearography 615 4.71

SLV 1445 7.43
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The possible number of measured curvatures is only 3
(∂2W/∂x2, ∂2W/∂y2 and ∂2W/∂x∂y), so more modal shapes
have to be included. We aim to measure torsion and two
bending modal shapes of the test plate. Clustered mea-
surement points with equal assumed stiffness can be taken
into account if more data per calculation point are needed.
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