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Accurate frequency-domain macromodels are becoming increasingly inportant for
the design, study and optimization of complex physical systems. These macromodels
approximate the complex frequency-dependent input-output behaviour of broadband
multi-port systerns in the frequency domain by rational fonctions {281, Unforninately,
due to the complexity of the physical systems under study and the dense discretiza-
tion required for accurately modelling their behaviour, the rational or state-space
macromodels may lead to unmanageable levels of storage and computational re-
quirements. Therefore, Model Order Reduction {(MOR) methods can he applied to
build a model of reduced size, which captures the dynamics of the larger model as
closely as possible,

Orthonormal Vector Fitting (OVF) {5, 9] is an identification method, which is
typically used to approximaie simulated of measured frequency responses by an an-
alytic function. In this chapter, it is shown that the OVF method can also be seen as
a data-driven MOR method. Rather than reducing the dimensions of the state-space
matrices of a model directly (maodel-based MOR), this technique is used to build a
few state-space mode! with a reduced model complexity based on input-output data,
The goal of this algorithm is to parameterize a rational transfer function, such that its
spectral behavicur matches the response of the larger model in a least-squares sense.

Most available identification methods suffer poor numerical conditioning for
farge state-space dimensions or broad frequency ranges. The OVE method tackles
these issues by combining the benefits of & Sanathanan-Koerner iteration {32Vanda
well-chosen set of orthonormal rational basis functions. It s shown that the method
is applicable to reduce sysiems with a large amount of poles. The method does not
preserve passivity by default, however several techniques are availuble 16 enforee @
desired plysical bebaviour it a post-processing step {17, 141
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1 Identification Problem
1.1 Goal

The mujor goal of the algorithm is w id entify the mapping beiween the s and
vutpitts of o complex system By an anabviic model of rediced size. Fo U continuous-
e lnear-tine-tivadiant (LT1) svatems in the frequency domain, this reduces 1o
nding a ratiopal transfer function

.
~

which approximates the mt““tf"i respanse of @ systent over somie predefined fro
quency range of interest | £, fowr . The spectrad beliviour is characterized i)} a
set of frequency-domain duta sumples (s, H{sg ), W = 0. K. which gre ob-
ined by evaluating the State-space matrices of the large mmici N,oand 2, are the
real-valued system parameters which need to he estimated, and N and £ re present
the order of pumerator and dedominaiorn respectively. In pracice, N and 1 are cho-
sen to be much smaller than the order of the farge model. A dense frequency sweep is
required in many situations, so the amount of available data samples can be quite pu-
meraus, Therefore, numerically stable fitting techniques are required which estimte
the maodel coefficients in a Jeast-squares sense [101.

1.2 Mon-linearity of the Estimator

Rational teast-squares approximation is essentially a non-linear problem, and corre-
sponds to minimizing the following cost function {29]

arg HULL X

}\ AU :

Earg 11] KH
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Due to its non-linear nature, it can be hard to estimate the system parameters in a fast
and accurate way. I many papers. e.g. [341 this dithiculty is avoided by assuming
that a-pricri knowledge about the poles is available. It this ¢ case, the non-finear prob-
len reduces to a Hocar problem since the desominator parameters are assumed @ be
brown. In practice, however, this situation is often not a realistic one., Another poge
sible option is the use of non-lineur optimization techuaigues, such as Newion-Gauss
type algogihuns, in order o winimize (2 A known drawback of these methads, i
Mnryuanl

o local nnima, even when L cvcni‘:ar;n
algorithms ape used 1o c:'\‘i“:mi e region r}i convergence {27, 231

e (20, 0
zedd cost fon *{.5<t=;; fiu

thut the solutions may conve
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&

formulation basically reduces w (21, if the weighting factor 17
cqual o one for all frequencies s, Clearly, this weighting will bias the fitied trans-
fer fumction, und this often results in poor fow-frequency fits, due o an undesired
avpremphasis of bigh-frequency errors,

ta this chupter, the use of o Sanathanan-Koerner lteration is advocated [32). First,
s estimate of the poles i obtained by minimdzing Levi's Haearized cost function.
Civen this mital Gteration step 0) or previous (eration step £~ 13 estimate of the
potes. the model pacameters of the nest teration step are caleulated by minimizing
she wedghted Hnear cost function

/[\

\3 S D s

)

res *l«‘:"m *‘ﬂ In practice, hmw“ BT, !im mm.‘o:-;.z:h often oives fvor-
£

%\L resuits for suﬁmcmly small modelling errors. The interested reader is hereby
ceforred to an excellent survey [29].

1.3 Choice of Basisfunctions

To solve the identification problem, (4) reduces naturally to a linear set of least-
siguares equations, which needs to be sotved with sufficient accuracy.
Suppose that H = divg(H (so), ..., H{sp ) wy = [PV U017, and @g, x is
defined as
(l,.‘q)(:iél}((‘f()) (U()(‘;ﬁ‘\” {S())
Dy == , {5y
Wi o(Sk) . wrdx{sK)

then the least-squares solution of Vx = b can be caleulated to estimate the parame-
ey vector %, provided that 'V, x and b are defined as (D = 1)

}/’ o f B S TLh \,l /o . (1"

Vo '3‘(‘ i"_,<1)u”ﬁ( ﬁl.i./) } \% e { Hee H »i} } \ @
e (o “-H(f’i:n)/ \ ‘\y-m(_Hd) i/

e Dy )

equation is sphit in is real and imaginary part to enforce the poles and zeros
real. o W oceur o complex conjugate pairs (under the assumption that the
‘ i '} are eal-valued as we%é 5. Tls ensures thf'z{ "1\ coefficienis of the

we-komain,
. ;md the numer

stions, H ithe basisfynctons ofs1 are chosen o x. G zm:z;;uﬂ'xia? poRERs s
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basis (Lss, L3, the matrix & will be « Vandermonde matix which is potoriously
il-conditioned, Adeock and Pater I suggested the use of polynomials which are
orthogosal with respect to g continuons inner product, such as Chebyshey polyno-

mials. as basis functions. The farge varintion of the Chebyshoy polynomiasls with
merewse in order makes it possible to downsize the effects of Hl-conditioning, On the

other hand, Richardson and Forment {34 proposed the use of Forsythe polynomials

which are enthononmal with fespait to g diserete toner product, defined by the nor-
il equations of the estimator, This bmplies that o different set of basis furetions is
used for numeraior and derominator, Relain et al. 317 have shown tha a busis frans-
formation from the Forsythe polynomials 1o g different. arhitary polynomial basis
results b an inferior conditioning of V7'V, Hence. the Forsyihe polynomial hasis is
optimal in 2 sense that there doesn't exist any uther polyaomind hasis resulting in g
better conditioned form of the nermal cquations,

2 Vector Fitting
2.1 Mvde! Representation

Quite recenty, Gustavsen and Semlyen [13] proposed the use of partial fraciions as
basis functions for the pumerator and depominator

N
I“! O oY L ()
is) m].')(s {8}

provided that o and £, represent the residues, and — iy are a set of presceribed poles.
The denominator has an additional basisfunction which equals the constant value |,
its coefficient can be fixed to one. since Aumerator and denominator can be divided
by the same constant value without loss of genegality. Other nou-triviality consteaints
are also possible [16], Given the constraint that the poles of the numerator and de-
nominator expression of (8) are the same, i's easy to see that these basis furctions are
complete, in a sease that they can approximate any strictly proper transfer function
with distinet poles arbitvarily well. To approxinyate systems which require o proper
OF Improper Gansfer function. an oplional constaat and linear term can he added
the numeraior expression,

2.2 Parameterization of the Transfer Function

facthe st iteration, Levi's cost function is apolied, which results that Y booomes

N £ o,
Vo2 ‘f’i >
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{ that the parmimeter vector consist of unknown residues

W f_(‘i ey i‘(») (A (‘}ﬁf . (“}:’

The dmatrts B then a Cauchy matrix, which makes the system equations often well-
condittoned if the prescribed poles wre well-chosen. To make sure that the transfer

supction has real-vilued coefficients, 1 linear combination of o, {5} and REIR
formad (o make the residaes o, = o7 complex comjugate if the poles g
—aet. This way, two basts functions of the following form are obtained

1 .
El ; {ih

LS g )
: £ , k Sy
Dyt L8] e - {12}

‘ S S DR IR

Tais cawses the corvesponding elements in the solution vector 1o become equal w
Bl Poumleg) and Reld, ) n{d,).

fn successive tterations, a Sanathanan-Koerner iteration can be applied, In theory,
e could use the denominator of the previous iteration as an inverse weighting to the
system equations, The Vector Fitiag technigue is different, in a sense that weighting
i porfonmed implicitly by pole-relocation without weighting. The implicit weighting
was foand to be more robust if poles need to be relocated over long distances [8],
Muare details about this procedure are described in Appendix A,

fected as complex conjugate pairs on a vertical or skew line, close to the imaginary
sis. e (o the iterative behaviour of the SK-iteration, the prescribed poles are re-
tscated until the poles converge in such way that the minimization of the SK cost
fusction is converged. In general, this happens quite fast (i.e. <3 iterations). When
s ure chosen too far to the left tn the complex plane, the real part of the poles
dominates the matrix entries, which detesiorates the numerical conditioning. How-
ever, evern when the initial poles are inappropriately chosen, the algorithn succeeds
i1 minimizing (44, at the expense of additional iterations.

Adter parameterization of x, {8) can be simplified by cancelling out common
poles, This means that the zeros of the denaminator expre

pe

ssion hecome the poles of

fiaad transfer funciion. Caleulating the veros can easily be done, as shown in the

ing section.

2.3 Culeglation of Transfer Function Poles

miprnal LT state-space reatization
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of the denominator

P
Disy= 3~ 2 (14
g i

can be obtained by a parailel connection (initial] YyABC=fand D=0

fA4 00 ‘ 4

L= {00 . D=D+ ER {18

af the misimal state space realizations { A B,.C,. 0, of each stmple fractivn, with
Ay e iy, By, = 1, C,m=8, Dy = 0

provided that iy 18 real, If ~ Gy 4d —p constitute o complex conjugate pair

of poles {i.e. —ayyy = — a,,), the corresponding state space realization of the Hoear
combination is given as

Cp == (Re(@,) SmiE,)) Dy =10, (s

Afterwards, the constant term 1 of (14) can simply be added to the scalar I3, This ‘
transformation makes the state-space realization of D(s)

D(s) = Clsl — Ay "B+ D a9y

real-valued, such that the poles and zeros occur as complex conjugate pairs. The
zeros of (19) can then be solved by calculating the eigenvalues of A-BC. Aty
simplification of (8), these eigenvalues will hecome the relocated poles of the transfer
function ‘

—ay = eig{A - BC) {20
aind this procedure can he repeated tteratively {f = 1,... 7% until the minimization
of the SK-cost function is converged.

2.4 Identification of the Residues

()

Once the final poles )’ are identified, the corresponding residues &, canbeslved

¢

as a lnear problem

This technigue wos culled “Vestor Fiitin,

rrany modeiling problerms within DOWET 5y R

e, electronie pockages anid microwave
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3 {wthonermal Yector Fitting
3.1 Owthonormudization of Partial Fraction Basis

fnstead of vsing the partial fractions as ratona] basts functions, I was shown g o
shonormal ratdonal basis fanctions can fead to significant improvemenss in anmerical
conditioning 6,7, 261 A straightforward way to caleulate an orthanormal basis, is
to apply a Gram-Schimidt procedure i the partial fractions 12,221,271, Hence, ortho-
al raitonal functions ¢, (s} are obtained. which are in fact linear combinations

partial fractions, of the form

8] == {223
forp oo Lo P2 and Q,{sy an arbitrary polynomial of order p — 1, such that
L8 ) (8] = dn (23
with L= on < I the inner product is defined as
{Grn(8), D {8)) = e / Gl s} (5)ds {24y
. . gy )

then the (J,{s) polynomial can be determined by imposing the orthonormality con-
ditions on the basis functions. As an example, consider the construction of the first
function ¢ {s).

P 1 L . -
/ 1 ()6 (5)dls 25)

2w

), where #; 1% an arbitrary

AV
5} 15 then obisined as

MEPDIEOUTENOIS PP A B T T R
iooponmalize €] 1.5.’), Qg 9] =

snimadalar complex sumber ¢

(283

ruction of the second funetion gu{s), First of all, dols) nst
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which implies that o7/ J must vanish fur g = ~tiy. Theretore (Fala) o
This constant ~ js determined by imposing the mwrmalization condition

@) Wiere s is an arbitrary unimodulay

complex number. S0, o s

{32)
Similarly continuing this approach, the general polynonials are abiained
PRSI & T
! A /() =N
Gil &) = g P \/-f 2 } {33)

This basis originates from the discrete-time TakenakwI\/Eah'nqui&t hasis 124,337, and
has later been fransformed to the continuous time domain. It is g generalization of
the Laguerre basis 4], where all poles {~-»~a}.,} are the same real number, and the
2-parameter Kaugy bases [20] where al) poles {-a,, g w1} are the same complex
conjugate pair with T g A theoretical analysis of these basis functions is
well-described i literature. The interested reader js referred to [§ 8] which gives an
excellent survey,

To make sure that the transfer function has real-valued coefficients, a linear com-
bination of Ppls)and p,,, () is formed which can be made real-vajyeq if the pojey
are real or occur ip 4 complex conjugate pair. This Way. two orthonormal functions
of the following form gre abtained

{34)
o {35}
with senf o, - o200y T impose the srthogonaivy,




husis mnmum is (inm dmivumllx mxuad of numumafi\* so i dmm t require any

iditional computation tme,

2.2 Calendation of Transfer Function Poles

The minimal contisuous-time LT state~-space realization

[
~3

o~
tod
o0
poed

of the denominator

i then he calculated, by cascading the minimal state-space realization of smaller,
st und second order sections {11}

o)

s—ay s -ay Sy . (40)
oy s4ay S+ uap-y s+ ap

The minimal state-space realization (4,,8,.C,.D,) of the all-pass function
41

for =1, ..

aisd the minimal state-space reatization (A, B,,.C,, 1, of the low-pass function
LA o B3 S 27y

1
..... ol (43)
S+ R
35
Byt By 1, Oy L Dy o 0 (44)

’Then the mindmal state-space realization of the compound system (40) is
wthe cascade construchion
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r A 5 0]
B, Ay oo B
B,D.C, B.C, 0

B.D,DLC, B.D.C, oo

[BpDp . DLC BeDy o DL, A
1,
B0y
B,D,10,D,

r""
R
Lad
~

N
| SIS UE T

—vg}'—’ﬁpw ]»,..D{“
D = D}:‘“AD}

of the smaller staze apace models, with ity g (F)

The state matrix A and the input vector B are build such that the 31ates contain
exactly the unnormalized basis functions. The output vector C and scalar I are cho-

sen 1o obtain the denominator expression (39), by compensating for the coefficients
7 and normalization constant V2Re(n,) in the veetor C, and setting the scalar I3
equal to the coastant value 1, The following real-valued state space realization iy
obtained

0 o 0 7
iy 0 .. 0
4 . 2Re(—ay)  —ay .. 0O
S T R‘e(“-(},g) 2Re(—as) ... 0
9=

F,/}) oz

i

{46}

}:ﬁf W 1

provided that the poles ity e real,

o, and w0 constitute o complex conjugate

“ei b aveal-valued State-space realization is obiained by
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ig the cascade scheme (403 by

{393

(503

The other state space matrices remain unchanged. Appendix B describes this trans-

formution in more detail. Again, the zeros of the denominator are caleulated by solv-

ing the cigenvalues of A-BC. These eigenvalues replace the set of prescribed poles,
i fure is vepented fteratively (1 1,7 uniil the minimization of the

K-cost function Is converged.

Duce the final poles are identitied, the residues can be solved as a linear problem
ustiig the partial fraction basis (21). The orthonormal basis functions can also be ap-
phied if stability of the poles is enforced. Both representations can easily be realized
0 state-space as was shown hefore.

S

4 Example

As un example, the techaique is illustrated on a dense mode! of an atmospheric storm
track (cady), which is obtained from the NICONET benchmark dataset collection
[3]. Bused on the state-space matrices of the large model (598 < 598), the frequency
resposse is densely calculated over the frequency range of interest (1071107 and
shonwre i Fig, |,

First, a prescribed set of complex conjugate starting poles is chosen as was pro-

iam

posasd by {131
ity == Tl R 0¥ e [T (51)
ct (523
Ry parts J logarithmically spaced over the frequency range of nterest,

wunt of poles is chosen in terms of the desired reduction. In s example, it
Bosen 1o be 54, in order to have an RMS error which corresponds 1o the order

i {4y is solved using th

{5

the minimal state-sp

ues opoand e poles -,

L of the denomingtor ¥ s is eadewdated, Frony this g

A O
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manded, the poles of the transfer function are caleulaied by solving the eigenvalnes
of A-BC. These poles are chosen 45 new starting poles, and the method Herates
i the poles are converged o thelr optimal location. Osee the poles are known,
the reaidues of the transfer funetion can be estimated as i imuxr prabdent. The final
aracy of the model in terms of RMS error i 5.61 <167

At shown in Fig. 1 no visual difference can be observed betweern the frequency
eaponse of the original and redoced system. The poles of the orighrad mode! and the
;Lw;huj mindel are shown in ¥ 2. The U‘v Fomethod can also be extended o it
saterns with meltiple ports. 1t is noted that the exiension is completely amalogous
§L surix Fiiting alzorithm [15],

e g7

{Conclusion

This paper shows that Orthonormal Vector Fitting can be useful 1o reduce the state
space dimensions of large cirenit models. First, the spectral response of the Lage
madet is caleulated, and then the OVF algorithm is used o appraozimate the data with
a4 model of reduced size. It was showss that the method is guite robust, even when the
originad system has a large amount of poles. The method extends in a natural way 1o
graiti-port systems (not shown in this paper). The reduced model is represented as
state~space realization, which can easily be converted e.g. to an RLCOG cirewit,
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A Banathanan-Keerner [teration

The least-squares SK-cost function is defined as

ary

H

fibe busis functions are chosen as partial fractions, based on g preseribed set of
by, e, then 1t folfows that
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The denominator has an additonal basisfunction, which o qoals the constant valuye 1
In the frst iteration step U = (33, Levt's Hnearization is apphied (o obtain a first ouess

of the denominator {77V sy o 1

{565

This reduces w solving the following ser of feast-squares equations, for all complex

frequencies s

Sov e . . o . ~ {3
One coefficient of the rational function, ¢ e.g. wl.f . can be fixed to usity, since ny-

merator and denominator can be divided by the same complex value without loss of
generality. 5o, (38) is equivalent to

P (i 2
o Oy O s - R
L —— } L H {5} = Hs) . (593
el S SIS & A (1 ' S
gzl 7 AN ! P

(0} ~ {0 . Al
Once the parameters ¢y and r,} Care estimated, ;\ W {s) and Dy {s} are known
. 0)] (t ‘
(54-535). 1t’s straightforward o caleulate 2 Zpois ami *[ ; in @ robust way, by solving the

eigenvalue problem (20, In practice, only 2! v? , is needed.
Naw, the Sanathanan-Koerner linearization ¢ can be applied for iteration step ¢ =
1. 7T

/K . . = s

arg min
N u‘ ”

TS auin
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K P
i
s =3

Sl

P TN
;

s § L

{623
{63)
o =
. T ]
= HPE I A
= 5(-‘; st >~wvd .L.n' .
BT N gy | Ny Sk
2
®x Hisp) ? RS A— _ (64
. ’ } : (-1}

gl ShE Sy

When the classical SK-iteration is used, one can solve the coefficients (ff;,"" and &1 of
N and DY F a weighting is applied to each row of the system equations (explicit
weighting). The Vector Fitting performs this weighting implicitly, by calculating
he coefficients di and d of N/ DE0 ang DU/ D1 instead (with-
an explicit weighting). In successive iterations (¢ > 0), the coefficients (11.;)?(-\" of
PRG DU gre then used to caleulate the poles, which does not pose a problem, as
the zeros of DU and D/ DY are the same. 1t is noted, however, that the poles
of the basis functions of N {s) and D () remain unchanged, and cancel out in
each iteration (62).

it

i Heal-Valued State Space

This appendix describes how the real-valued state-space realization of

P {63)
I
258 he oblained,
Define the state matrix & and Input vecior B as
FAG A F B e
A | ) B O (663
L An Ass LBy
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A fiest consiraint on the entries, is that the poles of (68, L, b must el
the cigenvalues of A More specifically, the transfer function from the input {7, {x
angd { Ftothe states X (s and Xa{s) respectively, must satisty

{673

{B%)

The input-to-state wansfer function is given by
ik - AVTR (6%

(s Aw Ay )
( A‘); .»;wﬁsl,

(5 = Ap(s ~ Ago) ~ Amby,

{7h

$G
X {#) (& — Azj}B} + A By {
T = i3 v )
Uilsh (s = Anls ~ Ag) — Appdg

and

L AuB + (s AB,y
(s~ A~ Asy) - A oAy,

(72y

By equating the numerators of (67) to (71), (68} to (723, and applying some basic
linear algebra, the following constrainis are easily obtained

= Aok Ay = ay (75}
Api Ay o, (76)
which determing the input vector 8B caompletely. Unfortunately, the clements of the

state matrix A are still winbiguous,
By equuting the denominators, it follows that

B+ (AL Aoy - Au s 1773

Mg wbogb b e et
i ¢ it
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Combining (303 with (75} and {76) glves

Avr Agn (%13
{ o {813
‘:)&'i:x Ag, e i} [32)
Agp = Agy (83)
Civiously from (797 and (8231, i vesuls that
{84
(85}
Combining this with (75) and (76}, it follows that
Ay = Ref-ay,) — {86}
Ay = Rel-ay,) - (&7

!

which determines A uniquely.
Verifying that the eigenvalues of A are actually equal to —a, and —aj, is trivial,
Mow, C and D can easily be formed to obiain (63)

C = {(ZRe{~a,) 2Re(~ap} . D=1 (88)
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The goal of this book is three-fold: it describes the basics of moded order reduction
arnd related aspects by nuoerical Hiear algebra, it covers both general wnd more
specialized model order reduction techniques for linear and nonlinear systems,
and it discusses the nse of mwdel order reduction techniques in a variety of practical
applications. The bouok contains many recent advances in model order reduction,
and presents several open problems for which techniques are still in development. It
will serve as a source of inspiration for its readers, who will discover that model order
reduction is a very exciting and lively field.
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