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Abstract

Accurate and efficient prediction of the sound field in shadow zones behind obstacles

is a challenging task, but essential to produce urban noise maps. A simplified method is

presented to predict sound levels at shielded urban locations, including multi-edge diffraction

over successive buildings and multiple reflections between parallel façades. The model is

essentially based on Pierce’s diffraction theory, where the Fresnel Integral is approximated by

trigonometric functions for efficient evaluation, and parameterized for urban environments.

The model has been validated for idealized urban configurations by comparing to the results

of Pierce’s theory and a full-wave numerical method. In case of multi-edge diffraction over

buildings in absence of a source or receiver canyon, deviations from the full-wave simulations

are smaller than 2 dB for the octave bands with central frequencies ranging from 125 to

1000 Hz. However, larger errors are made when receivers are close to the extension line from

the diffraction edge closest to the receiver. In case of combining the simplified multi-edge

diffraction model with an efficient approach for including the series of mirror sources and

mirror receivers, based on the Hurwitz-Lerch transcendent, this same accuracy is obtained.
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I. INTRODUCTION

Predicting sound pressure levels at highly shielded areas, e.g. in the deep shadow zone

of a conventional noise wall or at non-directly exposed façades and in courtyards in an

urban setting, is a challenging sound propagation problem. Many researchers developed

analytical, semi-analytical and empirical calculation strategies for sound diffracting over

thin screens, thick screens and multi-edge objects1;2;3;4;5;6;7;8. An explicit solution, aiming

at solving the diffraction of line sources, can also be found in literature9;10. In general, such

models are able to predict the diffracted sound fields well. The reader is referred to some

review articles11;12 for a detailed analysis of previously proposed models and scale model

studies13;14. For application to urban noise maps, however, not only accuracy but also

calculation speed is a major issue, making many of these previously cited approaches not

well suited for this specific task. At the other hand, models allowing a fast evaluation are

unable to predict sound pressure levels with a sufficient accuracy at highly shielded urban

locations like e.g. the screening formula used in the ISO9613-2 model.

The diffraction formula used in this study is essentially based on Pierce’s diffraction

theory3, where the Fresnel Integral is approached by trigonometric functions for efficient

evaluation, and parameterized for typical urban environments as discussed by Wei et al.15.

The model has been further evaluated in this paper for general multi-edge diffraction

problems.
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In an urban environment, not only diffraction but also accounting for the multiple

reflections in between opposing building façades could strongly increase the computational

burden. As a consequence, the number of reflections (and associated number of mirror

sources and mirror receivers) is limited in most noise mapping efforts. However, this results

in significant loss of accuracy. Previously, Heutschi16 proposed look-up tables to predict

urban street sound pressure levels based on source-receiver positioning and street geometry,

while Thomas et al.17 proposed to add the energy present in the reverberant part of the

sound field based on regression analysis of a large dataset of measurements in urban

streets. In this paper, the reverberant field approach that underlies these developments, is

extended to propagation towards a shielded area. Theoretical analysis of the mirror source

series contributing to a shielded receiver is efficiently approached by parameterization.

The paper is organized as follows. After the Introduction, the simplified diffraction

formulas as previously presented in Wei et al.15 are summarized in Sections II. A and II. B,

providing additional validation and analysis of CPU time. In Section II. C, this diffraction

approach is generalized to multiple edge diffraction. In Section III, a method is proposed to

include the effect of multiple reflections for sound propagation towards shielded urban

locations. Finally, a Discussion (Section IV) and Conclusion (Section V) are provided.

II. A SIMPLIFIED METHOD TO CALCULATE DIFFRACTION

To avoid confusion, some frequently used nomenclature is listed below:
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• i equals
√
−1, indicating the imaginary part.

• D is the diffraction function.

• l is the number of diffracting edges. For example, Dl indicates the diffraction

function at the lth edge.

• β is the angle of the diffracting wedge, e.g. βS is the angle of the diffraction edge

closest to the source and βl is the angle of the lth diffraction edge.

• θs,l is the angle from the right face of the lth diffraction edge to the connecting line

from the source to the diffraction edge.

• θr,l is the angle from the right face of the lth diffraction edge to the connecting line

from the receiver to the diffraction edge.

• a is the number of image sources.

• b is the number of image receivers.

• rs is the distance from the source to the closest diffraction edge.

• rr is the distance from the receiver to the closest diffraction edge.

• rs,l is the distance of the propagation path from the source to the lth diffraction edge.



Wei et al., JASA, p. 6

• rr,l is the distance of the propagation path from the lth diffraction edge to the

receiver. The receiver can be the real receiver or can be the next diffraction edge.

• rs,a is the distance of the ath image source to the closest diffraction edge.

• rr,b is the distance of the bth image receiver to the closest diffraction edge.

• λ is the wave length.

• W is the width of a thick barrier or the width between two diffraction edges.

• j is a local index indicating the change of diffraction edges, for example Wj,j+1 is the

distance from the jth edge to (j + 1)th edge.

A. Single diffraction at a rigid-wedge

According to previous studies3;5;6;18, the diffracted sound pressure is a product of a

source term, a term related to the propagation distance and a diffraction term. For a point

source diffracted by a rigid wedge, the diffracted sound pressure then reads:

pdiffr = S0
eikL

L
D1, (1)

where D1 is the diffraction function which depends on θs,l, θr,l, rs,l, rr,l and βl. The

subscript 1 of D indicates diffraction happening at the 1st edge. Clearly, in rigid-wedge
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diffraction l = 1, meaning there is only one diffraction edge. L is the total length of the

propagation path and S0 is the strength of the source. The asymptotic solution of D in

Pierce’s3 work seems most interesting to allow further simplification:

D1(rs,1, θs,1, rr,1, θr,1, β) =
eiπ/4√

2
[AD(X+) + AD(X−)] , (2)

where X+ = ΓMν(θ + θ0), X− = ΓMν(θ − θ0), Γ =
√

2rsrr/[λ(rr + rs)],

Mν(θ) =
cos νπ − cos νθ

ν sin νπ
, ν = π/β. Clearly, in this case θs,1 = θ0 and θr,1 = θ. The

definition of the angles is shown in Fig. 1. Other parameters are:

AD(X) =

√
2

2π

∫ ∞
−∞

e−u

X
√

π
2
− e−iπ/4u

du = sign(X) [f(|X|)− ig(|X|)] , (3)

f(X) = [
1

2
− S(X)] cos(

1

2
πX2)− [

1

2
− C(X)] sin(

1

2
πX2), (4)

g(X) = [
1

2
− C(X)] cos(

1

2
πX2) + [

1

2
− S(X)] sin(

1

2
πX2), (5)

C(X) =

∫ X

0

cos

(
1

2
πt2
)
dt, (6)

S(X) =

∫ X

0

sin

(
1

2
πt2
)
dt. (7)
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Although the Fresnel Integrals can be solved rather easily nowadays, further

simplification is still useful. If X � 0, the Fresnel Integral can be simplified as

C(X) ≈ 0.5 + 1
πX

sin
(
π
2
X2
)

and S(X) ≈ 0.5− 1
πX

cos
(
π
2
X2
)
. However, in real urban cases,

x→ 0 appears frequently, implying that S(X) ≈ 0.5− 1
πX

cos
(
π
2
X2
)

has a strong

singularity point at X = 0. The later means that this approximation can lead to big errors

when X is close to 0. To avoid this singularity, the Fresnel Integrals are approximated by15:

C(X) ≈ 0.5 +
0.37

0.37 +X
sin
(π

2
X2
)
, (8)

S(X) ≈ 0.5− 0.37

0.37 +X
cos
(π

2
X2
)
. (9)

The coefficient 0.37 is found by fitting to the solution of the Fresnel Integrals with

typical urban geometrical inputs. The largest approximation error appears when the

receiver is on the reflection or shadow boundary, which is indicated by X → 0 in Fig. 2.

Figure 3, which is extracted from the urban structure of two European cities (Ghent, in

Belgium, and Katendrecht, Rotterdam, in the Netherlands), shows the distribution of

X-values. Although for a considerable number of cases X is close to zero, most values

exceed 1.
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Substituting Eq. (8) and (9) into Eq. (4) and (5) leads to:

f(X) =
0.37

X + 0.37
, (10)

g(X) = 0. (11)

Then the diffraction function Eq. (2) of a single rigid-wedge becomes:

D1(rs, θs,1, rr, θr,1) =
eiπ/4√

2
[f(X+) + f(X−)] =

eiπ/4√
2

(
0.37

0.37 +X+

+
0.37

0.37 +X−

)
, (12)

where the definition of X+, and X− are the same as in Eq. (2).

Since strict but complicated formulas of single-wedge and double-edge diffraction have

been given in Pierce’s work, the simplified equations proposed in this work will be

compared with Pierce’s theoretical solution. Figure 4 shows the amplitude difference,

10 log10

∣∣∣∣ pdifpat,L

∣∣∣∣2 = 10 log10

(
1

2

{
[g(X+ + g(X−))]2 + [f(X+ + f(X−))]2

})
, between the

diffracted case and free field propagation. The simplified method properly follows Pierce’s

solution. The ratio between wave lengths and the geometrical dimension of urban buildings

may differ from 1 to 100. Therefore, three groups with different wave lengths are compared

in Fig. 4.

By using Eqs.(10) and (11), the calculation time is reduced considerably. Figure 5

shows the ratio in CPU evaluation time between Pierce’s method and the simplified

method in case of a single-wedge and double-edged rigid barrier (see next section). CPU

time ratios exceed 10000.
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B. Diffraction function of a double-edge rigid barrier

A double-edge diffraction as shown in Fig. 1 (b) can be expressed as a single

diffracted wave produced from edge 1 and then subsequently diffracted by edge 2 to reach

the receiver. More details could be found in5;18. Then, the corresponding angle of θ and θ0

diffracted by the path S → 1→ 2, are 0 and βS − θS, respectively. Accordingly,

XS+ = γMν(θ + θ0) = γMν(βS − θS) and XS− = γMν(θ − θ0) = γMν(θS − βS). Instead of

Γ, γ =
√

2rS(W + rr)/[λ(rS +W + rr) is used to calculate X in the double-edge

diffraction case and Mν is the same as in the single rigid-wedge case. Note that

Mν(θ) ∝ cos νθ leading to Xs+ = XS−. For the second part of the double-edge diffraction

path 1→ 2→ R, XR+ = XR−.

Based on the above analysis, the diffraction function of a double connected edge then

reads:

D = D1(rs,1, θs,1, rr,1, θr,1, β1)D2(rs,2, θs,2, rr,2, θr,2, β2)

=
1

2

eiπ/4√
2

[f(BXS+) + f(BXS−)]
eiπ/4√

2
[f(XR+) + f(XR−)]

= i

(
0.37

0.37 +BXS+

+
0.37

0.37 +BXS−

)(
0.37

0.37 +XR+

+
0.37

0.37 +XR−

)
. (13)

As shown in Fig. 2, in a double-edge diffraction, rs,1 = rs, θs,1 = βS − θs, rr,1 = W ,

θr,1 = 0, rs,2 = rs +W , θs,2 = βR, rr,2 = rr and θr,2 = θr. In this case, β1 = β2 = 1.5π. The
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factor 1/2 is used to remove the mirror image on the connecting surface. Because of

XS+ = XS− and XR+ = XR−,

D = i[f(BXS+)f(XR+)] = i

(
0.37

0.37 +BXS+

0.37

0.37 +XR+

)
, (14)

where B =
√
WL/[(W + rS)(W + rr)] is a scalar multiplied to the smaller one of XS+ and

XR+
3 5. In Eq. 14, XS+ < XR+ is assumed. This assumption is met in most urban

geometries. Details can be found in15.

Figure 4 (b) compares double-edge diffraction as predicted by Pierce and the

simplified method as calculated by Eq. (14) with the parameters rs = 10λ, rr = 10λ,

W = 10λ, θs = π/4, βs = 3/2π, βr = 3/2π; θr increases from 0 to π/2. Except for

predictions along the extension line of the barrier top, the simplified model results match

Pierce’s solutions quite well for the chosen parameter set.

C. Generalization to multiple diffraction

Generalization to multiple diffraction is essential in urban cases where sound typically

propagates over subsequent buildings. In Kawai’s5 and Chu’s18 generalization, the double

diffraction can be expressed by the product of two single diffraction where the incident

wave for the second diffraction comes from the first diffraction edge. Similarly, multiple

diffraction can be considered as a series of successive diffractions18. The (n− 1)th diffracted



Wei et al., JASA, p. 12

sound pressure by path S1 · · ·n is:

pS1···nn−1 = pS1···n−1n−2
Ln−2
Ln−1

Dn−1e
ik(Ln−1−Ln−2), (15)

where Dn is the diffraction function at the nth edge; Ln is the total diffraction path length.

In the case presented in Fig. 1, L1 = rs +W12, L2 = rs +W12 +W23. Other path lengths

are similar.

According to Eq. (15), pS1···n−1n−2 = pS1···n−2n−3
Ln−3

Ln−2
Dn−2e

ik(Ln−2−Ln−3). Therefore, Eq. (15)

becomes:

pS1···nn−1 = pS1···n−2n−3
Ln−3
Ln−2

Dn−2e
ik(Ln−2−Ln−3)

Ln−2
Ln−1

Dn−1e
ik(Ln−1−Ln−2)

= pS1···n−2n−3
Ln−3
Ln−1

Dn−2Dn−1e
ik(Ln−1−Ln−3). (16)

If the diffracted sound pressure is recursively replaced by Eq. (15), pS1···nn−1 becomes:

pS1···nn−1 = pS121

L1

Ln−1
D2...Dn−1e

ik(Ln−L1). (17)

Substituting Eq. (1) in the above, the sound pressure at the nth diffraction point or at

a receiver point after n-1 diffractions then reads:

pS1···nn−1 =

(
1

2

)C
S0
eikLn−1

Ln−1

n−1∏
l=1

Dl n = 2, 3, · · · . (18)
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Equation (18), see also Kim6, is a generalized form of a multiple diffraction function

which equals the product of the geometrical divergence and its diffraction function Dl:

Dl(rs,l, θs,l, rr,l, θr,l, βl) =
eiπ/4√

2
[f(BlXl+)+f(BlXl−)] =

eiπ/4√
2

(
0.37

0.37 +BlXl+

+
0.37

0.37 +BlXl−

)
,

(19)

with Xl+ = γlMν(θl+), Xl− = γlMν(θl−), θl+ = θs,l + θr,l, where θr,l the angle from the

right diffraction edge and the connecting line between the diffraction edge to the “receiver”

and θs,l the angle from the right diffraction edge to the connecting line between the

diffraction point to the “source”. For the definition of these angles, “source” and “receiver”

can be the real source and receiver or can be the adjacent diffraction edges. θl− = θs,l − θr,l.

γl will be discussed later. n is the diffraction number. C is the number of adjacent double

diffraction edges. In series of non-connected building blocks, C equals 1 as the diffraction

path S → 1→ 2→ 3→ 4→ in Fig. 1 (c). As shown in Fig. 1 (c), the sound pressure at

receiver R consist of contributions from different propagation paths. The shortest path

with the smallest number of diffractions, S → 1→ 2→ 3→ 4→ R, will dominate the

sound pressure. In this study, only the shortest path is discussed, which implies C = 1 in

most conditions. A typical case when C is greater than 1 is a single many-edged building,

as shown in Fig. 1 (d).

For multiple-diffraction, B(rs, rr,W ) =
√
W (rs + rr +W )/[(W + rs)(W + rr)]

5 is
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generalized to:

B1 = B(rs,W23 +W34 + · · ·+Wn−1,n + rr,W12),

B2 = B(rs +W12,W34 + · · ·+Wn−1,n + rr,W23),

...

Bl = B(rs +W12 + · · ·+Wl−1,l,Wl+1,l+2 + · · ·+Wn−1,n + rr,Wl,l+1),

...

Bn−1 = B(rs +W12 +W23 +W34 + · · ·+Wn−2,n−1, rr,Wn−1,n),

Bn = 1, (20)

resulting in the following closed form:

Bl =

√√√√√√√√√√
Wl,l+1(rs +

n−1∑
j=1

Wj,j+1 + rr)

(Wl,l+1 + rs +
l−1∑
j=1

Wj,j+1)(Wl,l+1 + rr +
n−1∑
j=l+1

Wj,j+1)

=

√√√√√√√√√√
Wl,l+1(rs +

n−1∑
j=1

Wj,j+1 + rr)

(rs +
l∑

j=1

Wj,j+1)(rr +
n−1∑
j=l

Wj,j+1)

. (21)

γ(rs, rr, L) =
√

2rsrr/(λL) is generalized to:



Wei et al., JASA, p. 15

γ1 = γ(rs,W12 +W23 +W34 + · · ·+Wn−1,n + rr, L),

γ2 = γ(rs +W12,W23 +W34 + · · ·+Wn−1,n + rr, L),

...

γl = γ(rs +W12 +W23 + · · ·+Wl−1,l,Wl,l+1 +Wn−1,n + rr, L),

...

γn = γ(rs +W12 +W23 +W34 + · · ·+Wn−1,n, rr, L), (22)

or

γl =

√√√√√2
(
rs +

∑l−1
j=1Wj,j+1

)(
rr +

∑n−1
j=l Wj,j+1

)
λ
(
rs +

∑n−1
j=1 Wj,j+1 + rr

) , (23)

where rs is the distance from the source to the first diffraction edge; Wl,l+1 is the

distance between edge l and edge l + 1; rr is the distance from the receiver to the last

diffraction edge. Mν(θ) = (cos νπ − cos νθ)/(ν sin νπ) is generalized to

Mνl(θl) = (cos νlπ − cos νlθl)/(νl sin νlπ). (24)

When n = 3, Eq. (18) models a double-edge diffraction. Since Xl+ = Xl− in this

special case,
∏
D = i

(
0.37

0.37 +B1X1+

0.37

0.37 +B2X2+

)
, where
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B1 =
√
WL/[(W + rS)(W + rr)], B2 = 1. B1 will be multiplied to the smaller one of X1+

and X2+. Here X1+ < X2+ is assumed.

D. Validation of the multiple-edge simplified diffraction model

The proposed model is validated for the case of sound propagation over successive

buildings, involving multiple edge diffraction. Various cases are presented in Fig. 6,

including a high rectangular building in between two lower ones near the source and

receiver, a high building directly near the source followed by lower buildings towards the

receivers, and a high thin barrier in between two buildings. The last case is not very

common in a city, however, it can be used as a good validation case to include a single

diffraction as well. Contour plots of the differences between the simplified method and the

diffraction formula by Pierce are depicted in Figs. 7 to 10, for 250 Hz and 2000 Hz. In

these calculations, the shortest propagation path and only diffraction over the roofs were

considered. Note that multiple reflections in between the façades are not considered in

neither of these models.

At most receiver positions in the shadow zone of the building furthest away from the

source, the predicted values by the simplified method are close to the theoretical values.

However, a clear zone with overestimations along the (virtual) extension line of the

diffraction boundary is observed. The simplified method can thus be used to predict sound
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propagation diffracted by multiple edges within 2 dB at strongly shielded areas. Near the

extension line of the diffraction edge, an overestimation of 3 dB is obtained. Note that

predicting diffraction in this specific zone is a complicated topic and contradictory to the

goal of this work which is rather to simplify models. More theoretical solutions to tackle

this problem can be found in literature1;3.

III. CONTRIBUTION OF REFLECTIONS

When sources and receivers are located in so-called “city canyons”, multiple reflections

in both the source and receiver canyon become relevant. The latter is typically solved by

considering image (mirror) sources and image receivers20;21;22. The position of the image

sources and receivers is easily obtained by geometrical analysis of the problem under study.

In Fig. 11, the circles and triangles are image sources and image receivers,

respectively. Ground reflections are not considered here. The distance from the image

source to the façade increases with the order of reflection. The first image source is at Ws1

from the left façade of the source canyon. The second image source towards the left side is

located at Ws2 +Ws; the third one at Ws1 + 2Ws. When generalizing, this yields :

da =


Ws1 + (a− 1)Ws a = 1, 3, 5 · · ·

Ws2 + (a− 1)Ws a = 2, 4, 6 · · ·

For simplicity, suppose the source is in the center of the canyon, so Ws1 = Ws2.
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Consequently, the distance from the image source to the façade is then aWs − 0.5Ws, where

a is the ath image source.

Considering an insufficient number of mirror sources will strongly underestimate levels.

Calculations show that including 50 image source, relative to only considering two, may

add at least 4 dB, strongly depending on the assumed reflection coefficient of the façades in

the source canyon as shown in Fig. 12 (a). Similar estimates can be found in23;24. In Fig.

12 (a), a fixed configuration is used and only the reflection coefficients of the façades are

varied. Figure 12 (b) shows the effect of the source canyon width and right-façade building

height of the source canyon for a reflection coefficient of 0.97. The underestimation in

sound pressure level by only considering the 1st image source ranges from 5 dB to 13 dB.

Increasing the number of image sources increases the computing time considerably. As

a result, only one or two image sources are typically considered in urban noise mapping.

However, the simplified form as shown in Eq.(12), Eq.(14) and Eq.(19) gives opportunities

to group the contribution of all the image sources as will be discussed in next sections.

A. Reflections between parallel buildings of equal façade heights

The analysis in this section is based on two assumptions. Firstly, it is assumed that

the façades are flat, parallel and of equal height. Secondly, only image sources towards the

left are considered. As illustrated in Fig. 11, image sources and image receivers extend to
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both the left and right side from the real source or real receiver. However, the image

sources going further to the “right” need to be diffracted 3 times to reach the receiver and

consequently such contributions are much smaller than those going to the left. According

to our calculations, the image sources going to the “left” contribute much more than the

equivalent image sources going to the “right”. When the height of the façades is the same,

the contribution of the image sources going to the “right”, and similarly, the image

receivers going to the “left”, can be ignored.

The total contribution is expressed in Eq. (25) if the “left” image source and the

“right” image receivers are marked by l and j:

∞∑
a=0

∞∑
b=0

|pa,b|2 = |p0,0|2 +
∞∑
a=1

|pa,0|2 +
∞∑
b=1

|p0,b|2 +
∞∑
a=1

∞∑
b=1

|pa,b|2 , (25)

where the subscripts indicate the positions of the source, the receiver and the image

sources and image receivers; a = 0 indicates the original source position and b = 0 indicates

the original receiver position; a > 0 and b > 0 indicate image sources and image receivers,

respectively. |p0,0|2 is the contribution from the pure diffraction path, so involving no

reflections. |pa,0|2 is the contribution from the ath image source to the receiver. |p0,b|2 is the

contribution from the source to the bth image receiver. |pa,b|2 is the contribution from the

ath image source to the bth image receiver.

With these aforementioned assumptions, the level referenced to free field sound
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propagation from image source a to the receiver position via the shortest path La can be

expressed as:

∣∣∣∣ pa,0pat,La

∣∣∣∣2 =

(
0.37

Xa,1 + 0.37

)2(
0.37

Xa,2 + 0.37

)2

, (26)

where Xa,1 and Xa,2 indicate the input from a source and a receiver. When a > 0, the

sources become virtual, therefore, “1” and “2” are used to indicate “S” and “R” in Eq.

(14). For most environmental sounds, the coherence length of the sound is rather short.

Moreover, fast temporal changes in propagation conditions may further destroy coherence.

Therefore, the phase effect is neglected in Eq. (26) and only the sound power is considered.

For a point source, the sound pressure at distance La is pat,La =
S0

La
e−jkLa . |pa,0|2 is

rewritten as:

|pa,0|2 =

(
0.37

Xa,1 + 0.37

)2(
0.37

Xa,2 + 0.37

)2(
ρsS0

La

)2

, (27)

where ρs is the reflection coefficient of the façade. For the first image source, the

amplitude decreases to ρsS0 and for the ath image source, the amplitude decreases to ρasS0.

For diffraction over buildings, the diffraction edge is often around 1.5π. In these cases,

Mν(βs − θs) =
cos νπ − cos(βs − θs)

ν sin νπ
≈
√

3

2
cos θs by using the approximation

cos 2θs
3
− 0.5 ≈ 0.5 cos θs. The total sum can be written as:
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|pa,0|2 = (ρsS0)
2

[
0.37√

2rs,aW

λ(W+rs,a)

√
3
2

cos(θs,a)La + 0.37La

]2(
0.37

Xa,2 + 0.37

)2

. (28)

When W + rs,a � rr,

(
0.37

Xa,2 + 0.37

)2

=

 0.37√
2rr(W+rs,a)

λ(rs,a+W+rr)

√
3(cos 2

3
θr − 0.5) + 0.37

2

can be approximated as

(
0.37√

2rr
λ

√
3(cos 2

3
θr−0.5)+0.37

)2

and becomes independent of the order

of the image source and will be called C1s. Suppose rs,a >> W , Eq. (28) then becomes:

|pa,0|2 ≈ (ρsS0)
2C1s

 1

3.31
√

W
λ
h1 + rs,a +W + rr

2

, (29)

with h1 is the distance from the source to the top of the building. When rs,a is far

greater than Hm, La ≈ da +Ws +W + rr = a Ws + 0.5Ws +W + rr. The sum over all

image sources can be rewritten in a closed form using the Hurwitz-Lerch transcendent:

∞∑
a=1

|pa,0|2 = C1s (S0)
2 ρ2s
W 2
s

Φ

(
α22,

C3s +Ws

Ws

)
, (30)

where C3s = 0.5Ws +W + rr + 3.31
√

Wi

λ
h1; Ws is the width of the source canyon. The

details can be found in15.

Similarly

∞∑
b=1

|p0,b|2 = C1r (S0)
2 α

2

W 2
r

Φ

(
ρ2r2,

C3r +Wr

Wr

)
(31)
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where C1r =

 0.37√
2rs
λ

√
3(cos 2

3
θs − 0.5)

2

and C3r = 0.5Wr +W + rs + 3.31
√

W
λ
h2. h2

is the distance from the receiver to the top of the building, ρr is the reflection coefficient of

the receiver canyon. Wr is the width of the receiver canyon.

The
∞∑
b=1

∞∑
a=1

|pa,b|2 part is difficult to write in a condensed form, an approximation is

given as:

∞∑
b=1

∞∑
a=1

|pa,b|2 ≈
(1.59)2(ρsρr)

6(
3.31h1√

λ+ 1.5Ws +W + 1.5Wr

)(
3.31h3√

λ+ 1.5Ws +W + 1.5Wr

) . (32)

The details could be found in15.

To validate the aforementioned approaches and simplifications, a comparison is made

with full-wave FDTD calculations25;26, taking Ws = 20, h1 = 11, W = 10, h3 = 11,

βs = βr = 1.5π, φs = 0.25π, Hr = 0 (see Fig. 13). Ground reflections are not considered

and the source is positioned in the middle of the source canyon. The configuration studied

is summarized in Fig. 14 (a).

More specifically, Fig. 13 shows the differences between the FDTD simulations and

the results calculated using Eq. (25). Since the FDTD simulations are in 2D, in order to

limit the computational burden, the simulated time signal is multiplied by 1√
ct

to transfer

the response of a (coherent) line source to the one of a point source as proposed in27. The

results of four individual frequencies are depicted. The overestimation near the extension
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line of the roof top originates from the diffraction model as presented in the previous

sections. The errors at the other receiver positions can be considered as the uncertainties

caused by the reflection model combined with diffraction.

B. Generalize the reflections combined with multiple diffraction

The combination of reflections and multiple diffractions will be discussed in this

section. The facade heights h1 and h3, see Fig. 14, play an important role now.

Façades with equal height: h1 = h3

According to Eq.(18), the squared sound pressure after n− 1 diffractions over the

squared sound pressure in free field can be written as:

∣∣∣∣pS1···nn−1

pat,L

∣∣∣∣2 =

(
1

2

)2C n−1∏
l=1

|Dl|2 n = 2, 3, · · · . (33)

Substituting Eq.(19) and Eq.(24) into Eq. (33) and moving the first diffraction term

out of the product leads to:
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∣∣∣ pa,0
pat,La

∣∣∣2 =

(
1

2

)2C ( 0.37

0.37 +
√

2W12rs,a
λ(W12+rs,a)

Mν1(θ1+)
+

0.37

0.37 +
√

2W12rs,a
λ(W12+rs,a)

Mν1(θ1−)

)2
n−1∏
l=2

(
0.37

0.37 +

√√√√2Wl,l+1(rs,a +
∑l−1

j=1Wj,j+1)

λ(rs,a +
∑l

j=1Wj,j+1)
Mνl(θl+)

+
0.37

0.37 +

√√√√2Wl,l+1(rs +
∑l−1

j=1Wj,j+1)

λ(rs +
∑l

j=1Wj,j+1)
Mνl(θl−)

)2

. (34)

If the first two diffraction edges are adjacent to each other, which means that sounds

do not propagate over a thin barrier first, Mν1(θ1+) = Mν1(θ1−). For a rectangular

building, the diffraction angle βs,1 is 1.5π,

Mν(βs,1 − θs,1) =
cos νπ − cos(βs,1 − θs,1)

ν sin νπ
≈
√

3

2
cos θs,1. Also, if rs +

∑l−1
j=1Wj,j+1 is much

greater than Wl,l+1,
rs,a+

∑l
j=1Wj,j+1−Wl,l+1

(rs,a+
∑l
j=1Wj,j+1)

approaches 1. Eq.(34) can further be reduced to:

∣∣∣ pa,0
pat,La

∣∣∣2 ≈ (
1

2

)2C−2
(

0.37

0.37 +

√
2W12rs,a

λ(W12 + rs,a)

√
3

2
cos θs,1

)2

n−1∏
l=2

(
0.37

0.37 +

√
2Wl,l+1

λ
Mνl(θl+)

+
0.37

0.37 +

√
2Wl,l+1

λ
Mνl(θl−)

)2

. (35)

Multiplying both sides of the above equation with |pat,La | =
S0ρas
La

, the total

contribution can be written in a generalized form. On condition that the angle of the
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diffracting edge is 1.5π (rectangular building), the approximation used in Eq.(28) is still

satisfied, and the above equation becomes:

∞∑
a=1

|pa,0|2 = C1,g

∞∑
a=1

[
(S0ρ

a
s)

2
( 0.37

La +

√
2W12rs,a

λ(W12 + rs,a)

√
3

2
cos θs,1La

)2]

= C1,g

∞∑
a=1

[
(S0ρ

a
s)

2
( 1

La + 3.31h1

√
W12

λ

(rs,a +
∑l−1

j=1Wj,j+1 + rr)2

rs,a(W12 + rs,a)

)2]
, (36)

where

C1,g =

(
1

2

)2C−2 n−1∏
l=2

 0.37

0.37 +

√
2Wl,l+1

λ
Mνl(θl+)

+
0.37

0.37 +

√
2Wl,l+1

λ
Mνl(θl−)


2

. (37)

Suppose rs,a is much greater than
∑l−1

j=1Wj,j+1 + rr,

√
(rs,a+

∑l−1
j=1Wj,j+1+rr)2

rs,a(W12+rs,a)
can be

approximated as 1. The uncertainties of this assumption will be discussed later. With this

assumption, Eq. (36) can be similarly calculated as before with the Hurwitz-Lerch

transcendent:

∞∑
a=1

|pa,0|2 = C1,g (S0)
2 α

2

W 2
s

Φ(α2, 2,
C3,g +Ws

Ws

), (38)
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where

C3,g = 3.31

√
W12

λ
h1 + 0.5Ws + rr +

n−1∑
j=1

Wj,j+1. (39)

When n = 2, C1,g = C1,s and C3,g = C3,s.

The test case in Fig. 14 (b) is used to validate the generalized form for h1 = h3. The

predicted errors (see Fig. 15) are relative large compared to the previous validation cases.

The possible reasons will be discussed in section IV.

Façades with different heights: h3 < h1

If h3 < h1, some of the image sources located away from the screening building cannot

contribute anymore to the total sound pressure level without an additional diffraction as

shown by the dashed line in Fig. 16 (a). Accordingly, the image sources located in the

direction of the central building become more relevant. Assuming that the source lies in

the middle of the canyon Ws and according to the simple ratio

aWs+0.5Ws

h1
= aWs−0.5Ws

h
= 1, 2, · · · , the relation between h and h1 is h = a−0.5

a+0.5
h1, where

h1 = Hm−source height. When h = a−0.5
a+0.5

h1 > Hs− source height, the ath image source will

become unavailable. Specifically, the relation actually is h = 1/3h1, 1/3h1, 3/5h1, 5/7h1 · · · .

Instead of
∑∞

a=1 |pa,0|2, the total contribution becomes:
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N∑
a=1

|pa,0|2 +
∞∑

a=N+1

|qa,0|2 =
∞∑
a=1

|pa,0|2 −
∞∑

a=N+1

|pa,0|2 +
∞∑
a=1

|qa,0|2

= C1,g,1S
2
0

α2

W 2
s

Φ(α2, 2, 1 +
C3,g,1

Ws

)− C1,g,1S
2
0

α2

W 2
s

Φ(α2, 2, N + 1 +
C3,g,1

Ws

)

+ C1,g,2S
2
0

α2

W 2
s

Φ(α2, 2, 1 +
C3,g,2

Ws

), (40)

where |pa,0|2 and |qa,0|2 are used to distinguish different diffracted sound paths. N is

the number indicating image sources that need to be diffracted 3 times to reach the

receiver. pa,0 is sound diffracted twice and qa,0 is sound diffracted 3 times to reach the

receiver position. C1,g,x and C3,g,x can be calculated by Eq.(37) and Eq.(39). The indices

“x” of C1,g and C3,g are used to distinguish between different inputs in Eq.(37) and Eq.(39).

The configuration depicted in Fig. 16 (a) is used to validate Eq.(40). The errors at

most receivers are less than 2 dB as shown in Fig. 17. The largest deviations from the

full-wave reference calculations appear near the extension line of the building’s roof.

Façades with different heights: h3 > h1

If h3 > h1, the contribution of the diffraction for paths such as

“S → 2→ 1→ 3→ R”, “S → 1→ 3→ R” and “S → 1→ R” (see Fig. 16 (b)) may not

be neglected. The recommended formula for a configuration where h3 > h1 is:
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∞∑
a=1

|pa,0|2 +
M∑
a=1

|qa,0|2 +
N∑

a=M+1

|qa,0|2 +
∞∑

a=N+1

|qa,0|2

= C1,g,3S
2
0

α2

W 2
s

Φ(α2, 2, 1 +
C3,g,3

Ws

) +
M∑
a=1

|qa,0|2 +
N∑

a=M+1

|qa,0|2

+ C1,g,4S
2
0

α2

W 2
s

Φ(α2, 2, 1 +
C3,g,4

Ws

)− C1,g,4S
2
0

α2

W 2
s

Φ(α2, 2, N + 1 +
C3,g,4

Ws

), (41)

where C1,g,3, C3,g,3, C1,g,4 and C3,g,4 can be calculated from the generalized form of

Eq.(37) and Eq.(39). M is the image source number from which the diffraction path

changes from S → 1→ R to S → 1→ 3→ R. N is the image source number from which

the diffraction path changes from S → 1→ 3→ R to S → 1→ 2→ 3→ R. Since M and

N are often small numbers, the contributions of these cases can be explicitly summed.

The results of the test case are shown in Fig. 18. Levels at most receivers agree well

with the simulations. In contrast to conditions h1 = h3 and h3 < h1, the predicted levels

are now smaller than with the full-wave simulations.

IV. Discussion

By introducing several approximations, urban sound propagation involving multiple

reflections and diffractions is highly simplified and the calculation speed is improved by

several orders of magnitude. The most important steps are the introduction of an

approximation for the Fresnel Integral, the assumption that the effect of multiple
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diffraction can be approximated by including only the shortest path connection all

rooftops, and by compacting the sum over all image sources caused by the source and

receiver canyon reflections. The first approximation has been validated by comparison with

a full analytical model, the others by comparison to full-wave FDTD simulations.

The error introduced by the approximation of the Fresnel Integral remains smaller

than one dB except near the edge of the shadow region. The error introduced by

approximating the Fresnel Integral in case of multiple diffraction behaves very similar. It

should nevertheless be noted that this does not check the validity of taking into account

the shortest path only.

Approximating the sum over multiple image sources allows obtaining a closed

analytical form for the sum. Two approximations used to resolve the sum were presented.

The first one allows eliminating the image source location from all diffraction terms except

from the first one. This requires that rs +
∑l−1

j=1Wj,j+1 is much greater than Wl,l+1. The

second assumption states that rs,a �
∑n−1

j Wj,j+1 + rr, which means that

rs,a+
∑n−1
j=1 Wj,j+1+rr

rs,a
≈ 1. However, this condition maybe not satisfied for long-distance

propagation in combination with a source located in a narrow canyon. If∑n−1
j Wj,j+1 + rr < 500m, the error caused by

rs,a+
∑n−1
j=1 Wj,j+1+rr

rs,a
≈ 1 is less than 3 dB in an

urban setting.

Moreover, if this distance is larger than 500 m, one will often encounter other noise
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sources at closer distance, dominating the overall noise climate. For shorter distances, the

impact of the approximation was explicitly tested by comparing levels calculated with the

simplified analytical model to numerical simulations. This showed that in the deep shadow

region errors are generally lower than 1 dB even in the case of multiple intermediate

buildings.

In real urban situations, some particular cases may occur that are not explicitly

covered by the formulations presented in this paper. For example, in Fig. 19 (a), the

depicted image source reaches the receiver by interacting with different building edges than

e.g. the (original) source. Another typical case is shown in Fig. 19 (b): the left building is

higher than the right one and the receiver is far away. Some of the image sources could

reach the receiver by a single diffraction only. Therefore, carefully analysing the

contributions from the different image sources is needed when using such theoretical

diffraction formulas.

While deriving the model, an important assumption is that the source is located in

the middle of the source canyon, which is representative for typical road traffic noise

sources. These assumptions allowed simplifying the presented diffraction model. Deviations

from these will lead to less accurate results. Ground reflections are not considered either.

However, these can be easily incorporated by using an additional set of image sources

located below the ground plane. Similar formulas as represented here can be used.
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Compared to explicitly summing up the image source contributions, the Hurwitz-Lerch

transcendent is more efficient if the number of image sources is greater than 3. Fig. 20 (a)

shows the ratio of calculating time between these two approaches. This comparison is

based on reflections in a souce canyon followed by diffraction over a rectangular building of

10 m wide. Each data point on the y-axis is the average of running the engineering models

for 100 times. From this figure it can bee seen that the calculating times are similar for the

model presented in this work, the ISO9613-2 model, the CNOSSOS-EU model, and the

HARMONOISE model. Only the NORD2000 model is significantly slower.

In addition, Fig. 20 (b) shows the accuracy of diffracted sound over an isolated thick

barrier using these models. The source is at 4.8 m from the barrier façade and at 10 m

from its top. The receiver is at 4.5 m from the barrier façade and at 6.6 m from the barrier

top. The model presented in this work, Pierce’s model, and NORD2000 yield accurate

predictions when comparing with the FDTD simulations. The ISO9613-2, the

CNOSSOS-EU and the HARMONOISE model overestimate the sound pressure levels.

V. Conclusion

A simplified method to predict sound pressure levels at shielded areas in typical urban

situations are presented and validated. This method is essentially based on Pierce’s

diffraction theory, where the Fresnel Integral is approximated by a special pair of

trigonometric functions tuning this approximation to typical situations encountered in
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urban sound propagation: tall barriers and a specific interest in the deep shadow zone. The

new single, double and multiple diffraction functions are validated by theoretical solutions

and full-wave simulations. Although the error that is introduced is limited to below 1 dB

in most of the zones of interest, the gain in calculation time is huge (several orders of

magnitude). This paper focused in particular on combining the effect of multiple reflections

with multiple diffraction. Additional assumptions allow making a significant part of the

sum independent of the reflection order and independent of the infinite sum of image

sources; the contribution of the image sources can be relatively easily condensed with the

Hurwitz-Lerch transcendent. Once this sum contains more than 3 image sources, some

additional calculation time is gained by this last step. Generally, the new method can

predict sound pressure levels at shielded urban areas, within 2 dB compared with

numerical simulations in most of the receiver positions, with a low computing cost.
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Figure Captions

Figure 1. Geometry and dimensions of single-wedge (a), double-edge (b) and multiple

(c)-(d) diffraction.

Figure 2. Comparison of the approximation accuracy of Fresnel Integral C(x) and

S(x).

Figure 3. Distribution of X from two European cities. The meaning of Xi+ and Xi− is

explained in Eq.(2). The values shown in this figure are from vertical cross sections based

on a 2.5D approach to noise mapping.

Figure 4. Comparison of a single (a) and double (b) diffraction case, using Pierce’s

method and the “simplified” set of equations introduced in this paper. Parameters for the

single wedge diffraction are rs = rr = 1λ, 10λ and 100λ (up to down), respectively,

β = 11/6π, θs = π/6, for varying θ. For the double diffraction calculations,

rs = rr = W = 1λ, 10λ and 100λ (up to down), respectively, βs = βr = 1.5π, θs = π/4, for

varying θr.

Figure 5. Comparison of calculation efficiency between Pierce’s diffraction solution

and the simplified method presented in this work. The results are based on running the

algorithms 10000 times. The algorithm used for calculating the Fresnel Integral is based

on19, using 12 terms in the Taylor series expansion.
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Figure 6. Geometries considered to validate multiple diffractions in absence of a

source and receiver canyon.

Figure 7. Contour plots showing the sound pressure level difference between the

presented simplified method and Pierce’s solution (Lsimplified − LPierce) in the receiver zone

as defined in Fig. 6, for configuration (a). Calculations were performed for a sound

frequency of 250 Hz (left) and 2000 Hz (right). (Color online)

Figure 8. See caption of Fig. 7, but now for the configuration shown in Fig. 6 (b).

(Color online)

Figure 9. See caption of Fig. 7, but now for the configuration shown in Fig. 6 (c).

(Color online)

Figure 10. See caption of Fig. 7, but now for the configuration shown in Fig. 6 (d).

(Color online)

Figure 11. Location of image sources (open circles) and image receivers (open

triangles). Reflections from the ground are not considered.

Figure 12. Effect of facade reflections (no ground reflections), for the case shown in

Fig. 14 (a). In part (a), Ws = 22 m; h1 = 10 m; rr = 7 m; Wi = 22 m; βs = βr = 1.5π; the

wave length is equal to 0.68 m (500 Hz); the source is located in the middle of the canyon.

Sound pressure levels are shown relative to free field sound propagation. In part (b), the

same parameters are used as in (a), but Ws and h1 vary in the typical urban setting range;
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the facade reflection coefficient is equal to 0.97. The level difference is the increase between

many image sources and a single image source only. (Color online)

Figure 13. Contour plots of level difference between the simplified model (including

multiple reflections and double diffraction) and FDTD simulations at 4 sound frequencies,

for the case depicted in Fig. 14 (a). (Color online)

Figure 14. Cases considered (a) including reflections in the source canyon followed by

double diffraction; (b) is a generalized case including reflections in the source canyon and

multiple diffractions.

Figure 15. Contour plots of the level difference between the generalized, simplified model

and the FDTD simulations for the geometry as shown in Fig. 14 (b) with h1 = h3 = 11 m

and Ws = 20 m, at 4 sound frequencies. (Color online)

Figure 16. Analysis of sound paths in case of h3 < h1 (a) or h3 > h1 (b).

Figure 17. Contour plot of the level difference between the generalized, simplified

model and the FDTD simulations for the geometry as shown in Fig. 16 (a) with Ws = 20

m, W = 10 m, h1 = 11 m and h3 = 7 m. (Color online)

Figure 18. Contour plot of the level difference between the generalized, simplified

model and the FDTD simulations for the geometry as shown in Fig. 16 (b) with Ws = 20

m, W = 10 m, h1 = 7 m and h3 = 11 m. (Color online)
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Figure 19. Two particular cases not explicitly covered by the formulations presented

in this work.

Figure 20. Comparison of computational efficiency and numerical accuracy of the

simplified model developed in this work and various engineering type models; (a) CPU

time ratio between explicitly summing up image source contributions and application of

the Hurwitz-Lerch transcendent; (b) comparison of the sound pressure levels, relative to

free field sound propagation, by applying different engineering models and full-wave

calculations, at sound frequencies ranging from 31.5 Hz to 1 kHz.
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