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In this letter, we explore the influence of the CuxTe1-x layer composition (0.2< x< 0.8) on the

resistive switching of CuxTe1�x/Al2O3/Si cells. While x> 0.7 leads to large reset power, similar to

pure-Cu electrodes, x < 0.3 results in volatile forming properties. The intermediate range

0.5< x< 0.7 shows optimum memory properties, featuring improved control of filament

programming using <5 lA as well as state stability at 85 �C. The composition-dependent

programming control and filament stability are closely associated with the phases in the CuxTe1�x

layer and are explained as related to the chemical affinity between Cu and Te. VC 2011 American
Institute of Physics. [doi:10.1063/1.3621835]

Resistive Random Access Memory (RRAM) technology

has drawn a lot of attention these last years due to scaling

potential. Between the different RRAM concepts, the Con-

ducting-Bridging RAM (CBRAM) was demonstrated to

show attractive properties, such as endurance robustness and

multi-level capability.1,2 A CBRAM cell typically consists

of a cation-supply electrode, usually based on Cu or Ag

metal, an insulating layer serving as electrolyte for metal-

cation drift, and an electrochemically inert electrode. A posi-

tive electrical potential applied to the former electrode

results in the filament growth from the cathode towards the

cation-supply electrode, bridging eventually the two electro-

des and leading thus to the electrical switching to a low-

resistive state (LRS). On the other hand, a negative potential

induces the reverse redox reaction, i.e., the filament dissolu-

tion and cation drift back towards the cation-supply elec-

trode, accounting in turn for the return to a high-resistive

state (HRS).

While chalcogenide materials like GeSe or GeS were

originally developed as electrolyte layers,1,2 binary-oxide

media like HfO2,3 ZrO2,4 or Ta2O5 (Ref. 5) were more

recently introduced. Combined with a pure-Cu supply layer,

oxide-based CBRAM cells typically exhibit attractive

switching properties and filament stability, however they usu-

ally require larger reset current IRESET
3–5 than chalcogenide-

based CBRAM cells. On the other hand, the Cu-Te alloy has

also recently been introduced as a Cu-supply layer.6

In this work, we explore the effect of the CuxTe1�x com-

position on the switching characteristics of an original and

integration-friendly CuxTe1�x/Al2O3/Si cell. We particularly

show that the composition range 0.5< x< 0.7 results in con-

trolled filament generation and optimized memory

characteristics.

A 3 nm-thick Al2O3 layer was deposited on doped-Si

wafers by an H2O-based Atomic Layer Deposition (ALD)

technique. Then, 3 mm-wide and 50 nm-thick CuxTe1�x dots

were deposited through a shadow mask by a co-sputtering

process from a Cu target and a Cu0.1Te0.9 target. Finally, 1

mm-wide Pt dots were sputtered on top of the CuxTe1�x dots

using a different shadow mask. Fig. 1(a) shows schematics

of the cells.

A combinatorial approach was used to study the effect

of CuxTe1�x composition. During the co-sputtering process

of the CuxTe1�x layer, triangular masks placed in front of the

sputtering targets result in a composition gradient in the de-

posited film, with a gradual variation of x along a direction

of the wafer, called y-direction hereafter. Fig. 1(b) shows the

composition of the CuxTe1�x layer determined by X-ray flu-

orescence (XRF) spectroscopy for each position along the y-

direction. Using the 4-point probing method, we verified that

the CuxTe1�x layer exhibits low resistivity in the whole com-

position range [Fig. 1(c)].

The Pt/CuxTe1�x/Al2O3/Si cells were electrically tested

using a conventional parameter analyzer HP4156. No load

resistor was used. Current-Voltage (I-V) characterization

was carried out by applying positive voltage to the Pt top-

electrode (TE) for forming and set operations, and negative

voltage for reset operation, in agreement with CBRAM

switching mode. Note that no switching is obtained when

forming is performed using negative voltage ramps.

Fig. 2(a) shows the initial resistance RINIT of the as-pre-

pared cells together with the forming voltage VF as a func-

tion of x in CuxTe1�x. On the one hand, RINIT steadily

decreases with the increase of x, suggesting enhanced Cu in-

diffusion in the Al2O3 layer for larger x. On the other hand,

VF shows a strong drop for x> 0.7. The X-ray diffraction

(XRD) patterns performed on the CuxTe1�x layers [Fig.

2(b)] clearly show different microstructures depending on

the composition. The CuxTe1�x layers are amorphous for

x< 0.5. XRD peaks corresponding to crystalline Cu-Te

phases are identified for x> 0.5, while peaks corresponding

to crystalline Cu become clearly visible only for x> 0.7.

These results are in agreement with the Cu-Te phase dia-

gram.7–9 The composition range x> 0.7 also showed a

marked difference of surface morphology compared to

0.5< x< 0.7. Large protrusions, presumably associated witha)Electronic mail: gouxl@imec.be
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the presence of the pure Cu cubic phase, were indeed

observed in the range x> 0.7 [Fig. 2(c)]. Hence, the drop of

VF for x> 0.7 may be associated to the presence of the Cu

cubic phase in the Cu-Te layer. This result is in agreement

with a recent report showing shorter time to dielectric break-

down for dielectrics having Cu gates instead of electro-

chemically inert Pt gates.5

The CuxTe1�x composition also strongly affects subse-

quent resistive switching, in particular the filament character-

istics. Figs. 3(a) and 3(b) show, respectively, the LRS

resistance RLRS and the reset current IRESET extracted from

negative voltage ramps performed after set switching opera-

tions using the compliance currents ICOMP¼ 100 lA or

ICOMP¼ 5 lA. Larger ICOMP leads to lower RLRS and larger

IRESET, as widely reported in the literature for RRAM (Ref.

10) and CBRAM (Refs. 11 and 12) devices. In addition,

three main composition regions may be distinguished, asso-

ciated with the typical I-V traces shown in Fig. 3(c). For

region (1) x< 0.5, very unstable Cu filament is generated

[Figs. 3(a) and 3(b)], and the lower x values typically result

in volatile forming characteristics [Fig. 3(c)], which may

appear attractive for diode-selector applications. For region

(3) x> 0.7, a stable Cu filament is formed, however requir-

ing large reset current IRESET � ICOMP, similar to pure-Cu

supply layers.3–5 We also verified this effect by using pure-

Cu dots instead of Cu-Te material (not shown here). I-V cy-

cling tests performed in region (3) resulted in >10% switch-

ing failures, probably related to large switching power. On

the other hand, region (2) 0.5< x< 0.7 shows attractive

switching control using low operation current IRESET� ICOMP.

Fig. 4(a) confirms the remarkable resistance stability observed

in region (2) over 103 I-V cycles using <5 lA. Filament sta-

bility in region (2) is also assessed up to more than 104 s at

85 �C [Fig. 4(b)]. Similar retention was obtained in region (3).

Hence, the composition range 0.5< x< 0.7 in CuxTe1�x

appears as the best trade-off in terms of programming con-

trol, limited operation current, and filament stability. The

good control of low IRESET by ICOMP suggests very little

FIG. 2. (Color online) (a) Forming voltage VF and resistance RINIT of as-

prepared cells (measured at þ0.2V) as a function of x in CuxTe1�x; the inset

shows the forming I-V traces; (b) XRD diagrams of the CuxTe1�x layers,

revealing different phases depending on the x range; (c) Scanning Electron

Microscopy (SEM) images showing the surface morphologies of the

CuxTe1�x layer for different x values.

FIG. 3. (Color online) LRS resistance RLRS (a) and reset current IRESET (b)

as a function of x in CuxTe1�x, both extracted after set switching using

ICOMP¼ 100 lA (full circles) or ICOMP¼ 5 lA (empty squares); (c) Typical

I-V set and reset traces observed for the three composition regions (1)

x< 0.5, (2) 0.5< x< 0.7, and (3) x> 0.7; (d) Schematics of the phenome-

nology of Cu-filament formation in each region.

FIG. 4. (Color online) (a) HRS and LRS resistance control observed over

103 I-V cycles using ICOMP¼ 5 lA (inset shows 30 consecutive I-V cycles);

(b) HRS and LRS resistance monitoring at 85 �C using constant bias voltage

of 20 mV.

FIG. 1. (Color online) (a) CuxTe1�x dot pattern on the wafer, the inset

showing a schematic cross-section of the cell stack; (b) and (c) relations

between the y-coordinate of the cell and the composition and sheet resist-

ance Rsh, respectively, of the CuxTe1�x layer.
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sensitivity to the parasitic current overshoot induced by

forming/set.10 We attribute this property to the larger energy

barrier for Cu injection from Cu-Te crystal phases compared

to pure Cu, due to larger Cu-Te bonding energy. In agree-

ment, Da Silva et al. reported density-functional-theory cal-

culations showing that in this composition range the

formation energy of Cu-Te structures is lower than the for-

mation energy of pure Cu phase.7 Therefore, the Cu injection

into the Al2O3 layer requires less energy from the Cu cubic

phase, which results in a lower VF values measured for

x> 0.7 [see inset of Fig. 2(a)]. This also accounts for an

increased sensitivity of the cell to discharge current in this

range, leading to large Cu electromigration and resulting in

overgrown filaments which will require larger IRESET. On the

other hand, for x< 0.5, the better stability of CuTe and Te

phases8,9 probably does not allow any stable Cu phase for-

mation, so that the Cu atoms injected at forming will readily

diffuse back to the supply layer after power switch off. To

the contrary, the stability of Cu filaments for 0.5< x< 0.7

may be explained by the stability of Cu-deficient Cu2�dTe

phases in this range [Fig. 2(b)]. Note that the decrease of

RINIT already observed in this range might also originate

from enhanced mobility of Cu in this range.7 Fig. 3(d) shows

schematics of the filament formation scenario in each region.

To summarize, we showed the strong influence of x in

the CuxTe1�x layer on the memory properties of Cu-Te/

Al2O3/Si cells, and we associated this influence to the differ-

ent Cu-Te phase stability regions. Improved control of the

filament formation is obtained in the range 0.5< x< 0.7

compared to x> 0.7, which we attribute to the Cu-Te

bonding energy of the phases in the former range. The cell is

programmed using< 5 lA current level without transistor-

based current limiter, excellent stability of programming pa-

rameters is demonstrated over 103 cycles, and state stability

was verified up to 104 s at 85 �C.
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