
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. , NO. , 2010 1

Parametric Macromodeling for Sensitivity
Responses from Tabulated Data

Krishnan Chemmangat, Francesco Ferranti, Member, IEEE, Luc Knockaert, Senior Member, IEEE and Tom
Dhaene, Senior Member, IEEE

Abstract—This letter presents a parametric macromodeling
technique which accurately describes the parameterized fre-
quency behavior of electromagnetic systems and their corre-
sponding parameterized sensitivity responses with respect to
design parameters. The technique is based on the interpolation
of a set of state-space matrices with a proper choice of the inter-
polation scheme, so that parametric sensitivity macromodels can
be computed. Pertinent numerical results validate the proposed
parametric macromodeling approach.

Index Terms—Parametric Sensitivity, Parametric Macromod-
eling, Interpolation.

I. INTRODUCTION

Efficient and accurate design space exploration, design op-
timization, and sensitivity analysis call for the development of
parameterized macromodels which describe the parameterized
frequency behavior of the original model and the parametric
sensitivity responses over the entire design space of interest.

One of the most common approaches in calculating local
sensitivities is the adjoint variable method [1], [2], by which
the sensitivity information can be obtained from at most
two systems analyses regardless of the number of design
parameters. However, these methods involve the calculation of
system matrix derivatives, which are most frequently estimated
by means of finite difference approximations.

Recently, some interpolation-based parametric macromod-
eling techniques have been presented in [3]–[6], which in-
terpolate an initial set of univariate macromodels, called root
macromodels. In [3], [4], the interpolation is performed at an
input-output level, while in [5], [6] it is applied to the internal
state-space matrices of the root macromodels. Both poles
and residues are parameterized in [5], [6], which enhances
the modeling capability as compared to [3], [4], where only
residues are parameterized.

This letter proposes a parametric macromodeling technique,
which is able to build parametric sensitivity responses over
the entire design space of interest. As in [5], [6], an inter-
polation process of the internal state-space matrices of the
root macromodels is performed. However, in [5], [6], the
focus is on parametric macromodeling which ensures stability
and passivity over the design space of interest. This is not
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necessary for the calculation of parametric sensitivities, which
allows the use of more powerful interpolation schemes. The
suitable choice of interpolation schemes at least continuously
differentiable allows to obtain parametric sensitivity macro-
models, which are analytical models and no finite difference
approximation is used. Also, [5], [6] solve computationally
expensive linear matrix inequalities to guarantee a passivity-
preserving interpolation, which can be avoided in the present
work. Pertinent numerical results validate the proposed para-
metric macromodeling approach.

II. CREATION OF ROOT MACROMODELS

Starting from a set of data samples {(s, g⃗)k,H(s, g⃗)k}Ktot

k=1 ,
a set of frequency-dependent rational macromodels is built for
a set of design space points by means of the Vector Fitting
(VF) technique [7]. Each root macromodel has the form:

Rg⃗k(s) =

NP∑
n=1

cg⃗kn

s− ag⃗kn
+ dg⃗k (1)

where ag⃗kn , cg⃗kn and dg⃗k represent poles, residues and
feed forward terms, respectively at the design point g⃗k =

(g
(1)
k1

, ..., g
(N)
kN

). The idea of VF is to recast the nonlinear
problem (1) into a linear problem by introducing a set of
starting poles bn, which are chosen by a rule presented in
[7] and an unknown function σ(s) such that:[

σ(s)Rg⃗k(s)
σ(s)

]
=

[∑NP

n=1
c
g⃗k
n

s−bn
+ dg⃗k∑NP

n=1
c̃
g⃗k
n

s−bn
+ 1

]
(2)

From (2) we have:
NP∑
n=1

cg⃗kn
s− bn

+ dg⃗k =

[
NP∑
n=1

c̃g⃗kn
s− bn

+ 1

]
Rg⃗k(s). (3)

The unknowns cg⃗kn , c̃g⃗kn and dg⃗k in (3) are found by solving an
overdetermined linear problem over several frequency samples
iteratively [7]. If unstable poles are generated during an
iteration, a pole-flipping scheme is used to enforce stability
[7]. Passivity can be assessed using a half-size singularity test
matrix based on the admittance state-space model of Rg⃗k(s)
[8], while the enforcement can be achieved by perturbing the
terms cg⃗kn and dg⃗k in (1) using the technique presented in [9].

III. PARAMETRIC SENSITIVITY MACROMODELING

Each root macromodel Rg⃗k(s), corresponding to a specific
design space point g⃗k = (g

(1)
k1

, ..., g
(N)
kN

), is converted from a
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pole-residue form (1) into a barycentric form

Rg⃗k(s) =

∑NP

n=1
F

g⃗k
n

s−bn
+ Fg⃗k

0∑NP

n=1
f
g⃗k
n

s−bn
+ f g⃗k0

(4)

with basis poles bn, which make the conversion well condi-
tioned [5]. The barycentric form (4) is then converted into a
state-space form

Rg⃗k(s) = Cg⃗k(sI−Ag⃗k)
−1Bg⃗k +Dg⃗k (5)

The state-space realization (5) of (4) can provide a smooth
parameterization of the state-space matrices [5], which is
important for the following interpolation process. Next, this
set of state-space matrices is interpolated to build a parametric
macromodel R(s, g⃗) [5], [6]. A simple and computationally
cheap interpolation scheme is the piecewise linear interpo-
lation method. Since it is not continuously differentiable, it
cannot be used to generate parametric sensitivity macromod-
els. A proper choice of an interpolation scheme which is at
least continuously differentiable is necessary. In this letter,
two interpolation methods are investigated, namely the cubic
spline (CS) interpolation and the piecewise cubic Hermite
interpolation (PCHIP), which are briefly described in what
follows.

A. Cubic Spline (CS) Interpolation
Given some data samples (xi, yi)

n
i=1, the CS interpolation

method builds a cubic polynomial si(x) for each interval of
the dataset xi ≤ x ≤ xi+1, i = 1, . . . , n. The coefficients
of the cubic polynomials are obtained by imposing the first
and second order derivative continuity at each data point
along with a not-a-knot end condition [10]. Once these
coefficients are computed, the derivatives of the overall spline
interpolation function can be analytically calculated in terms
of its coefficients. If the data under interpolation is in matrix
form, each entry of the matrices is independently interpolated.

The univariate CS interpolation can be extended to higher
dimensions by means of a tensor product implementation [10].

B. Piecewise Cubic Hermite Interpolation (PCHIP)
The PCHIP method is a monotonic shape preserving in-

terpolation scheme. As in the CS interpolation, each data
interval is modeled by a cubic polynomial with additional
constraints to preserve the monotonicity locally [11]. An
extension to higher dimension can be performed by a tensor
product implementation [10]. The calculation of derivatives is
done in the same way as in the CS interpolation case. This
interpolation scheme works better for non-smooth datasets,
wherein CS could result in overshoots or oscillatory behavior.
However, PCHIP is only continuous in first derivatives, which
affects the smoothness of the derivatives [11].

IV. PARAMETRIC SENSITIVITY MACROMODELS

The set of root macromodel state-space matrices Ag⃗k,Bg⃗k,
Cg⃗k,Dg⃗k is interpolated entry-wise and the multivariate mod-
els A(g⃗),B(g⃗),C(g⃗),D(g⃗) are built, yielding a parametric
macromodel over the entire design space:

R(s, g⃗) = C(g⃗)(sI−A(g⃗))−1B(g⃗) +D(g⃗). (6)

A parametric macromodel of sensitivity responses is obtained
by differentiating (6) with respect to the design parameters g⃗.

∂

∂g⃗
R(s, g⃗) =

∂C(g⃗)

∂g⃗
(sI−A(g⃗))−1B(g⃗) +

C(g⃗)(sI−A(g⃗))−1 ∂A(g⃗)

∂g⃗
(sI−A(g⃗))−1B(g⃗) +

C(g⃗)(sI−A(g⃗))−1 ∂B(g⃗)

∂g⃗
+

∂D(g⃗)

∂g⃗
(7)

The derivatives of A(g⃗),B(g⃗),C(g⃗),D(g⃗) are computed ef-
ficiently and analytically using the CS and PCHIP schemes.

V. NUMERICAL RESULTS

In this example, a microstrip with a length of 2 cm is
modeled. Its cross section is shown in Fig. 1. The relative
permittivity of the substrate is equal to ϵr = 4.1. A trivariate
macromodel is built as a function of the width W ∈ [200 −
300] µm of the strip and the height h ∈ [400 − 500] µm of
the substrate in addition to frequency freq ∈ [1− 5] GHz.

Fig. 1. Cross section of the microstrip.

The two-port open-circuit impedance parameter matrix
Z(s,W, h) has been computed by means of the analytical
quasi-TEM model presented in [12] on a grid of 150×15×15
samples (freq,W, h). The accuracy of the model R(s, g⃗) and
its derivatives with respect to the original analytical quasi-
TEM model Z(s, g⃗) for the two interpolation methods is
measured in terms of the relative error defined as:

Erel =

∣∣∣∣R(s, g⃗)− Z(s, g⃗)

Z(s, g⃗)

∣∣∣∣ ; g⃗ = (W,h) ∈ validation grid.

(8)
A set of stable and passive root macromodels has been built
for 8 values of W and 8 values of h using VF, and 14
poles were selected for the root macromodels using an error-
based bottom up approach. The remaining data are used for
validation. Each root macromodel has been converted to a
state-space form (5) and the state-space matrices have been
interpolated using the CS and PCHIP interpolation methods.
The maximum relative error (8) of the parametric macromodel
of Z(s,W, h) is −62.23 dB and −57.78 dB, respectively, using
the CS and PCHIP schemes. Then, the parametric sensitivities
of Z(s,W, h) with respect to W and h has been computed
by means of the derivatives (7) of the trivariate macromodels
and the analytical quasi-TEM model. Figs. 2-3 are plotted to
show the parameterization of the Z and ∂Z/∂W matrices.
Fig. 2 shows the parametric behavior of the magnitude of
the (1, 1) entry of the Z(s,W, h) matrix (Z11) as a function
of frequency and W for h = 450 µm, while Fig. 3 shows
the magnitude of the corresponding parametric sensitivity
∂Z11/∂W obtained by the CS scheme. In order to visualize
the modeling capability of the proposed method, the Fig. 4
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shows sensitivity ∂Z11/∂W obtained by the analytical quasi-
TEM model, the CS and PCHIP methods as a function of
frequency for the values W = 250 µm and h = 450 µm,
which have not been used for the generation of the root
macromodels. A very good agreement between the methods
can be observed.
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Fig. 2. Magnitude of Z11 for h = 450 µm.
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Fig. 3. Magnitude of ∂Z11/∂W for h = 450 µm.
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Fig. 4. Magnitude of ∂Z11/∂W for W = 250 µm and h = 450 µm.

Fig. 5 shows the relative error distribution (8) of the
parametric sensitivity macromodel ∂Z/∂W over the grid of
150 × 15 × 15 samples (freq,W, h). Similar results are ob-
tained for ∂Z/∂h. We note that a good accuracy is achieved by
both interpolation methods, but the CS scheme leads to a lower
average error due to the continuity of the second derivative.
However, in cases where the interpolation is performed on
nonsmooth data sets, the CS scheme may result in oscillations
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Fig. 5. Error distribution histogram for ∂Z/∂W .

of the derivatives. In those cases, PCHIP will result in a better
accuracy.

VI. CONCLUSIONS

We have presented a new parametric macromodeling tech-
nique for building accurate parametric macromodels of system
sensitivity responses with respect to design parameters. The
technique is based on the interpolation of state-space matrices.
A suitable choice of interpolation schemes allows to build
accurate parametric sensitivity macromodels. Two different
interpolation methods have been used and validated by nu-
merical results, thereby demonstrating the accuracy and the
modeling capability of the proposed method.
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