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Abstract

Currently many service providers offer their services on a private and propri-

etary hard- and software infrastructure. These infrastructures often share many

similarities. Hence we believe a generic service management architecture, that

allows service providers to offer a large array of different services on a single

infrastructure or multiple providers to offer their services cooperatively, would

provide many advantages over current silo-based approaches. Additionally, by

allowing the distributed service management components to cooperate in a peer-

to-peer overlay network, scalability and resilience of the system could be greatly

improved.

In this paper we propose an optimal algorithm, based on an Integer Linear

Programming (ILP) formulation, and several heuristics to support such a generic

overlay-based service management architecture. More specifically, we propose

algorithms for dynamically allocating server and network resources to a set of

services and selecting a suitable service instance for each client. Service instances

are placed on a set of servers, taking into account server resource constraints (e.g.

CPU and memory). Unlike existing algorithms for this problem, those proposed

in this paper also support Service Level Agreements (SLAs), which take the

form of Quality of Service demands such as transmission latency constraints and

bandwidth requirements. The optimization goal is to maximise the percentage of

satisfied demand (answered requests) and minimise the total number of required
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overlay servers, while satisfying the SLAs and resource constraints. Additionally,

we propose an extension that allows the algorithms to find overlay routing paths

to improve the transmission latency for latency-sensitive services.

Extensive simulations were performed to evaluate the performance and scala-

bility of the heuristics. They showed that in many cases the heuristics perform

close to optimal and they scale well in terms of network size.

Key words: service management, service placement, server selection,

overlay routing

1. Introduction

The exponential growth of the Internet allows an ever-growing number of service

providers to reach more and more users. Currently, many service providers offer

their services on a private and proprietary infrastructure, designed specifically

for a single service. Nevertheless, many components of such a service manage-

ment infrastructure could be reused for offering a wide range of different ser-

vices. By designing generic service management components, service providers

could focus on designing the actual service logic, instead of the management

infrastructure.

A generic service management infrastructure could be used by a single provider

to offer a range of different services. Alternatively, many providers could col-

laborate to offer their services on a shared, global infrastructure. This provides

additional advantages, such as: a larger shared resource pool, longer reach across

the Internet, and composition of services of different providers (i.e. workflows

[1]).

Recently, peer-to-peer overlay networks have been widely proposed in the con-

text of service management infrastructures [2, 3]. Using such peer-to-peer

principles provides several advantages, such as improved scalability, resilience

towards failures and support for overlay routing.

In this paper, an overlay-based service management architecture is proposed.

The assumed deployment scenario is shown in Fig. 1. It is assumed that the

infrastructure consists of several datacenters spread across the Internet. In
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Figure 1: The assumed deployment scenario for a generic service management
infrastructure

front of each datacenter are one or more overlay servers. These servers are

responsible for managing the resources of the datacenter, and performing service

management tasks. Additionally, they are connected together in an overlay

network, which can be used for disseminating information or routing service

requests. The figure also shows how overlay routing via an intermediate overlay

server can be used to circumvent problems in the underlying physical network

(e.g. bandwidth bottlenecks, failures, or high-latency links).

In addition to the generic service management architecture itself, some of its

required algorithmic components are also studied in this paper. More specifi-

cally, an Integer Linear Programming (ILP) based optimal algorithm and several

heuristics are proposed for performing service placement and server selection.

The proposed algorithms take into account server resources, such as CPU and

memory. In contrast to many existing service placement algorithms, they also

take into account Service Level Agreements (SLAs) in the form of bandwidth

requirements and transmission latency constraints. Additionally, an extension

to the algorithms is proposed that allows them to find overlay routes between

the overlay servers and clients, to improve the transmission latency of requests.

The algorithms presented in this paper improve upon our previous work [4].

First, the algorithms have been adapted in order to optimise performance on

the level of client-service connections, instead of single request messages. This

greatly improves scalability and real-world applicability. Second, an extension

to the heuristics is presented. It allows them to find the lowest latency path,
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while satisfying bandwidth requirements. Third, the devised Integer Linear

Programming (ILP) formulation of the service placement problem is presented

in full. Finally, more thorough simulation results are presented. This allows us

to better evaluate and compare the performance and behaviour of the presented

algorithms.

The rest of this paper is structured as follows. Related work is discussed in

Section 2. The components of which the service management architecture is

composed are further discussed in Section 3. Section 4 gives a formal descrip-

tion of the service management network model and the service placement and

server selection problems. Section 5 gives an in-depth overview of the designed

algorithms. In Section 6, overlay-aware versions of the algorithms are discussed.

The algorithms are evaluated based on simulation results for different scenarios

in Section 7. And finally, conclusions are drawn in Section 8.

2. Related Work

In the past, variants of the service placement problem have been solved by

translating them into facility location [5] and knapsack [6] problems. The facility

location problem is defined as selecting a subset of available locations for the

placement of facilities, minimising the total transportation and placement costs.

In the context of service placement, a facility represents a service instance, while

a facility location represents a server. The knapsack problem can be described

as follows. Given a set of items with weight and profit, determine the number of

each item-type to place in a container, maximising total profit. In this case, the

items represent services, while knapsacks represent servers. The general form of

both problems is NP-hard.

Facility location has been a point of interest in research for many years. As a

consequence, many sub-optimal heuristics, that decrease complexity, have been

proposed. They solve the problem using a wide plethora of different techniques,

such as: linear program relaxation [7, 8], local search [9, 10, 11, 12], dynamic

programming [13], greedy principles [14], and many others [15, 12, 16, 17].

Most related to the problem presented in this paper is the capacitated facility

location problem (CFLP) [10, 11]. The CFLP variant introduces an additional
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constraint that stipulates the maximum number of clients that can be handled

by each facility. This can be mapped to the server-resource constraints in the

service placement problem. However, these heuristics often assume the distance

measure satisfies the triangle inequality, while it has been shown that Internet

transmission latency does not [18]. Additionally, the facility location problems

are formulated for placing several copies of a single facility. On the other hand,

the algorithms proposed in this paper place one or more instances of several

different service types. This cannot be easily generalised, as the CFLP assumes

a capacity per facility instance, while we assume the capacity is shared among

all facility (i.e. service) instances placed in the same location (i.e. server). As

a consequence, it is not possible to merely execute the CFLP algorithm for all

facility types sequentially.

The knapsack problem has also been a topic of thorough study [6, 19]. The vari-

ant most related to the problem presented in this paper is the class-constrained

multiple-knapsack problem (CMKP) [20, 21]. In CMKP, items of multiple types

need to be placed in multiple knapsacks, each with limited capacity. This can

be easily mapped to the different service types that need to be placed on mul-

tiple servers, with limited resources. The classic CMKP has been successfully

adapted to the service placement problem [22, 23]. Karve et al. designed a

centralized application placement middleware [22]. Their heuristic maximizes

satisfied demand and minimizes total number of placement changes compared

to a previous placement scheme. However, only server resource constraints are

taken into account. Adam et al. argued that any centralized service placement

algorithm has a limited scalability and created a decentralized variant of [22].

In [24, 25], they propose an application placement middleware that constructs

overlays, places services, selects service instances for clients and routes the client

requests to the correct instance. Their service placement heuristic maximizes

satisfied demand, also taking into account only CPU and memory constraints.

In [3], the scalability of their previous design is improved. Here every node re-

quires knowledge on only a limit number of other nodes, instead of global knowl-

edge on all nodes in the network. Although these algorithms take into account

several server resources, none of them consider network related resources and

limitations. We argue that in this age, where many applications require large
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amounts of bandwidth (e.g. video streaming, IPTV) and guarantees concerning

transmission latency (e.g. online gaming, video/audio conferencing) these are

just as important as server resources. As a consequence, our algorithms also

consider bandwidth and transmission latency.

No one-to-one mapping is possible between the facility location or knapsack

problems and the problem solved in this paper. The service placement algo-

rithms presented in this work take into account both restrictions in the network

and on the servers. Additionally, they attempt to place one or more instances

of multiple services on multiple servers. As a consequence, the problem can be

translated into a combination of the facility location and knapsack problems.

Existing algorithms can thus not be directly adapted.

In [26], an algorithm is proposed for placing service components that cooperate

in a service composition. The algorithm minimises traffic between service com-

ponents and variance in processing power used on each server. However, it is

assumed only a single instance of each service component should be placed in

the network.

Service Level Agreements (SLAs) provide a formal mechanism for defining con-

tracts between service providers and consumers [27]. Research on SLAs has fo-

cused on negotiation protocols [28], translation into device configurations [29],

and monitoring of compliance [30]. SLAs have also been integrated into service

management architectures, for instance [31, 2]. However, this architecture only

considers the migration of existing service instances between servers, and not the

problem of deciding how many instances of each service to place. Additionally,

the server selection and request routing problems are not tackled.

3. Service Management Architecture

The components of the considered generic overlay-based self-managing service

management architecture are shown in Fig. 2. It consists of 4 major com-

ponents, which operate on top of the transport layer. The resource monitoring

component is responsible for monitoring server and network resource usage. The

peer-to-peer overlay maintains a virtual peer-to-peer network topology, which
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Figure 2: The functional components of our proposed self-managing generic
service management infrastructure

can then be used by the service management components. These service man-

agement components are responsible for allocating resources to services, moni-

toring for SLA violations, discovering service instance locations, server selection

and routing requests. Finally, the service execution container executes service

instances on every server, as decided by the service placement algorithms. All

these components can either be centralised, or, to improve scalability and re-

silience, distributed across a set of overlay servers. In this last case, decentralised

algorithms are needed for all management components. This paper focusses on

the algorithms for the service management components. Therefore, these com-

ponents are discussed in more detail in the rest of this section. For clarity and

brevity, a detailed description of the other components is omitted.

The service placement component is responsible for allocating server and net-

work resources to every service. Because of resource constraints it is usually

impossible to run every service on every server. Therefore it must be decided

where to place instances of which services, and how many instances to place.

Closely related, is the server selection component. As multiple instances of a

service might be run across the network, it must be decided which instance to

use for which clients. The decision of both the service placement and server

selection algorithms is based on the available resources and SLAs, which they

monitor via the resource monitor and SLA manager. They should make sure

server and network resources do not become overloaded, and no SLA viola-

tions occur. Algorithms that solve the service placement and service selection
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problems are further discussed in Section 5.

In a large-scale system, a scalable mechanism is needed for discovering the

location of service instances, before server selection can take place. Several

solutions, which operate on top of the overlay topology, exist for this service

discovery problem. For example, a Distributed Hash Table (DHT) [32] or a

flooding-based approach [3] could be used.

Finally, client request routing can either be done directly via the underlying IP

network, or via the overlay network, using an overlay routing protocol. The

algorithms for finding suitable overlay routing paths are discussed in Section 6.

4. Problem Formulation

Informally, the service placement and server selection problems can be described

as follows. The goal of service placement is to decide which services to execute on

which servers, without violating any server resource constraints. The objective

is to use as few overlay servers as possible. The goal of server selection is to

decide which instance of a service to use for the requests of a certain client,

without violating any server or network resource constraints. The objective of

this problem, is to satisfy as much client demand as possible. In the rest of this

section, a more formal description of the problems is given.

4.1. Network Model

The overlay network consists of a set of overlay servers O and a set of clients

C. Together these form the set of overlay nodes N = O ∪C. Every node n ∈ N

has a maximum incoming and outgoing bandwidth limit, respectively Bin
n and

Bout
n , which represent the available access-link bandwidth. The link between

every pair of nodes m, n ∈ N has a transmission latency ∆m,n. Every overlay

server o has a memory capacity Γo and CPU capacity Ωo.

Additionally, a set of services S is defined. Every service s ∈ S has several server

resource requirements and an associated SLA. The required server resources

consist of memory per instance γin
s , memory per client γcl

s , and CPU per client

ωs. The SLA consists of the required request bandwidth βreq
s (on the path

from the client to the server), reply bandwidth βrep
s (from server to client),
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and maximum round trip time (RTT) δs. This is the maximum transmission

latency from the client to the server and back. It is used for modelling time

critical services, such as online gaming or VoIP. Finally, every service has a

priority πs, which indicates its importance.

Every client c has a set of services Sc, which it wants to use. The set Cs contains

all clients that want to use service s, thus

c ∈ Cs ⇔ s ∈ Sc (1)

Finally, as some services have certain soft- or hardware requirements, we use

the boolean variable Ro,s to indicate if overlay server o is capable of running

service s.

4.2. Formal Problem Formulation

In this section, a formal problem formulation of the service placement and server

selection problems is given. It is structured in the form of an Integer Linear Pro-

gramming (ILP) formulation. An ILP formulation consists of decision variables,

constraints and an objective function. The decision variables represent the solu-

tion space of the problem. The constraints make sure the values of the decision

variables are valid for the given problem and the objective function is used to

pick the optimal values of the decision variables. In the rest of this section, the

decision variables, constraints and objective function for the service placement

and server selection problem are explained.

Decision Variables. The formulation consists of three types of decision variables

• So,s ∈ [0, 1] equals 1 if overlay server o executes service s

• Uo ∈ [0, 1] equals 1 if overlay server o is used to execute services

• Oc,o,s ∈ [0, 1] equals 1 if overlay server o answers the requests of client c

for service s

Constraints. An overlay server can only run services if it satisfies their require-

ments

∀o ∈ O, ∀s ∈ S : So,s ≤ Ro,s (2)
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If an overlay server hosts any services, it is used

∀o ∈ O :
∑

s∈S

So,s ≤ |S| × Uo (3)

An overlay server can only answer requests of services it executes and if the

client wants to use that service

∀c ∈ C, o ∈ O, s ∈ S : Oc,o,s ≤ So,s (4)

∀c ∈ C, s ∈ S :
∑

o∈O

Oc,o,s ≤ σc,s (5)

With σc,s = 1 if s ∈ Sc, and σc,s = 0 otherwise.

The amount of used resources cannot exceed available resources

∀o ∈ O :
∑

s∈S

γin
s × So,s +

∑

c∈C

∑

s∈S

γcl
s ×Oc,o,s ≤ Γo (6)

∀o ∈ O :
∑

c∈C

∑

s∈S

ωs ×Oc,o,s ≤ Ωo (7)

∀c ∈ C :
∑

o∈O

∑

s∈S

βreq
s ×Oc,o,s ≤ Bout

c (8)

∀c ∈ C :
∑

o∈O

∑

s∈S

βrep
s ×Oc,o,s ≤ Bin

c (9)

∀o ∈ O :
∑

c∈C

∑

s∈S

βreq
s ×Oc,o,s ≤ Bin

o (10)

∀o ∈ O :
∑

c∈C

∑

s∈S

βrep
s ×Oc,o,s ≤ Bout

o (11)

The transmission latency from the client to the server and back, cannot exceed

the maximum RTT of the service

∀c ∈ C, o ∈ O, s ∈ S : (∆c,o + ∆o,c)×Oc,o,s ≤ δs (12)

Objective Function. The objective function maximises the satisfied demand and

minimises the number of used overlay servers

max









α×

∑

c∈C

∑

o∈O

∑

s∈S

πs ×Oc,o,s

∑

c∈C

∑

s∈Sc

πs

− (1− α)×

∑

o∈O

Uo

|O|









(13)

The parameter α represents a weight factor, which can be used to change the

relative importance of both goals. Both satisfied demand and number of used

overlay servers are normalised. The number of answered requests is multiplied

by the priority of the service, which effectively makes the objective function

prioritise more important services.
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5. Service Management Algorithms

In this section, several algorithms that solve the service placement and server

selection problems are discussed. Service placement and server selection are

closely intertwined. A different placement for example, will influence to optimal

solution of the selection problem. Therefore, to optimise both objectives as

much as possible, our proposed algorithms solve both problems simultaneously.

As previously stated, this problem can be translated into a combination of the

capacitated facility location and class-constrained multiple-knapsack problems.

Both these problems are NP-hard [5, 6]. As a consequence, the problem solved

here is NP-hard as well. Therefore, we propose not only an optimal algorithm,

but also several sub-optimal heuristics, with a polynomial time complexity.

5.1. ILP Algorithm (ILP)

The ILP algorithm finds the optimal solution to both the placement and selec-

tion problem. It is based on the formal problem formulation given in Section

4 and solved using the ILOG CPLEX [33] software package, with the simplex

and interior point methods [34].

5.2. Greedy Service Placement Heuristic (GSP)

Although the ILP algorithm returns the optimal solution to the problem, it has

a very high time complexity and is therefore unusable for larger scenarios. As

an alternative, a suboptimal heuristic was devised with a lower time complexity.

As its name implies, this heuristic is based on the greedy principles. It is

greedy in the way that it will separately place instances of each service, without

taking into account services that have not been placed yet (it does however take

into account resources used by already placed services). Pseudo-code for the

algorithm is shown in Algorithm 1.

The algorithm starts by initialising the required variables (lines 1–11). The

variables So and Co,s are used by the algorithm to store the obtained solution.

The set So will contain all services executed by overlay server o, while Co,s will

contain all clients that use the instance of s on o to satisfy their demand. The
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Algorithm 1 Pseudo-code of the greedy service placement heuristic
function gsp()
1: for all o ∈ O do

2: So ← {}
3: γavl

o ← γo

4: ωavl
o ← ωo

5: Bin,avl
o ← Bin

o

6: Bout,avl
o ← Bin

o

7: for all s ∈ S do

8: Co,s ← {}
9: for all c ∈ C do

10: Bin,avl
c ← Bin

c

11: Bout,avl
c ← Bin

c

12: sort(S) //by decreasing prioritised requests
13: for all s ∈ S do

14: for all c ∈ Cs do

15: Uc ← {}
16: for all o ∈ O do

17: uo ←
∑

s∈S |Co,s|

18: if Bin,avl
c ≥ βrep

s and Bout,avl
c ≥ βreq

s then

19: for all o ∈ O do

20: if (s ∈ So or γavl
o ≥ γin

s + γcl
s ) and γavl

o ≥ γcl
s and ωavl

o ≥ ωs

and Bin,avl
o ≥ βreq

s and Bout,avl
o ≥ βrep

s and Ro,s = true and

∆c,o + ∆o,c ≤ δs then

21: Uc ← Uc ∪ {o}
22: uo ← uo + 1
23: sort(O) //by decreasing uo

24: sort(C) //by increasing |Uc|
25: for all o ∈ O do

26: for all c ∈ C do

27: if Bin,avl
c ≥ βrep

s and Bout,avl
c ≥ βreq

s then

28: if (s ∈ So or γavl
o ≥ γin

s + γcl
s ) and γavl

o ≥ γcl
s and ωavl

o ≥ ωs and

Bin,avl
o ≥ βreq

s and Bout,avl
o ≥ βrep

s then

29: if s /∈ So then

30: γavl
o ← γavl

o − γins

31: So ← So ∪ {s}
32: Co,s ← Co,s ∪ {c}
33: Bin,avl

c ← Bin,avl
c − βrep

s

34: Bout,avl
c ← Bout,avl

c − βreq
s

35: γavl
o ← γavl

o − γcl
s

36: ωavl
o ← ωavl

o − ωs

37: Bin,avl
o ← Bin,avl

o − βreq
s

38: Bout,avl
o ← Bout,avl

o − βrep
s

39: return {So}∀o∈O , {Co,s}∀o∈O,s∈S

other variables represent the remaining amount of resources of each type for the

clients and overlay servers (i.e. CPU, memory and bandwidth). Subsequently,
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the services are sorted from most to least prioritised request count (line 12).

The prioritised request count equals the number of clients that want to use the

service multiplied by its priority.

The algorithm iterates over all services to decide where to place an instance,

and which instance to use for every client (lines 13–38). First, the set of overlay

servers that can be used by the clients of the service is determined (lines 14–22).

These overlay servers are called the candidate servers, and the set is denoted

by Uc. The variable uo equals the number of clients that have server o as a

candidate plus the number of clients that have already been assigned to it for

other services. These two variables are initialised on lines 15–17. Then, the

algorithm checks if the client has enough bandwidth available to use the service

(line 18). Finally, all overlay servers that have enough resources, and for which

the transmission latency to the client is within the delay bound of the service,

are added to Uc (lines 19–22).

Then, the candidate sets are used to determine the actual service placement

and server selection schemes (lines 23–38). First, the set of overlay servers is

sorted from most to least clients that use it, or can use it (line 23). This allows

the algorithm to minimise the number of used servers. Second, the clients are

sorted from least to most candidates (line 24). This makes sure that clients with

only few candidates also have a chance to select a server. In the third step, the

actual placement and selection take place (lines 25–38).

It can be easily seen that the worst-case time complexity of the greedy service

placement heuristic is O (|S| × |C| × |O|).

5.3. Overlay-Subset Service Placement Heuristic (OSP)

The greedy service placement heuristic requires interaction between the different

clients and overlay servers to perform service placement and server selection. Be-

fore the placement of a service is actually performed, it must first iterate over all

clients of that service and check which overlay servers are possible candidates

for that client. Although this is not a problem in a centralised architecture,

where information on all servers and clients is available, it is difficult to trans-

late this to a decentralised environment. To leverage this, a second heuristic
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Algorithm 2 Pseudo-code of the overlay-subset service placement heuristic
function osp(N ∈ [1.. |O|])
1: for all o ∈ O do

2: So ← {}
3: uo ← 0
4: γavl

o ← γo

5: ωavl
o ← ωo

6: Bin,avl
o ← Bin

o

7: Bout,avl
o ← Bin

o

8: for all s ∈ S do

9: Co,s ← {}
10: for all c ∈ C do

11: Bin,avl
c ← Bin

c

12: Bout,avl
c ← Bin

c

13: sort(S) //by decreasing prioritised requests
14: for all s ∈ S do

15: for all c ∈ Cs do

16: if Bin,avl
c ≥ βrep

s and Bout,avl
c ≥ βreq

s then

17: Oc ← getNearestServers(c, N)
18: sort(Oc) //by decreasing uo and first if s ∈ So

19: for all o ∈ Oc do

20: if (s ∈ So or γavl
o ≥ γin

s + γcl
s ) and γavl

o ≥ γcl
s and ωavl

o ≥ ωs

and Bin,avl
o ≥ βreq

s and Bout,avl
o ≥ βrep

s and Ro,s = true and

∆c,o + ∆o,c ≤ δs then

21: if s /∈ So then

22: γavl
o ← γavl

o − γins

23: So ← So ∪ {s}
24: Co,s ← Co,s ∪ {c}
25: uo ← uo + 1
26: Bin,avl

c ← Bin,avl
c − βrep

s

27: Bout,avl
c ← Bout,avl

c − βreq
s

28: γavl
o ← γavl

o − γcl
s

29: ωavl
o ← ωavl

o − ωs

30: Bin,avl
o ← Bin,avl

o − βreq
s

31: Bout,avl
o ← Bout,avl

o − βrep
s

32: return {So}∀o∈O , {Co,s}∀o∈O,s∈S

was devised. The overlay-subset service placement heuristic does not require

this interaction and uses only the information available from past placement

decisions. Additionally, a client will only consider the N nearest overlay servers

as possible candidates, which greatly improves the scalability and reduces the

information that is needed on every client. Pseudo-code for this algorithm is

shown in Algorithm 2.

First, as for GSP, the solution variables are initialised (lines 1–12) and the list
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of services is sorted by decreasing prioritised request count (line 13). Then, the

algorithm iterates over all services (lines 14–31).

The algorithm will attempt to find a server for every client that uses the service

(lines 15–31). If the client has enough available incoming and outgoing band-

width for the service (line 16), the algorithm will retrieve the N overlay servers

with the lowest transmission delay from the client c (line 17) and sort them from

most to least clients already using the server (line 18). Additionally, to preserve

as much memory as possible, servers that already run an instance of s are priori-

tised. This prevents the algorithm from placing too many instances of a single

service. Finally, the first of the N servers that has enough resources and a low

enough transmission latency (line 20), will be used by the client (lines 21–31).

The worst-case time complexity of this algorithm is O (|S| × |Cm
s | ×N × log N),

with Cm
s = maxs∈S Cs. Therefore, if N is small compared to O (e.g. N < 30 if

O = 100 or N < 190 for O = 1000) and the number of clients per service Cs is

smaller than C, then the time complexity of OSP is less than that of GSP.

6. Overlay-Aware Algorithms

The algorithms described in Section 5 route service requests and replies directly

from the client to their selected overlay server and back. Nevertheless, routing

via the overlay network could improve the transmission latency and thus the

perceived Quality of Experience (QoE) significantly. Fig. 3 shows an example

of how overlay routing could improve the latency between client c and overlay

server o. This is the case because the triangle inequality does not hold for

transmission latencies over the Internet [18]. However, routing via the overlay

network comes at the cost of additional bandwidth consumption, as all the

requests and replies will now need to pass through additional overlay servers.

In the rest of this section, the changes needed for the algorithms to support

overlay routing are discussed. The adapted algorithms will not only select an

overlay server for the service requests of the clients, but will also calculate a

suitable path through the overlay network.
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Figure 3: An example where routing via an additional overlay server reduces
the transmission latency (from 430 to 185 ms)

6.1. ILP Formulation

Several changes are needed in the ILP formulation to support overlay routing.

These are discussed in the rest of this section.

Decision Variables. An additional decision variable is needed to support the

notion of overlay paths. It is assumed the path from the client to the overlay

server is equal to the path back. Therefore, only 1 extra decision variable is

needed

• Pc,o,s,m,n ∈ [0, 1] equals 1 if the overlay link between nodes m and n is

used in the path between client c and overlay server o for sending requests

and replies of service s

Constraints. In the original algorithm, an overlay server was activated if it ran

any services. When using overlay routing, servers that are used for routing

should also be considered active. Therefore, an additional constraint is needed

∀o ∈ O :
∑

c∈C

∑

p∈O

∑

s∈S

∑

n∈N

Pc,p,s,o,n + Pc,p,s,n,o ≤ ν × Uo (14)

With ν = 2× |C| × |O| × |S| × |N |.

Constraints 8, 9, 10 and 11 are no longer valid, as now bandwidth needs to be

reserved on the entire path between the client and the server. The following 2

constraints replace the previous 4 bandwidth reservation constraints

∀m ∈ N :
∑

c∈C

∑

o∈O

∑

s∈S

∑

n∈N

βreq
s × Pc,o,s,m,n + βrep

s × Pc,o,s,n,m ≤ Bout
m (15)

16



∀m ∈ N :
∑

c∈C

∑

o∈O

∑

s∈S

∑

n∈N

βreq
s × Pc,o,s,n,m + βrep

s × Pc,o,s,m,n ≤ Bin
m (16)

Constraint 12, limiting the transmission latency between the client and server,

must now be replaced by a constraint that takes into account the latency on the

entire overlay path

∀c ∈ C, o ∈ O, s ∈ S :
∑

m∈N

∑

n∈N

(∆m,n + ∆n,m)× Pc,o,s,m,n ≤ δs (17)

Additionally, a number of new flow conservation constraints are needed. They

make sure the P variables form a valid path. These are discussed in the rest of

this section.

The number of incoming links must equal the number of outgoing links and

there may be at most one of each (except for the client and the overlay server

answering the requests)

∀c ∈ C, o ∈ O, s ∈ S, m ∈ O \ {o} :
∑

n∈O∪{c}

Pc,o,s,n,m − Pc,o,s,m,n = 0(18)

∀c ∈ C, o ∈ O, s ∈ S, m ∈ O \ {o} :
∑

n∈O∪{c}

Pc,o,s,n,m + Pc,o,s,m,n ≤ 2(19)

The client must have one outgoing link part of the path, and the overlay server

answering the requests must have one incoming link part of the path

∀c ∈ C, o ∈ O, s ∈ S : Oc,o,s ≤
∑

n∈N

Pc,o,s,c,n ≤ 1 (20)

∀c ∈ C, o ∈ O, s ∈ S : Oc,o,s ≤
∑

n∈N

Pc,o,s,n,o ≤ 1 (21)

The client cannot have any incoming links on the request path and the over-

lay server answering the request no outgoing links. Additionally, other clients

cannot be part of its path

∑

c∈C

∑

o∈O

∑

s∈S

∑

n∈O

Pc,o,s,n,c + Pc,o,s,o,n = 0 (22)

∑

c∈C

∑

o∈O

∑

s∈S

∑

m∈N

∑

d∈C\{c}

Pc,o,s,m,d + Pc,o,s,d,m = 0 (23)
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6.2. Heuristics

There are only minor changes needed for the heuristics to be able to support

overlay routing. The idea is to only use overlay routing, if the latency on the

underlay link directly between the client and the server is too high. For this,

an additional function that finds an overlay path between the client and server

with enough bandwidth and low enough latency is needed. The greedy service

placement heuristic should then check if such a path exists at line 14 (only if the

direct transmission latency is too high). The overlay-subset service placement

heuristic should do this check at line 14 as well. Additionally, a third solution

variable is needed that keeps track of these overlay paths.

Algorithm 3 shows pseudo-code for the algorithm that finds the shortest hop-

count path between a client and its server. The algorithm makes sure that

the path contains enough bandwidth for the given service and the transmission

latency is low enough. It is based on Yen’s “K shortest loopless paths” algorithm

[35]. The extra K parameter gives an upper bound to the number of paths that

can be tested before the algorithm returns. This parameter helps in limiting the

complexity of the algorithm in very large networks. The algorithm selects the

shortest hop-count path that satisfies the constraints, because every additional

hop in the path incurs a bandwidth penalty on that node. To waste as little

bandwidth for routing as possible, there should be as few hops in the path as

possible .

First, the algorithm will check if the client and overlay server have enough

bandwidth available for the service (lines 1–2). If this is not the case, it returns

and no path is found. Then, the solution variables are initialised (lines 3–5).

The variable p represents the current path, P represents the list of shortest

paths, and C the list of candidate shortest paths. Finally, the algorithm will

find the next shortest path, until one is found that satisfies the maximum delay

bound of the service (lines 6–23).

The next shortest path is found as follows. In the first step, the algorithm

iterates over i from 1 to the number of nodes in the current path p (lines 9–17).

For every path q ∈ P , it will check if the path consisting of the first i nodes of

p is equal to that of the first i nodes of q (lines 13–14). If this is the case, the
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Algorithm 3 An adjusted version of Yen’s algorithm to find an overlay path
between the client and server with lowest hop-count, enough bandwidth to sup-
port the given service and a low enough transmission latency for the service
function findPath(c ∈ C, o ∈ O, s ∈ S, K ∈ N

∗)
1: if Bout,avl

c < βreq
s or Bin,avl

c < βrep
s or Bin,avl

o < βreq
s or Bout,avl

o < βrep
s

then

2: return null

3: p← {c, o}
4: P ← {}
5: C ← {}
6: while K > 0 and ∆p > δs do

7: K ← K − 1
8: P ← P ∪ {p}
9: for i = 1 to |p| do

10: E ← {}
11: for j = 1 to |P | do

12: q ← Pj

13: if p(1..i) == q(1..i) then

14: E ← E ∪ {[pi, pi+1]}
15: t← p(1..i−1)∪ getShortestPath(pi, o, E, p(1..i−1))
16: if t /∈ P and t /∈ C then

17: C ← C ∪ {t}
18: if |C| > 0 then

19: p← getShortestCandidatePath(C)
20: C ← C \ {p}
21: P ← P ∪ {p}
22: else

23: return null

24: if ∆p ≤ δs then

25: return p
26: else

27: return null

edge consisting of the ith and (i+1)th nodes of p is added to the list of excluded

edges E (line 14). Then, a new path is constructed (line 15). It consists of the

concatenation of the first i− 1 nodes of p and the shortest hop-count path from

the ith node of p to o. This path cannot contain any of the first i nodes of p or

any of the edges in E. Additionally, nodes that do not have enough incoming

and outgoing bandwidth available to be used for routing requests and replies of

service s are not used. The path can be calculated using an altered version of

Dijkstra’s shortest path algorithm [36], that does not use the forbidden edges

and nodes. The path t is then added to C (lines 16–17). In the second step, p

is set to the shortest hop-count path in C and the process is repeated.
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The worst-case time complexity of Yen’s original algorithm equals O
(

K/2× |O|3
)

,

which is the same as that of our adjusted algorithm. Note, that in the case

where ∆c,o + ∆o,c ≤ δs, the function returns the path {c, o} (or null) and the

complexity is reduced to O (1).

7. Simulation Results

In this section, the performance and scalability of the heuristics is evaluated,

based on simulation results. Performance is measured by comparing the solu-

tion to the optimal solution, calculated with the ILP algorithm. Scalability is

evaluated by comparing results for different sized networks.

As a metric for solution quality, the satisfied request count and used servers are

used. An server is used, if it runs any services or is part of any overlay routing

path. The load on the network is expressed as the total number of requests.

The error bars in the graphs represent the standard error of the mean over 10

(for ILP) or 30 (for the GSP and OSP) iterations.

7.1. Simulation Setup

The incoming and outgoing bandwidth of all clients and servers was set to

10 Mbps. Every server had a total of 1000 CPU cycles per second, and 4

GiB of memory. Heterogeneity was introduced by randomizing service require-

ments. Service maximum round trip times (RTT) were selected according to a

random uniform distribution from the set {200, 500, 1000} ms. Required CPU

per client was chosen according to a random uniform distribution from the set

{100, 200, 300, 400} cycles per second. Required memory was chosen from the

sets {256, 512, 1024} MiB per instance and {32, 64, 128, 256} MiB per client.

Finally, request and reply bandwidth requirements were selected from the set

{250, 500, 1000, 2000}Mbps.

The transmission latency between every pair of nodes (clients and servers) was

determined using a distribution function based on the King 1 dataset [38]. The

probability density and cumulative distribution functions are shown in Fig. 4.

1http://pdos.csail.mit.edu/p2psim/kingdata/
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Figure 4: The one-way transmission latency distribution, based on the King
dataset
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Figure 5: Satisfied request count and used servers as a function of the ILP weight
parameter α and request count R; C = 25 represents a low-load scenario, C = 35
a slightly overloaded one, and C = 50 corresponds to a heavily overloaded
scenario

7.2. Influence of ILP α Parameter

The goal of this scenario, is to study the effect of the weight parameter α on the

solution of the ILP algorithm (ILP). The weight parameter provides a trade-

off between maximising satisfied demand and minimising the number of used

overlay servers. By varying α, its exact effects can be measured, and a good

value for the parameter can be derived. As the ILP algorithm scales poorly,

these simulations were performed on a small network topology, with 10 servers,

25, 35, and 50 clients, and 10 randomly generated service types. The simulation

results are shown in Fig. 5.

As expected, α is directly proportional to the number of used servers and sat-
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Figure 6: Satisfied requests and used servers as a function of the OSP N pa-
rameter and request count R

isfied requests. The results show that the network load (i.e. request count)

influences the effect of varying α. For lower loads, increasing α starts affecting

the evaluation metrics faster. In this paper, maximizing satisfied demand is

deemed a more important goal than minimizing the number of used servers.

Therefore, a higher value for α will be used. The graphs show that for α = 0.8,

satisfied demand is maximized for all network loads, while not more than nec-

essary servers are used. This value was thus used in the other simulations.

7.3. Influence of OSP N Parameter

The overlay-subset service placement heuristic (OSP) N parameter denotes the

maximum number of nearby servers that are considered as candidates by every

client. It provides a trade-off between result quality and execution time. In this

section, the effect of this parameter on the result quality is studied. The goal

is to find out if a small value for N is still capable of providing high quality

results. The network consists of 100 servers, 50 service types, and 500, 1000,

and 1500 clients. The simulation results are shown in Fig. 6.

As expected, initially both satisfied requests and number of used servers increase

as N increases. What is important, is that both stay about the same for all

loads and N ≥ 20. The drop in number of used overlay servers for N ≥ 6 and

R = 500 is a consequence of the fact that the algorithm can pack more clients

on the same server if N increases. On the other hand, at higher loads (cl ≥ 60)

the number of used overlay servers increases for higher N . This is because if

22



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

sa
tis

fie
d 

re
qu

es
ts

 (
%

)

request load

ILP
GSP

OSP[4]
OSP[10]

(a) satisfied requests

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

us
ed

 s
er

ve
rs

 (
%

)

request load

ILP
GSP

OSP[4]
OSP[10]

(b) used servers

Figure 7: Satisfied requests and used servers as a function of request load for
different algorithms

the load becomes higher, clients can no longer be packed on a limited number

of servers.

In conclusion, in the simulated scenarios OSP give good results for N as low as

10. This is only 10% of the total number of available servers.

7.4. Optimality of the Heuristics

In this scenario, the solution quality of the heuristics is compared to that of

the optimal ILP algorithm. To allow the ILP algorithm to solve the scenario’s

within a reasonable time-frame, again a small network with 15 servers and 10

service types was used. The number of client requests was varied from 0 to 100.

The value of the N parameter of the OSP algorithm, is supplied between square

brackets. Thus, OSP[a] means OSP with N = a. The simulation results are

shown in Fig. 7.

In terms of satisfied requests, the heuristics perform close to optimal if the load

is low. Though, at higher loads (R ≥ 40) their performance degenerates faster

than that of the optimal ILP algorithm. For N = 4 OSP’s performance in terms

satisfied requests degenerates faster than for N = 10. Additionally, Fig. 7 shows

that GSP performs slightly better than OSP[10] in terms of satisfied demand.

In terms of used servers, there is no significant performance difference between

the optimal ILP algorithm and the heuristics.

In summary, for high enough N , there is little difference in performance between

GSP and OSP. Compared to the optimal solution, both heuristics perform well
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for both performance metrics. However, the ILP algorithm can handle slightly

more requests. Additionally, at higher loads the performance of the heuristics

degenerates faster in terms of satisfied demand. For 100 requests, ILP can

handle, on average, 10% more requests than GSP.

7.5. Prioritized Services

In this scenario, the effect of the priority variable π on the services is inspected.

The simulation was performed on a small network with 10 overlay servers, 50

client requests, and 10 service types. This corresponds to an overloaded scenario.

The priority of each service type was selected uniformly at random from the set

{1, 2, 3}. Results are shown in Fig. 8

The figure shows the satisfied request percentage per priority type. It is clearly

visible that each algorithm satisfies a larger demand for the higher priority

classes. For example, ILP handles 95% of the requests with priority 3, while

only satisfying 56% for class 1. This corresponds to the desired behaviour of

the algorithms.

7.6. Overlay Routing

Routing service requests and replies via the overlay topology allows QoS con-

straints to be better satisfied. For example, it allows problems in the under-

lying network, such as bandwidth bottlenecks or high latency links, to be cir-

cumvented. In this section, the ability of the overlay routing components (as

described in Section 6) to overcome high latency links is studied in more detail.

For this purpose, a number of additional routing servers were introduced into
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Figure 9: Satisfied requests with and without overlay routing as a function of
request load for different algorithms

the network. They act as normal overlay servers, but are not capable of pro-

cessing service requests. Therefore, they only forward traffic to other servers or

clients. Additionally, for this simulation, service RTTs were selected uniformly

at random from the set {100, 150, 200}. The services in this scenario thus rep-

resent interactive multimedia applications with stringent latency demands (e.g.

online gaming, or VoIP). The effect of overlay routing on the solution is studied

by performing the simulation with and without overlay routing capable algo-

rithms. It is expected that the overlay routing capable algorithm will be able

to satisfy more demand, as they will be able to route around the high latency

links to make sure the RTT constraints remain satisfied.

As the overlay routing variant of the ILP algorithm scales poorly, the simulations

were performed on a small network for the ILP algorithm. It contained 5 servers,

2 routing servers, 5 service types, and up to 20 service requests. The heuristics

were evaluated using a larger network with 15 clusters counting each 10 servers,

5 routing servers, 20 service types, and up to 1000 simultaneous service requests.

The results are shown in Fig. 9. As the results for OSP show a similar trend to

those of GSP, only GSP and ILP are shown.

The figure clearly shows that the satisfied demand greatly improves when overlay

routing is used (denoted as GSP[r] and ILP[r]). This is because the algorithms

are then able to route around the high latency links between the clients and a

large portion of the overlay servers. Because of this, the transmission latency

constraint of the lower latency services can also be satisfied and the number of
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Figure 10: Satisfied requests and algorithm execution time as a function of
server cluster count for different algorithms

satisfied requests increases. As shown in Fig. 9a using the routing component

gives an increase in satisfied demand of up to 43% in the simulated scenario for

the ILP algorithm. However, Fig. 9b shows that for the larger scenario the GSP

overlay routing heuristic achieves only a smaller gain of up to 10%. Eventually,

when the request load becomes very high, no more performance is gained from

using overlay routing.

7.7. Scalability

The scalability of the heuristics is evaluated by varying the size of the network,

while leaving the overall load constant. A heuristic is considered to be scalable

if the quality of its solution does not degenerate as the network size grows. A

network with 20 service types was used. The number of server clusters was

varied from 0 up to 50, with each cluster consisting of 10 servers. The number

of simultaneous service requests was set to X×50, with X the number of server

clusters. This gave a slightly overloaded scenario. Therefore, the number of

used servers was always equal to the number of available servers and is thus not

depicted. The simulation results are shown in Fig. 10.

The results in Fig. 10a show that the solution of the heuristics does not de-

generate as the network size grows. These results also confirm the performance

results, showing that there is very little difference between GSP and OSP in

terms of satisfied requests. Notable in these results is the fact that even for very

low values of the OSP N parameter, the solution scales well even for very large
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networks. The average execution time is shown in Fig. 10b. The figure shows

that even for a large scenario with 500 servers and 2500 service requests, both

heuristics solve the problem in less than 10 seconds on average. Additionally,

the results show that OSP scales much better in terms of execution time than

GSP, while achieving similar performance in terms of satisfied demand.

8. Conclusions

In this paper we proposed an optimal algorithm and two heuristics that solve

the NP-Hard service placement and server selection problems in the context

of service management platforms. The optimal algorithm is based on a ILP

formulation, while the heuristics use greedy principles to tackle the problem.

Additionally, we discussed the required changes to allow the algorithms to find

overlay routing paths, in order to satisfy the Quality of Service (QoS) constraints

of latency-sensitive services.

Unlike existing algorithms, ours did not only take into account server resources,

such as CPU and memory, but also Service Level Agreements in the form of

QoS requirements, such as transmission latency and bandwidth demands.

Based on extensive simulation results, we showed that, our heuristics perform

close to optimal in most scenarios, while having only a polynomial time complex-

ity. Additionally, the use of overlay routing allows both the optimal algorithm

and the heuristics to significantly reduce the number of SLA violations (in terms

of transmission latency bounds) in face of high-latency links. Finally, it was also

shown that the heuristics scale well to large-sized networks, both in terms of

solution quality and execution time.
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