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To achieve non-resonant behavior, we propose a metallic grating device with linearly

tapered slits. The tapering provides a gradual impedance variation from the entrance

to the exit of the slits, leading to broadband and wide-angle enhanced transmission in

the infrared. In addition, the light is strongly localized and enhanced at the slit exits,

in contrast with straight slits. We describe the phenomenon with a transmission line

model, that is in accordance with rigorous simulations.
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The extraordinary optical transmission (EOT) phenomenon was observed in an opaque

metallic film with a periodic array of subwavelength holes in 19981. Since then tremendous

investigation has been dedicated to its mechanism2–5, elucidating the role of surface plas-

mon dispersion6 and Fabry-Perot type cavity modes7. EOT offers strongly localized field

enhancements in addition to a large transmission, with potential applications in nonlinear

optics, sensing etc. However, due to the resonant mechanisms involved often a relatively

narrow bandwidth is affected, which is unsuitable for a range of applications. On the other

hand, broadband transparency has been achieved in related structures, e.g. using oblique

incidence TM polarization5,8, or by connecting rectangular apertures with narrower slits9.

In the latter example the thin gratings operate at wavelengths beyond the Fabry-Perot res-

onances of guided modes in the slits. This regime of non-resonant devices has only recently

attracted attention, but it is indispensable e.g. for broadband light harvesting devices.

Therefore, we propose metallic gratings with tapered slits, which offer a much broader

transmission window for TM polarized light. By gradually varying the impedance from

input to output plane, we effectively destroy the Fabry-Perot type resonant conditions of

guided modes in the slit, yielding a non-resonant and thus broadband and wide-angle large

transmission in the infrared. In addition, the localization of the field is confined to one plane

of the structure, instead of over the whole lossy waveguide as in the traditional structures

with straight sidewalls.

Analysis is performed with rigorous calculations (finite element method - FEM10) and

semi-analytic methods (transmission line theory - TL8). Other more complex models and

theories were proposed for metallic aperture devices11,12, but under certain conditions the

efficient TL model provides effective characterization. To illustrate the effects of tapering

we assume surrounding, substrate and slit material to be air. The standard geometry and

the tapered grating are shown in Fig. 1(a) and (b), respectively. The grating with tapered

slits is characterized by the thickness t, period p, and widths win and wout at the entrance

and exit of the slit, respectively. The metal grating is assumed to be silver15. Fig. 2 shows

the calculated TM transmission T with normal incidence (θ = 0) for grating structures with

different sizes, with both FEM and TL calculations. For various parameters, the tapered

grating leads to a dramatic enhancement of the transmission over a broadband wavelength

range, comparing the straight sidewall case (Fig. 2, blue curves) with the tapered cases. In

addition, we notice that the tapered transmission seems to average the Fabry-Perot resonant
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peaks for the non-tapered geometry, leading to non-resonant transmission. This averaging

effect is clear for the smaller wavelengths, and becomes more pronounced for larger win

(more ‘open’ gratings).

We introduce now the employed TL approach, which was developed for non-tapered slits8.

Surrounding and substrate are modeled as semi-infinite TLs characterized by a wavenumber

(βin, βs, respectively) and a characteristic impedance per unit length (Zin, Zs, respectively),

see circuit in Fig. 1(a). The wavenumber is given by βu = k0nu cos θ, the characteristic

impedance is Zu = Z0p cos θ/nu, u = in(surrounding), s (substrate), and Z0 =
√

µ0/ǫ0 is

the vacuum impedance. The grating layer is treated as a TL characterized by β and Z

with finite length t. Given that the metal width d (= p − w) is large enough to avoid

coupling between slits, the wavenumber β is determined by the dispersion relation of a

metal-insulator-metal waveguide13:
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Then the characteristic impedance per unit length can be expressed as8

Z = wβ/(ωǫ0). (2)

The tapered grating is modeled as a series of cascaded TLs, with a staircase multilayer

characterized by local widths wi and thicknesses ti (circuit in Fig. 1(b)). To calculate the

transmission T of the cascaded network one can use ABCD parameters (also known as

transfer matrix)14. The ABCD parameters (M) of the whole network are a multiplication

of each TL in the network: M = [Atot Btot; Ctot Dtot] =
∏

Mi =
∏

[Ai Bi; Ci Di], where

Ai = Di = cos(βiti), Bi = jZi sin(βiti), Ci = jYi sin(βiti), Yi = 1/Zi, i = 1, 2, · · · , N ,

(i = 1, 2, · · · , N). Therefore T is expressed by

T =
4 |Yin|

2Re(Ys)

|m1Yin +m2|
2Re(Yin)

(3)

where m1 = Atot + BtotYs, m2 = Ctot +DtotYs, Yu = 1/Zu, u = in, s. Upon derivation of

Eq. 2 uniform electric fields in the slit and negligible coupling between the slits are assumed8,

so the TL model works well with small slit widths (w) and large enough metal widths (d).

In addition, diffraction in the surrounding and substrate, and surface modes at the grating

planes are not considered in the TL model, so the period of the grating cannot be larger

than the wavelength.
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The plots in Fig. 2 show a good agreement between the rigorous full-wave FEM simula-

tions and the TL model. Here, in the TL model 10 layers are used and already provide a

good convergence. More in detail, agreement is better for small periods (Fig. 2(a)), and for

straight slits (blue curves in Fig. 2(a) and (b)). The deviation is mainly caused by plasmon

modes at the slit corners, which are not taken into account in the TL model. Deviation

increases when win increases, since the coupling between slits becomes stronger, and unifor-

mity of the E field in the slits diminishes. However, the TL model still predicts the trend

of T very well, except for an overestimation at smaller wavelengths.

Based on the large transmission enhancement by tapering we can imagine that the light

is slowly squeezed from the entrance of the taper on to the narrower exit slit. Therefore

the field is expected to be gradually enhanced. To confirm we plot the electric field spatial

distribution (Fig. 3) at wavelength 5µm for gratings corresponding to Fig. 2(b). For other

grating sizes the field spatial distribution profiles are very similar. We notice indeed that

the E amplitude gradually increases towards the exit of the slit by tapering, contrast (a) to

(b) and (c). In addition, the fields reach their maximum exactly at the exit of the tapered

slit, and the maximum value is much larger than in the straight sidewall case.

To examine the field enhancement properties Fig. 4 shows the average normalized electric

field as a function of wavelength at the slit exit (same gratings as in Fig. 3). Broadband

field enhancement is obtained, and it increases as the taper becomes wider (increasing win).

Meanwhile the spectrum of the normalized field is similar to the corresponding transmission

spectrum (Fig. 2(b)). Therefore the near-field at the exit of the slit and the transmission

have a similar spectrum, with deviations from evanescent wave components. In addition,

for larger wavelengths we notice that the normalized electric field arrives quite close to

the dash-dotted line, which is the ratio of p/wout, similar to Ref. [9]. The average field

decreases towards smaller wavelengths, since there is less light transmitted. However, by

tapering it is still possible to obtain a local field enhancement far beyond the ratio of p/wout,

instigated by the sharp corner at the exit of the slit, as the field maxima show in Fig. 3.

Therefore tapering offers a strong control over the field enhancement profile, by tailoring

the transmission spectrum, the value of p/wout and the corner sharpness.

Finally, we compare the angular response of the straight sidewall gratings (Fig. 5(a)) with

the tapered gratings (Fig. 5(b)). For the straight sidewall (Fig. 5(a)) we observe that the

transmission gradually increases with the angle, and reaches its maximum near the dashed
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line around 80◦, which is the brewster angle θB determined by impedance matching between

the surrounding and the straight slit8. For the tapered case (Fig. 5(b)) we see that the overall

transmission is significantly larger. In addition, we still observe brewster angle behavior,

i.e. the transmission increases with incident angle, although the impedance in the slit is not

uniform.

In experimental realizations a different substrate may be necessary. Our calculations

show the validity of the tapering idea for ns 6= ni, e.g. with a glass substrate, except that

the transmission at larger wavelength is determined by that of light through a semi-infinite

surrounding and substrate (T = 4nsnin/(ns + nin)
2).

In summary, we demonstrate the concept of tapering in metallic gratings to achieve

broadband and wide-angle transmission. In addition, the taper provides a strong enhance-

ment and localization of light at the exit of the slit, useful for applications such as nonlinear

optics, light harvesting, sensing16 and emission enhancement. The TL model gives a very

efficient characterization of the tapering effect, therefore it can be used to assist more com-

plex designs, e.g. with parabolic shapes. Finally, the transmission at smaller wavelengths is

further improved by tilting the incident light, giving rise to a plasmonic brewster type effect.

This type of structure therefore expands the field of non-resonant gratings and broadband

transmission.
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FIG. 1. (Color online) Schematics of 1D metallic grating with (a) straight slits, and (b) linearly

tapered slits, respectively. Together with illustrations of the TL model underneath. The gratings

are periodic in the x-direction.
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FIG. 2. (Color online) Transmission T for gratings with different sizes (i.e., different slit width

win and wout, grating period p, slit thickness t). The solid lines are from numerical simulation by

FEM. The dash lines are from TL model.
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FIG. 3. (Color online) E field amplitude (normalized by the incident field amplitude E0) distri-

bution at λ = 5µm for gratings (t = 400nm,wout = 30nm, p = 300nm) with (a) win = 30nm, (b)

win = 160nm, (c) win = 290nm.
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FIG. 4. (Color online) Average E field amplitude (normalized by the incident field amplitude E0)

versus wavelength at the exit of slit for gratings (t = 400nm,wout = 30nm, p = 300nm) with

different widths: win = 30nm (blue), win = 160nm(green), and win = 190nm(red).

FIG. 5. (Color online) Angular response for gratings (t = 400nm, p = 300nm,wout = 30nm) with

(a) win = 30nm (straight sidewalls), (b) win = 160nm (tapered sidewalls). The dashed line in (a)

is the plasmonic brewster angle.
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