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Abstract

In previous works, we have shown that the Gribov-Zwanzig#ioa, which implements the restriction of the
domain of integration in the path integral to the Gribov cggigenerates extra dynamical effects which influence
the infrared behaviour of the gluon and ghost propagatdlii{ V) Yang-Mills gauge theories. The latter are
in good agreement with the most recent lattice data obtaitddrge volumes, both idD and in3D. More
precisely, the gluon propagator is suppressed and doesnistvat zero momentum, while the ghost propagator
keeps al /p* behaviour forp? = 0. Instead, ir2D, the lattice data revealed a vanishing zero momentum gluon
propagator and an infrared enhanced ghost, in support alishal Gribov-Zwanziger scenario. We will now
show that the2 D version of the Gribov-Zwanziger action still gives resultgjualitative agreement with these
lattice data, as the peculiar infrared nature6f gauge theories precludes the analogue of the dynamicatk effe
otherwise present inD and3D. Simultaneously, we also observe that the Gribov-Zwamziggtriction serves

as an infrared regulating mechanism.

1 Introduction

Two-dimensional, i.e. with one space and one time dimens§i6i{ V) Yang-Mills gauge theory has been widely
investigated as a kind of toy model for real life gauge thesar.g., in the largé&/ limit, 't Hooft has shown that
confinement occurs, while mesons, built from a quark-aatikjpair, display the analogue of “Regge trajectories”
[1]. Even if one omits the quarks, pugd SU(N) Yang-Mills gauge theory remains confining. Although
gauge theories share some similarities with their also o8B D or 4D counterparts, there are nevertheless some
notable differences. Indeed, at the classical level, agduge field4, contains only two degrees of freedom in
2D, imposing e.g. the Landau gauge conditidpd,, = 0, already removes these two degrees of freedom from the
physical spectrum. Therefore, as no physical degreeseddm remain, confinement seems to be a rather “trivial”
phenomenon, if one sees confinement as the absence of thenédeyngluon degrees of freedom. In contrast, in
3D and4D, one respectively two degrees of freedom are maintainet;eheonfinement seems to be more than
“trivial”. Also at the quantum level, the D situation is different from thé D case. I2 D, the couplingy acquires

the dimension of a mass and thus the theory becomes highgrremmrmalizable. However, a drawback of the
superrenormalizability is the appearance of severe iafrarstabilities and therefore an infrared regulator, lgua
put in by hand, is necessary. We emphasize that caution lsoangt place when performing calculations2b
gauge theories as discussediin [2]. Let us also mention énttic studies questioned some of the results lof [1]

arXiv:0808.3379v1 [hep-th] 25 Aug 2008

*ddudal@mit.edu, david.dudal@ugent.be

Tsorella@uerj.br ; Work supported by FAPERJ, Fundagaomeaxo & Pesquisa do Estado do Rio de Janeiro, under theapr@ientista
do Nosso Estadde-26/100.615/2007.

*nele.vandersickel@ugent.be

$henri.verschelde@ugent.be


https://core.ac.uk/display/55802758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/0808.3379v1

by recalculating the fermion propagator using other irdfdaregularization methods, and the corresponding results
were qualitatively different[3,14,!5].

In this letter, we shall focus on one particular aspe@iofgauge theories, namely the gluon and ghost propagator,
and we shall work in the Landau gauge, as this is the mostestugdiuge, also from the numerical viewpoint of lat-
tice simulations. In particular, inD, very big lattice volumes can be achieved24ddagain serves as an interesting
toy case. The propagators in the Landau gauge have recawsitlerable interest idD, 3D and4D, as they are
expected to have a connection with confinement. Let us enfestv of such aspects: (1) the gluon propagator dis-
plays a violation of positivity, signalling that transvergluons cannot be physical excitations. A vanishing gluon
propagator at zero momentum means a maximal positivityatian; (2) the ghost enjoys an infrared enhancement,
which according to e.g[ [6] gives rise to confinement; (3) ahanced ghost makes the Kugo-Ojima confinement
criterion to be fulfilled[[7| 8] (see alsd][9]). However,3D and4 D, recent lattice results show a ghost propagator
which does not appear to be infrared enhanced, while anr@drpositivity violating gluon propagator nonvan-
ishing at zero momentum is found [10,/11) 12| 13]. Surprisinig 2D, the ghost propagator still displays an
enhanced behavior while the gluon propagator does vanisie atrigin [12[ 13, 14].

In recent work([15, 16], we have exhaustively examineditPecase within the extended Gribov-Zwanziger frame-
work, that relies on the original Gribov-Zwanziger actiarlaged with an extra mass term while preserving its
locality and renormalizability. This mass was fixed in a &tidnal way, and as such represented an additional
nontrivial dynamical effect. For the benefit of the readet us first briefly summarize this framework. We recall
that the Landau gauge conditiai), A,, = 0, does not uniquely fix the local gauge freedom, there aregstilge

equivalent fieldsﬁ“ which are also transversé,,ﬂu = 0 [17]. As a consequence, the domain of integration in
the path integral has to be restricted in a suitable way. @gmivoposed to restrict the domain of integration to the
Gribov regionQ. Within this region(, the Faddeev-Popov operatbt® = —d, (90" + gf*"A¢,) is positive
definite, i.e.M4 > 0, while at the boundarg2 of this region, the first Gribov horizon, the first vanishirigen-
value of M4 appears[[17]. In this fashion, a large set of gauge copiesdsided, as their existence is related
to the presence of zero molexf Ma®. Gribov implemented his idea at the semi-classical levé],[and later
Zwanziger has been able to implement the restrictiof tat all orders through the introduction of a nonlocal
horizon function appearing in the Boltzmann weight defining Euclidean Yang-Mills measurie |18,119]. It is
worth remarking that the Gribov region itself is also noeffeom gauge copies [20, 21,122,123]. To avoid these
extra copies, a further restriction to an even smaller regioknown as the fundamental modular region, should
be implemented. Unfortunately, it is unknown how this gaal be achieved. It is not unexpected that a restriction
to the Gribov regiornf?, and thus on the allowed gauge field configurations, has aginfluence on the behaviour
of the propagators in the infrared, as found for the first tim§L7]: the ghost propagator gets enhanced in the
infrared, while the gluon propagator is suppressed andgpassro at zero momentum. As already mentioned, this
does not seem to be supported anymore by the most recect lddtia. \We recently introduced a refined version of
the Gribov-Zwanziger framework and consequently found@sgpropagator which was no longer enhanced and
a gluon propagator which was nonvanishing at zero momertioth,in accordance with the latesb lattice data
[15,[1€]. Also in3D, similar results were found [24]. Naturally, the questimes whether a distinct result would
be found in2 D, still within this extended Gribov-Zwanziger framework?

The purpose of this letter is to present the answer to thaigiasry. The gluon and the ghost propagator are
investigated in detail and we shall demonstrate why2thecase varies from th&D and4 D case from the Gribov-
Zwanziger viewpoint. The paper is organized as follows.dcti®n2, we provide a short overview of the ordinary
Gribov-Zwanziger action in two dimensions, as well as ofrfined Gribov-Zwanziger action, obtained through
the inclusion of an extra mass term. In Section 3 we presemtarguments of why this new mass term, which
can be consistently introduced 3@ and4 D, induces infrared instabilities idD which prevent its introduction.
Firstly, we shall see that the value of a certain condensaddréady infinite at the perturbative level when the
new mass term is present. Secondly, we will also explictigvs that the ghost self energy develops an infrared
singularity in the presence of the new mass, which (1) idzdés any finite order approximation and more impor-
tantly, (2) enforces one to cross the Gribov horizéty thus to leave the Gribov regidn, which was the starting
point of the whole Gribov-Zwanziger construction. Both pbmena are related to the infrared peculiarities of
2D gauge theories. Therefore, the introduction of the noveanerm in2.D turns out to be jeopardized by these

lparametrizing a gauge transformation with an infinitesigelge parameter®, a gauge equivalent fielé{H is given bygﬁ = Af —
Dgbwb. Hence dy Ay = 8, A, = 0 leads 109, DAY [AJw® = 0, i.e.w? represents a zero mode 2%



infrared instabilities. As a consequence, the ghost prajmagvill keep displaying an enhanced behavior and the
gluon propagator will vanish at zero momentum, in agreemaéttt the lattice results. Schwinger-Dyson results
consistent with thi® D scenario can be found in [25,126,/127]. Let us also mentionttfetisual restriction to the
Gribov region regularizes the theory in a natural way in tifeaired at least at one loop level. We end this paper
with a discussion in section 4.

2 Survey of the (extended) Gribov-Zwanziger action

2.1 The ordinary Gribov-Zwanziger action

We shall start this section with a short overview of the cagyrEuclidean Gribov-Zwanziger action in two dimen-
sions in the Landau gauge, and of its extended version whéchriginally proposed ir [15]. We shall not go into
any details, as it is quite analogous to e or 4D situation.

In its original nonlocal formulation, the Gribov-Zwanziggetion is given by

Sh o= Sym+ Sgr+ Sy, 1)
with Sy the classical Yang-Mills action,
Sym = i / d*aFFY, (2)
andS,¢ the gauge fixing and ghost part,
Set = / 4z (b0, A% +72*0,Divc") (3)
which implements the Landau gauge conditidpAs, = 0. Furthermoreg., contains the horizon functiofa(z),
Sy = 74/d2x h(z) = ~* /dQ,T (ng“bcAz (/\/l_l)ad fdecAZ) . (4)
The so-called Gribov (mass) parametés determined by the horizon condition,
(h(z)) = d(N*-1), (6)

with d the number of space time dimensions. This act¥grwith the horizon condition {5) implemented, auto-
matically restricts the gauge field configurations to theb@®vriregion). We refer to[[18| 19] for more details on
this matter. As a nonlocal action is hard to be handled in @istent way, it would be advantageoussif could

be reformulated into an equivalent local version. Luckihis goal can be achieved by introducing a suitable set
of additional fields, leading td [19]

Saz = So+5,, (6)
with
So = Sy + g+ / @ (7300, Dt — D0, Dt — g (0,°) £ (Dye)’ 9
aoc a C aoc a—oc 2
S, = —vzg/dgx <f be At pbe + frbe At +§(N2— 1)72> : ©)

Where(aff, <pff) and (EZC, wﬁc) are a pair of complex conjugate bosonic, respectively antiouting, fields. In
this local framework, the horizon conditidn (5) is converte

or

— =0 8

57 : ®)
with I the quantum effective action,

el = /dfbe*S. (9)

Before closing this subsection, we mention that the fieldsept forb®, are dimensionless while, in two dimen-
sions, the coupling has the dimension of a mass. Consequently, the theory &vigdtet superrenormalizable. On
the other hand, in the infrared region, serious problem®caur. Indeed, in perturbation theory, higher powers of
¢2 shall induce increasing powers of momentum in the denomipahich will give rise to severe problems upon
integration around zero momentum. We shall come back taghig in section 3.



2.2 The extended Gribov-Zwanziger action

By analogy with previous works in four and three dimensid@®[[L6, 24], we shall add a mass term of the form
M? [ d®z (p2et —wiPwiP) to the localized Gribov-Zwanziger actidiz. Only later on this paper, we shall
demonstrate that including this mass term will give risenfeared instabilities. However, purely from the algebraic
and dimensional viewpoint, this mass term cannot be exdlird2D just as in3D or 4D [15,[16]. We recall that

in the three and four dimensional case, this mass term wigallynadded to alter the gluon propagator, which can
be intuitively understood. Indeed, already at the quacltatiel of the actiortz, one observes aAp-coupling.
Therefore, changing the dynamics of thesector by adding an extra term, will affect the gluon sectdso the

ghost propagator was modified by the addition of this novedsriarm[[15] 16].

Completely analogous as in 3 or 4 dimensions, one can foyrpative the (ultraviolet) renormalizability of the
action making use of the algebraic renormalization forsmaland of the many Ward identities constraining the
guantum version of the actioh [28]. We refer to our previousky16] for all the necessary details. Of course,
since there are no ultraviolet infinities, renormalizati®in principle trivial. However, the algebraic formalism
allows us to discuss more than just the form of the (poténtialinterterm. For example, we also used it'in [16]
to study the Slavnov-Taylor identities in the presence efréstriction to the Gribov regiofl. We recall that we
have proven in[[16] that this restriction necessarily sptiie BRST symmetry, but nevertheless one can still write
down a powerful set of Slavnov-Taylor identities, which leleal us to prove the ultraviolet renormalizability in
3D or4D.

3 Two reasons why the refined Gribov-Zwanziger action is exaded in
2D

In this section, we shall provide two reasons why it is nofgilas to add the novel masspp — ww to the standard
Gribov-Zwanziger actiorf {6). It shall become clear thas iékactly the fact that we are working2® which does
signal us that the theory withy — wWw coupled to it is not well defined.

To start with, let us write down again the complete refined®riZwanziger action,

S = Saz+Swm,
2 d,. (—=ac, ac _ —ac, .ac d N2 -1
Su = —M* [ d% (Fpe —wptwns) + [ dla(d 2N

The role of vacuum term proportional to the dimensionlesapeters is a bit redundant in theD case, as the
problems we shall encounter are neither related to nor &lstthis quantity, which played a pivotal role iR D
or 4D [16]. For completeness and comparability with 812 or 4D case, we have included it nevertheless.

Let us also give here our notational conventions for the iglumpagator,

gM2A2> . (10)

(AzAL) = D) (% - p;Tf) 6%, (12)
and ghost propagator,
("), = G(p*)s™, (12)
in momentum space in the Landau gauge.

Subsequently, we compute the one loop quantum effectiverelctas

AL (NZ -1 d’p A N% -1
I = —d(N*-1) + )(d—l)/( )dln [pQ (p2+m)]+d92—NcM2A2,(13)

292N 2 or
hence the gap equatidd (8) is determined by

2 d2p 1 L2 M?
) eyt A M T 2NN
(2m)%p P g

g:N

(14)

ford = 2.



3.1 The first reason whygy — ww is problematic in 2D

Let us recall why we originally started the study of the dymaheffects associated to the operdatgr — ww in

3D and4D [15,[16]. Since the restriction to the Gribov region introds a massive parametgrinto the theory,

it might be natural to expect a nonvanishing vacuum expectatalue for the operatapy — ww already at the
perturbative level, namel{zy — ww) « 2. This was confirmed by explicit calculations [n [16]. We thesed

a variational approach, expressed through the m#&dsoupled to the action, in order to take into account the
potential effects related to this operator on e.g. the ghrhghost propagator.

We shall now verify that our original rationale behind thedst of G — ww no longer applies iR D, showing that
this operator cannot be consistently introducefliin It should not come as a too big surprise that the difficulties
related to the operat@y — ww rely on the appearance of infrared instabilities, typidet B, which prevents the
analogue phenomenon as3iv or 4D to occur in2D.

Let us take a look at the condensépe — ww). We define the energy functional as

W) — / AWeSazt[ Pel(@e-ww)+sIA" (15)

Here, we suitably rescalednto ¢’ for notational convenience, = szN 5. We have also replaced the mdg$
by the more conventional notation for a source, J.e.

Nextly, let us consider the perturbative value of the cowsdés which is explicitly given by

(o — BW) oy = — 37 — '\ (16)
To calculate this quantity we evaluate the one loop energgtfanal,
N2 —1) dip A4
W(J) = —d(N*—1)y* (7d—1/ 1{2(2 )}—’V. 17
(J) ( N+ o (d 1) (%)dnp Pt S 17)

With the help of dimensional regularization we find the fallng finite result,

4 2 _ \/
W(J) = —;\—(NQ—l)—N L ——\/ﬂ i L= — N —JA\. (18)
g*N 167 4)\4

This expression is well-defined when taking the lichit~ 0. This corresponds to the pure Gribov-Zwanziger case,
whereM? = J = 0. However, the derivative w.r.tl is singular forJ = 0. Indeed, we find

ow(J) _N2—1 —J I —VJ2 =4\ o o (19)
oJ 167 |2 —4)\ J_|_1/7J2 N )
in which the second term diverges fér— 0. This would imply that
Py —ww) = 0. (20)

This strongly suggests that is it impossible to couple therafor to the theory without even causing pathologies
already in perturbation theory. A way to appreciate tha tivergence is stemming from the infrared region is to
derive first expressiof (17) w.r.f. (assuming this is allowed) and then get 0, in which case

OW(J) _ Nt dfp _p? [ dp 1Y\
oJ J=0 o 2 (d 1) (/ (271-) P +A4 /(27T)dp2) C)\ . (21)

The second term in the previous expression is typically redbmensional regularizatiomxceptwhend = 2 as
it then develops an infrared pole.

Having revealed a first counterargument against the inttoluof the mass operatdr? (g — ww) in 2D, let us
give an even stronger objection in the following subsection
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Figure 1: The one loop ghost propagator.

3.2 The second (main) reason whyy — ww is problematic in 2D: the ghost propagator
The caseM? # 0

Let us consider the one loop ghost propagator displayedguar€il, which yields
1

1
ab k — ab _— 22
Gk = T (22)
after resummation into the one loop ghost self energy. Eitlyli the one loop correction to the ghost self energy
reads
(k) _ 2N kuku / d2q 1 q2 + M? 5o qudv (23)
7 -9 k2 (2m)2 (k — q)2 ¢4 + M2g2 + M4 " ¢2 '

We recall here that the ghost self energy correcti¢h) can be used as a kind of “order parameter” to check
whether a gauge configuration lies inside or outside thedsritorizon. Indeed, the ghost propagator is positive
definite insidef2 by construction, meaning that{k) < 1. As a matter of fact, the requirement thgt) < 1 is
usually called the no-pole condition, and it played a keg inlGribov’s original implementation of the restriction
to the regior [17,[29].

Looking at the integral[(23), the term ﬁ which could potentially lead to an infrared singularity mpo
integration, is partially “protected” by the external mamh@m k. One might expect that the infrared divergence
will only reveal itself in the limitk — 0.

Bearing this in mind, let us determindk),2 .o by performing thej-integration in [[2B) exactly for an arbitrary

momentumk. We shall invoke polar coordinates. Without loss of gerigtale can put they,-axis alongE to
write

o(k) = (1 —cos?6) , (24)

GN % g A M /2” 1
a2 J, YA A ), TR+ ¢ — 2qkcos

where we made use df - ¢ = kqcos6. The Poisson-liké-integral can be easily calculated using a contour

integration,
27 _ 2 s if k2 < o2
/ a9 1 —cos?6 { i if k2 <gq (25)
0

k2—|—q2—2qk0059: 7z if 2 <k

SO we obtain

2 k 2 2 oo 2 2
gN [ 1 (g + M*) / ¢+ M
k) = — 3| a2l dg | - 26
0'( ) A <k2\/0 q4+M2q2+/\4 q+ L q(q4+M2q2+)\4) q ( )
It appears that both integrals are well-behaved in theiieétrand ultraviolet fok > 0.

Notice that we did not invoke the gap equatibnl (14) yet. Thigdssible, but neither necessary nor instructive at
this point. In order to have a better understanding ofithe 0 behaviour, we can calculate the integraldin (26),
and extract the small momentum behaviour. Doing so, one finds

QZN M?

o (k)| 2mpo ~ _S—WVm(kz) (27)

in the case thad/? # 0, which is a well-defined result, in contrast with {31).

However, there is still an infrared instability in the thgalue to the finaln(k?)-factor appearing i (k) for small
k. This is our second main argument why coupling the mass tpey — ww) to the theory causes problems:



e The quantum correction to the self energy explodes for sipalbmpletely invalidating the loop expansion.
This problem does not occur BID or 4D, since therer < 1. Itis not difficult to imagine that the infrared
In(k?)-singularity will spread itself through the theory, makigggrything ill-defined for smakt.

e Moreover, we also encounter a problem of a more fundameatakr®. The starting point of the whole
construction was to always stay within the Gribov horizbnThis can be assured by the so called no-pole
condition, i.e.c(k?) < 1 as stated in the original article by Gribdv [17]. Sink&* must be positi\& we
clearly see from[{32) that

U(k)|k2~0 > 1, (28)

hencel(ZR) is signalling us that we have crossed the horizon.

This confirms again thal/?> = 0 is the only viable option, i.e. we cannot go beyond the stesh@xribov-
Zwanziger action if we want to avoid the appearance of destiinfrared issues, which unavoidably force the
theory to leave the Gribov region.

Remark. In the previous paragraph, in order to calculaié (23), welimst determined the integral in expression
(23) exactly and then we have taken the lidit— 0. However, one usually [17, 29] first expands the integrand
for small k2 and then performs the loop integration, as this considgnauluces the calculational effort. In the
current case, this course of action unfortunately leadsdorrect results. Indeed, doing so, we would reexpress

lll”as
kuk, [ d2q 1 ke k M2
1 = ¢gPN-LZ 8y — 2 — 29
T2 /(27r)2q4+M2q2+A4<“ )T (29)

an operation which is based on the gap equalioh (14). Subsdgwe rewritel — o (k),

k.k d%q 1 q> k.k M?
1—o(k) = 2]\7“”/ 1-— S — B -
7 TR G N ( (k—q)z) ( wTTR ) TR

k.k d%q 1 M? quq
INZE V/ S — 2% 30
tg k2 (2m)2 (k — q)2 ¢* + M2¢g2 + X+ " q? ’ (30)

and then we expand the integrEraioundk:2 ~ 0 to find at lowest order,

N d? M? M?
A=o)ers = & / (2732 ST are T T o). (31)
From this expression, we are led to believe thato(k), hencer(k), is ill-defined at smalk?, due to an infrared
singularity which makes the integral in the r.h.s. [ofl (31#plode. However, this is not true, as in this case, the
limit and the integration cannot be exchanged. The onlyemvay is to first calculate the integral and then take
the limit as was done in the previous paragraph. Furtherisrs#ttion, we shall explicitly explain why expression
(37) is wrong by exploring thé/? = 0 case in more detail.

The caseM?2 =0

It is instructive to take a closer look at the usual Gribovatwiger scenario. One finds féf? = 0 that

2 2
g°N (= k
o(k)lpz20 ~ P (4—A2 - 4_A4) ; (32)

a result which is indeed free of infrared instabilities. Wgogpoint out that ordinary (perturbative) Yang-Mills
theory is recovered whek = 0. It is hence nice to observe that this again causes troublgsiinfrared since
the A — 0 limit diverges. This is just a manifestation of the fact tBd@ gauge theories are infrared sick at
the perturbative level, and need some (dynamical) reqalion. Apparently, at least at the level of the ghost
propagator at one loop, the Gribov mass acts a natural tegirethe infrared sector.

2A negative M2 would lead to tachyonic instabilities in the theory, see thg vacuum functional as an example.
3We notice that there will be no terms of odd ordekirsince this would correspond to an odd powey,ofhich will vanish upon integration
due to reflection symmetry.



We should still use the gap equation[in}(32) to find the comgoist propagator. The gap equatidh (8) f6f = 0
is readily computed as

2 / d»p 1 1 (33)
¢>N (2m)Zpt+ A 8A2
Evoking this gap equation, we find
2 2 2 2
_ g°N ([ w k g Nk 1
e (4/\2 4)\4) T dm AN 7N (34)
Henceforth, we obtain
1 1 7> N
gab k — ab_~ _ = 35
()]0 21 —o(k) e, K (35)

We conclude that the ghost propagator is clearly enhancedliaplays the typical behavier 1/k* in the deep
infrared, in accordance with the usual Gribov-Zwanzigenscio.

Remark. As we already announced earlier in this section, let us haleszr look at the\/2 = 0 case. In a way
completely similar to thé/2 # 0 case, we find, arounif ~ 0,

k. k d?q 1 k2 (k-q)? k. k
_ _ 2y lehv v _ Rphv 4

(1= (k)0 TN /(277)2 ¢+ M (q2 e ) (5’” k2 ) +OkD, (39)
where we have expanded the integrand wyrtiefore integrating. Exploiting polar coordinates once eyare are
now brought to

2 +oo 27
_ g°N , qdg 1 2 2 4
(1 — U(k:))|k2~0 = mk A q—QW . (1 — 4(305 9)(1 — COS 9)(10 + O(k: ) . (37)
Surprisingly, thef-integral vanishes, as it can be easily checked. In fact,cameextend this observation to all
orders ink. To do so, we write

2 2
q _ q B
(q—k)Q_q2+k2—2chost9_1+ 2kC059_nZo( ) n(cos ) (38)

where we introduced the Chebyshev polynomials of the sekmnatli/,, (). It holds that[[30]

Uy (cosl) = W (39)

Subsequently, we can rewrite

l—o(k) = &N /dq2i1_mbe (cose)(’;)nﬁ, (40)

where use has been maddffiz) = 1. Assuming that the integral and the infinite sum can be ihtamged, we
areledto

27
- _ 2
1ol 4772 Z / g1 ¢ +)\4/ (1 — cos® 0)Uy, (cos 0)do . (41)

Sincen > 1 and making use o[(39), for theintegration we find
27 27
/ (1 — cos? O)U, (cos 0)d) = / sinfsin((n + 1)6)de
0 0

27

_ / cos(nf) — cos((n + 2)0) d0=0.
0 2

However, this does not make the integrallinl (41) well defireedthe remaining-integral is infrared singular for

any occurring value of! In fact, exactly these infrared divergences forbid theliohange of integral and of the

infinite sum. This is a nice example of the fact that the iraégf a infinite sum can be well defined, whereas the

(sum of the) individual integrals are not.

When we first integrate exactly for aiyand then expand in powers bf, we do recover the meaningful result

(34) atk? ~ 0.

(42)



4 The gluon propagator and positivity violation

Before turning to the conclusion, we would like to recallttbaother typical feature of the Gribov-Zwanziger
scenario is that the gluon propagator vanishes at zero moimenMore preciselyD(0) = 0. This implies a
maximal violation of positivity, see e.d. [16], therebysadling that the gluon is an unphysical degree of freedom
and hence “confined”.

In 3D and4 D, we have shown that the effects originating from the cogptifithe operatopy — ww to the theory
gives a finite nonzero value ®(0), in accordance with the lattice data [16] 24]. Notice, hosvethat there is still

a clear violation of positivity notwithstanding thax(0) # 0. Our results were in qualitative agreement with the
available lattice data [16, 24].

As we have argued already, we must discagd— ww in 2D. ConsequentlyP(0) still vanishes ir2D at tree level
due to the Gribov mass, as it is immediately verified from

p2

:p4+)\4'

In principle, one could explicitly check whether this pstsibeyond tree level order. However, this leads to quite
complicated loop calculations, as can be appreciated fined/? or 3D counterpartdone in[16, 24], and therefore
we shall not pursue this here.

D(p?) (43)

5 Conclusion

In this letter, we have discussed why it is not possible tdirieg the Gribov-Zwanziger action i2D, in contrast
with the 3D or 4D case. In the latter case, we have shown in recent workl [15246that the inclusion of
dynamical effects related to a novel mass operator, cartstiuwith the additional field present in the Gribov-
Zwanziger action, has a profound influence on the infrarddbieur of the theory, and considerably changes the
usual Gribov-Zwanziger predictions. The main conclusmthiat the ghost propagator is not infrared enhanced
but retains itsqi2 singularity in the deep infrared, while the gluon propagécomes finite and nonvanishing at
zero momentum. The usual Gribov-Zwanziger scenario ptedit/k* singularity for the ghost propagator, and
a vanishing gluon propagator at zero moment@)) = 0. Surprisingly, lattice data at large volumes are in
compliance with the refined analytical results presentdd®n16, 24]. Since the lattice data 2D still predicts

an infrared enhanced ghost and vanisiing) [12,[13,14], we were motivated to discuss how this would fibin
our refined Gribov-Zwanziger scenarfo [15, 16]. We have shtivat it is not possible to couple the particular
operatoripy — ww, to the action iR D, as it triggers serious infrared instabilities, which aeeyliar to the2 D
case. Thence, the usual Gribov-Zwanziger scenario is syttpsotected” in2D. In fact, we have proven that the
emerging infrared singularities make it impossible to stéthin the Gribov regiorf2 whenM? # 0. As a nice
byproduct of this work, we have seen that the Gribov mass caasaa natural infrared regulator, stabilizing the
otherwise ill-defined perturbative expansion.
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