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Abstract

In previous works, we have shown that the Gribov-Zwanziger action, which implements the restriction of the
domain of integration in the path integral to the Gribov region, generates extra dynamical effects which influence
the infrared behaviour of the gluon and ghost propagator inSU(N) Yang-Mills gauge theories. The latter are
in good agreement with the most recent lattice data obtainedat large volumes, both in4D and in3D. More
precisely, the gluon propagator is suppressed and does not vanish at zero momentum, while the ghost propagator
keeps a1/p2 behaviour forp2

≈ 0. Instead, in2D, the lattice data revealed a vanishing zero momentum gluon
propagator and an infrared enhanced ghost, in support of theusual Gribov-Zwanziger scenario. We will now
show that the2D version of the Gribov-Zwanziger action still gives resultsin qualitative agreement with these
lattice data, as the peculiar infrared nature of2D gauge theories precludes the analogue of the dynamical effect
otherwise present in4D and3D. Simultaneously, we also observe that the Gribov-Zwanziger restriction serves
as an infrared regulating mechanism.

MIT-CTP 3974

1 Introduction

Two-dimensional, i.e. with one space and one time dimension, SU(N) Yang-Mills gauge theory has been widely
investigated as a kind of toy model for real life gauge theories. E.g., in the largeN limit, ’t Hooft has shown that
confinement occurs, while mesons, built from a quark-antiquark pair, display the analogue of “Regge trajectories”
[1]. Even if one omits the quarks, pure2D SU(N) Yang-Mills gauge theory remains confining. Although2D
gauge theories share some similarities with their also confining3D or4D counterparts, there are nevertheless some
notable differences. Indeed, at the classical level, as thegauge fieldAµ contains only two degrees of freedom in
2D, imposing e.g. the Landau gauge condition,∂µAµ = 0, already removes these two degrees of freedom from the
physical spectrum. Therefore, as no physical degrees of freedom remain, confinement seems to be a rather “trivial”
phenomenon, if one sees confinement as the absence of the elementary gluon degrees of freedom. In contrast, in
3D and4D, one respectively two degrees of freedom are maintained, hence confinement seems to be more than
“trivial”. Also at the quantum level, the2D situation is different from the4D case. In2D, the couplingg acquires
the dimension of a mass and thus the theory becomes highly superrenormalizable. However, a drawback of the
superrenormalizability is the appearance of severe infrared instabilities and therefore an infrared regulator, usually
put in by hand, is necessary. We emphasize that caution is anyhow at place when performing calculations in2D
gauge theories as discussed in [2]. Let us also mention that certain studies questioned some of the results of [1]
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by recalculating the fermion propagator using other infrared regularization methods, and the corresponding results
were qualitatively different [3, 4, 5].

In this letter, we shall focus on one particular aspect of2D gauge theories, namely the gluon and ghost propagator,
and we shall work in the Landau gauge, as this is the most studied gauge, also from the numerical viewpoint of lat-
tice simulations. In particular, in2D, very big lattice volumes can be achieved, so2D again serves as an interesting
toy case. The propagators in the Landau gauge have received considerable interest in2D, 3D and4D, as they are
expected to have a connection with confinement. Let us enlista few of such aspects: (1) the gluon propagator dis-
plays a violation of positivity, signalling that transverse gluons cannot be physical excitations. A vanishing gluon
propagator at zero momentum means a maximal positivity violation; (2) the ghost enjoys an infrared enhancement,
which according to e.g. [6] gives rise to confinement; (3) an enhanced ghost makes the Kugo-Ojima confinement
criterion to be fulfilled [7, 8] (see also [9]). However, in3D and4D, recent lattice results show a ghost propagator
which does not appear to be infrared enhanced, while an infrared positivity violating gluon propagator nonvan-
ishing at zero momentum is found [10, 11, 12, 13]. Surprisingly, in 2D, the ghost propagator still displays an
enhanced behavior while the gluon propagator does vanish atthe origin [12, 13, 14].

In recent work [15, 16], we have exhaustively examined the4D case within the extended Gribov-Zwanziger frame-
work, that relies on the original Gribov-Zwanziger action enlarged with an extra mass term while preserving its
locality and renormalizability. This mass was fixed in a variational way, and as such represented an additional
nontrivial dynamical effect. For the benefit of the reader, let us first briefly summarize this framework. We recall
that the Landau gauge condition,∂µAµ = 0, does not uniquely fix the local gauge freedom, there are still gauge
equivalent fieldsÃµ which are also transverse,∂µÃµ = 0 [17]. As a consequence, the domain of integration in
the path integral has to be restricted in a suitable way. Gribov proposed to restrict the domain of integration to the
Gribov regionΩ. Within this regionΩ, the Faddeev-Popov operatorMab ≡ −∂µ

(
∂µδab + gfacbAc

µ

)
is positive

definite, i.e.Mab > 0, while at the boundary∂Ω of this region, the first Gribov horizon, the first vanishing eigen-
value ofMab appears [17]. In this fashion, a large set of gauge copies is excluded, as their existence is related
to the presence of zero modes1 of Mab. Gribov implemented his idea at the semi-classical level [17], and later
Zwanziger has been able to implement the restriction toΩ at all orders through the introduction of a nonlocal
horizon function appearing in the Boltzmann weight definingthe Euclidean Yang-Mills measure [18, 19]. It is
worth remarking that the Gribov region itself is also not free from gauge copies [20, 21, 22, 23]. To avoid these
extra copies, a further restriction to an even smaller region Λ, known as the fundamental modular region, should
be implemented. Unfortunately, it is unknown how this goal can be achieved. It is not unexpected that a restriction
to the Gribov regionΩ, and thus on the allowed gauge field configurations, has a strong influence on the behaviour
of the propagators in the infrared, as found for the first timein [17]: the ghost propagator gets enhanced in the
infrared, while the gluon propagator is suppressed and goesto zero at zero momentum. As already mentioned, this
does not seem to be supported anymore by the most recent lattice data. We recently introduced a refined version of
the Gribov-Zwanziger framework and consequently found a ghost propagator which was no longer enhanced and
a gluon propagator which was nonvanishing at zero momentum,both in accordance with the latest4D lattice data
[15, 16]. Also in3D, similar results were found [24]. Naturally, the question rises whether a distinct result would
be found in2D, still within this extended Gribov-Zwanziger framework?

The purpose of this letter is to present the answer to that last query. The gluon and the ghost propagator are
investigated in detail and we shall demonstrate why the2D case varies from the3D and4D case from the Gribov-
Zwanziger viewpoint. The paper is organized as follows. In section 2, we provide a short overview of the ordinary
Gribov-Zwanziger action in two dimensions, as well as of therefined Gribov-Zwanziger action, obtained through
the inclusion of an extra mass term. In Section 3 we present two arguments of why this new mass term, which
can be consistently introduced in3D and4D, induces infrared instabilities in2D which prevent its introduction.
Firstly, we shall see that the value of a certain condensate is already infinite at the perturbative level when the
new mass term is present. Secondly, we will also explicitly show that the ghost self energy develops an infrared
singularity in the presence of the new mass, which (1) invalidates any finite order approximation and more impor-
tantly, (2) enforces one to cross the Gribov horizon∂Ω, thus to leave the Gribov regionΩ, which was the starting
point of the whole Gribov-Zwanziger construction. Both phenomena are related to the infrared peculiarities of
2D gauge theories. Therefore, the introduction of the novel mass term in2D turns out to be jeopardized by these

1Parametrizing a gauge transformation with an infinitesimalgauge parameterωa, a gauge equivalent fieldeAµ is given by eAa
µ = Aa

µ −

Dab
µ ωb. Hence,∂µ

eAµ = ∂µAµ = 0 leads to∂µDab
µ [A]ωb = 0, i.e. ωa represents a zero mode ofMab.

2



infrared instabilities. As a consequence, the ghost propagator will keep displaying an enhanced behavior and the
gluon propagator will vanish at zero momentum, in agreementwith the lattice results. Schwinger-Dyson results
consistent with this2D scenario can be found in [25, 26, 27]. Let us also mention thatthe usual restriction to the
Gribov region regularizes the theory in a natural way in the infrared at least at one loop level. We end this paper
with a discussion in section 4.

2 Survey of the (extended) Gribov-Zwanziger action

2.1 The ordinary Gribov-Zwanziger action

We shall start this section with a short overview of the ordinary Euclidean Gribov-Zwanziger action in two dimen-
sions in the Landau gauge, and of its extended version which we originally proposed in [15]. We shall not go into
any details, as it is quite analogous to the3D or 4D situation.

In its original nonlocal formulation, the Gribov-Zwanziger action is given by

Sh = SYM + Sgf + Sγ , (1)

with SYM the classical Yang-Mills action,

SYM =
1

4

∫
d2xF a

µνF a
µν , (2)

andSgf the gauge fixing and ghost part,

Sgf =

∫
d2x

(
ba∂µAa

µ + ca∂µDab
µ cb

)
(3)

which implements the Landau gauge condition,∂µAa
µ = 0. Furthermore,Sγ contains the horizon functionh(x),

Sγ = γ4

∫
d2x h(x) = γ4

∫
d2x

(
g2fabcAb

µ

(
M−1

)ad
fdecAe

µ

)
. (4)

The so-called Gribov (mass) parameterγ is determined by the horizon condition,

〈h(x)〉 = d(N2 − 1) , (5)

with d the number of space time dimensions. This actionSh with the horizon condition (5) implemented, auto-
matically restricts the gauge field configurations to the Gribov regionΩ. We refer to [18, 19] for more details on
this matter. As a nonlocal action is hard to be handled in a consistent way, it would be advantageous ifSh could
be reformulated into an equivalent local version. Luckily,this goal can be achieved by introducing a suitable set
of additional fields, leading to [19]

SGZ = S0 + Sγ , (6)

with

S0 = SYM + Sgf +

∫
d2x

(
ϕac

µ ∂νDab
ν ϕac

µ − ωac
µ ∂νDab

ν ωac
µ − g

(
∂νωac

µ

)
fabm (Dνc)

b
ϕmc

µ

)
,

Sγ = −γ2g

∫
d2x

(
fabcAa

µϕbc
µ + fabcAa

µϕbc
µ +

2

g

(
N2 − 1

)
γ2

)
, (7)

where
(
ϕac

µ , ϕac
µ

)
and

(
ωac

µ , ωac
µ

)
are a pair of complex conjugate bosonic, respectively anticommuting, fields. In

this local framework, the horizon condition (5) is converted to

∂Γ

∂γ2
= 0 , (8)

with Γ the quantum effective action,

e−Γ =

∫
dΦe−S . (9)

Before closing this subsection, we mention that the fields, except forba, are dimensionless while, in two dimen-
sions, the couplingg has the dimension of a mass. Consequently, the theory is ultraviolet superrenormalizable. On
the other hand, in the infrared region, serious problems canoccur. Indeed, in perturbation theory, higher powers of
g2 shall induce increasing powers of momentum in the denominator, which will give rise to severe problems upon
integration around zero momentum. We shall come back to thisissue in section 3.
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2.2 The extended Gribov-Zwanziger action

By analogy with previous works in four and three dimensions [15, 16, 24], we shall add a mass term of the form
M2

∫
d2x

(
ϕab

µ ϕab
µ − ωab

µ ωab
µ

)
to the localized Gribov-Zwanziger actionSGZ. Only later on this paper, we shall

demonstrate that including this mass term will give rise to infrared instabilities. However, purely from the algebraic
and dimensional viewpoint, this mass term cannot be excluded in 2D just as in3D or 4D [15, 16]. We recall that
in the three and four dimensional case, this mass term was initially added to alter the gluon propagator, which can
be intuitively understood. Indeed, already at the quadratic level of the actionSGZ, one observes anAϕ-coupling.
Therefore, changing the dynamics of theϕ-sector by adding an extra term, will affect the gluon sector. Also the
ghost propagator was modified by the addition of this novel mass term [15, 16].

Completely analogous as in 3 or 4 dimensions, one can formally prove the (ultraviolet) renormalizability of the
action making use of the algebraic renormalization formalism and of the many Ward identities constraining the
quantum version of the action [28]. We refer to our previous work [16] for all the necessary details. Of course,
since there are no ultraviolet infinities, renormalizationis in principle trivial. However, the algebraic formalism
allows us to discuss more than just the form of the (potential) counterterm. For example, we also used it in [16]
to study the Slavnov-Taylor identities in the presence of the restriction to the Gribov regionΩ. We recall that we
have proven in [16] that this restriction necessarily spoils the BRST symmetry, but nevertheless one can still write
down a powerful set of Slavnov-Taylor identities, which enabled us to prove the ultraviolet renormalizability in
3D or 4D.

3 Two reasons why the refined Gribov-Zwanziger action is excluded in
2D

In this section, we shall provide two reasons why it is not possible to add the novel mass∝ ϕϕ−ωω to the standard
Gribov-Zwanziger action (6). It shall become clear that it is exactly the fact that we are working in2D which does
signal us that the theory withϕϕ − ωω coupled to it is not well defined.

To start with, let us write down again the complete refined Gribov-Zwanziger action,

S′ = SGZ + SM ,

SM = −M2

∫
ddx

(
ϕac

µ ϕac
µ − ωac

µ ωac
µ

)
+

∫
ddx

(
d
N2 − 1

g2N
ςM2λ2

)
. (10)

The role of vacuum term proportional to the dimensionless parameterς is a bit redundant in the2D case, as the
problems we shall encounter are neither related to nor curable by this quantityς, which played a pivotal role in3D
or 4D [16]. For completeness and comparability with the3D or 4D case, we have included it nevertheless.

Let us also give here our notational conventions for the gluon propagator,

〈Aa
µAb

ν〉p = D(p2)

(
δµν − pµpν

p2

)
δab , (11)

and ghost propagator,
〈cacb〉p = G(p2)δab , (12)

in momentum space in the Landau gauge.

Subsequently, we compute the one loop quantum effective action Γ as

Γ = −d(N2 − 1)
λ4

2g2N
+

(N2 − 1)

2
(d − 1)

∫
ddp

(2π)
d

ln

[
p2

(
p2 +

λ4

p2 + M2

)]
+ d

N2 − 1

g2N
ςM2λ2 ,(13)

hence the gap equation (8) is determined by

2

g2N
=

∫
d2p

(2π)2
1

p4 + M2p2 + λ4
+

2

g2N
ς
M2

λ2
(14)

for d = 2.
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3.1 The first reason whyϕϕ − ωω is problematic in 2D

Let us recall why we originally started the study of the dynamical effects associated to the operatorϕϕ − ωω in
3D and4D [15, 16]. Since the restriction to the Gribov region introduces a massive parameterγ2 into the theory,
it might be natural to expect a nonvanishing vacuum expectation value for the operatorϕϕ − ωω already at the
perturbative level, namely〈ϕϕ − ωω〉 ∝ γ2. This was confirmed by explicit calculations in [16]. We thenused
a variational approach, expressed through the massM2 coupled to the action, in order to take into account the
potential effects related to this operator on e.g. the gluonand ghost propagator.

We shall now verify that our original rationale behind the study ofϕϕ−ωω no longer applies in2D, showing that
this operator cannot be consistently introduced in2D. It should not come as a too big surprise that the difficulties
related to the operatorϕϕ − ωω rely on the appearance of infrared instabilities, typical of 2D, which prevents the
analogue phenomenon as in3D or 4D to occur in2D.

Let us take a look at the condensate〈ϕϕ − ωω〉. We define the energy functional as

e−W (J,γ2) =

∫
dΨe−SGZ+

R

d2xJ(ϕϕ−ωω)+ς′Jλ2

. (15)

Here, we suitably rescaledς into ς ′ for notational convenience,ς ′ = dN2
−1

g2N
ς. We have also replaced the massM2

by the more conventional notation for a source, i.e.J .

Nextly, let us consider the perturbative value of the condensate, which is explicitly given by

〈ϕϕ − ωω〉pert = − ∂W

∂J

∣∣∣∣
J=0

− ς ′λ2 . (16)

To calculate this quantity we evaluate the one loop energy functional,

W (J) = −d(N2 − 1)γ4 +
(N2 − 1)

2
(d − 1)

∫
ddp

(2π)
d

ln

[
p2

(
p2 +

λ4

p2 + J

)]
− ς ′λ2 . (17)

With the help of dimensional regularization we find the following finite result,

W (J) = − λ4

g2N
(N2 − 1) − N2 − 1

16π

[
J ln

4λ4

J2
−
√

J2 − 4λ4 ln
J −

√
J2 − 4λ4

J +
√

J2 − 4λ4

]
− ς ′λ2 . (18)

This expression is well-defined when taking the limitJ → 0. This corresponds to the pure Gribov-Zwanziger case,
whereM2 = J = 0. However, the derivative w.r.t.J is singular forJ = 0. Indeed, we find

∂W (J)

∂J
= −N2 − 1

16π

[
−J√

J2 − 4λ4
ln

J −
√

J2 − 4λ4

J +
√

J2 − 4λ4
+ ln

4λ4

J2

]
− ς ′λ2 , (19)

in which the second term diverges forJ → 0. This would imply that

〈ϕϕ − ωω〉 = ∞ . (20)

This strongly suggests that is it impossible to couple the operator to the theory without even causing pathologies
already in perturbation theory. A way to appreciate that this divergence is stemming from the infrared region is to
derive first expression (17) w.r.t.J (assuming this is allowed) and then setJ = 0, in which case

∂W (J)

∂J

∣∣∣∣
J=0

=
N2 − 1

2
(d − 1)

(∫
ddp

(2π)d

p2

p4 + λ4
−
∫

ddp

(2π)d

1

p2

)
− ς ′λ2 . (21)

The second term in the previous expression is typically zeroin dimensional regularization,exceptwhend = 2 as
it then develops an infrared pole.

Having revealed a first counterargument against the introduction of the mass operatorM2(ϕϕ−ωω) in 2D, let us
give an even stronger objection in the following subsection.
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Figure 1: The one loop ghost propagator.

3.2 The second (main) reason whyϕϕ − ωω is problematic in 2D: the ghost propagator

The caseM2 6= 0

Let us consider the one loop ghost propagator displayed in Figure 1, which yields

Gab(k) = δab 1

k2

1

1 − σ(k)
, (22)

after resummation into the one loop ghost self energy. Explicitly, the one loop correction to the ghost self energy
reads

σ(k) = g2N
kµkν

k2

∫
d2q

(2π)2
1

(k − q)2
q2 + M2

q4 + M2q2 + λ4

(
δµν − qµqν

q2

)
. (23)

We recall here that the ghost self energy correctionσ(k) can be used as a kind of “order parameter” to check
whether a gauge configuration lies inside or outside the Gribov horizon. Indeed, the ghost propagator is positive
definite insideΩ by construction, meaning thatσ(k) ≤ 1. As a matter of fact, the requirement thatσ(k) ≤ 1 is
usually called the no-pole condition, and it played a key role in Gribov’s original implementation of the restriction
to the regionΩ [17, 29].

Looking at the integral (23), the term∼ 1
(q−k)2 which could potentially lead to an infrared singularity upon

integration, is partially “protected” by the external momentumk. One might expect that the infrared divergence
will only reveal itself in the limitk → 0.

Bearing this in mind, let us determineσ(k)k2∼0 by performing the~q-integration in (23) exactly for an arbitrary
momentum~k. We shall invoke polar coordinates. Without loss of generality, we can put theqx-axis along~k to
write

σ(k) =
g2N

4π2

∫
∞

0

qdq
q2 + M2

q4 + M2q2 + λ4

∫ 2π

0

dθ
1

k2 + q2 − 2qk cos θ
(1 − cos2 θ) , (24)

where we made use of~k · ~q = kq cos θ. The Poisson-likeθ-integral can be easily calculated using a contour
integration, ∫ 2π

0

dθ
1 − cos2 θ

k2 + q2 − 2qk cos θ
=

{
π
q2 if k2 ≤ q2

π
k2 if q2 ≤ k2 , (25)

so we obtain

σ(k) =
g2N

4π

(
1

k2

∫ k

0

q(q2 + M2)

q4 + M2q2 + λ4
dq +

∫
∞

k

q2 + M2

q(q4 + M2q2 + λ4)
dq

)
. (26)

It appears that both integrals are well-behaved in the infrared and ultraviolet fork > 0.

Notice that we did not invoke the gap equation (14) yet. This is possible, but neither necessary nor instructive at
this point. In order to have a better understanding of thek → 0 behaviour, we can calculate the integrals in (26),
and extract the small momentum behaviour. Doing so, one finds

σ(k)|k2
∼0 ∼ −g2N

8π

M2

λ4
ln(k2) (27)

in the case thatM2 6= 0, which is a well-defined result, in contrast with (31).

However, there is still an infrared instability in the theory due to the finalln(k2)-factor appearing inσ(k) for small
k. This is our second main argument why coupling the mass operator (ϕϕ − ωω) to the theory causes problems:

6



• The quantum correction to the self energy explodes for smallk, completely invalidating the loop expansion.
This problem does not occur in3D or 4D, since thereσ ≤ 1. It is not difficult to imagine that the infrared
ln(k2)-singularity will spread itself through the theory, makingeverything ill-defined for smallk.

• Moreover, we also encounter a problem of a more fundamental nature. The starting point of the whole
construction was to always stay within the Gribov horizonΩ. This can be assured by the so called no-pole
condition, i.e.σ(k2) ≤ 1 as stated in the original article by Gribov [17]. SinceM2 must be positive2, we
clearly see from (32) that

σ(k)|k2
∼0 ≫ 1 , (28)

hence (22) is signalling us that we have crossed the horizon.

This confirms again thatM2 = 0 is the only viable option, i.e. we cannot go beyond the standard Gribov-
Zwanziger action if we want to avoid the appearance of destructive infrared issues, which unavoidably force the
theory to leave the Gribov region.

Remark. In the previous paragraph, in order to calculate (23), we have first determined the integral in expression
(23) exactly and then we have taken the limitk2 → 0. However, one usually [17, 29] first expands the integrand
for smallk2 and then performs the loop integration, as this considerably reduces the calculational effort. In the
current case, this course of action unfortunately leads to incorrect results. Indeed, doing so, we would reexpress
“1” as

1 = g2N
kµkν

k2

∫
d2q

(2π)2
1

q4 + M2q2 + λ4

(
δµν − kµkν

k2

)
+ ς

M2

λ2
, (29)

an operation which is based on the gap equation (14). Subsequently we rewrite1 − σ(k),

1 − σ(k) = g2N
kµkν

k2

∫
d2q

(2π)2
1

q4 + λ4

(
1 − q2

(k − q)2

)(
δµν − kµkν

k2

)
+ ς

M2

λ2

+ g2N
kµkν

k2

∫
d2q

(2π)2
1

(k − q)2
M2

q4 + M2q2 + λ4

(
δµν − qµqν

q2

)
, (30)

and then we expand the integrand3 aroundk2 ∼ 0 to find at lowest order,

(1 − σ(k))|k2
∼0 =

g2N

2

∫
d2q

(2π)2
M2

q2(q4 + M2q2 + λ4)
+ ς

M2

λ2
+ O(k2) . (31)

From this expression, we are led to believe that1 − σ(k), henceσ(k), is ill-defined at smallk2, due to an infrared
singularity which makes the integral in the r.h.s. of (31) toexplode. However, this is not true, as in this case, the
limit and the integration cannot be exchanged. The only correct way is to first calculate the integral and then take
the limit as was done in the previous paragraph. Further on this section, we shall explicitly explain why expression
(31) is wrong by exploring theM2 = 0 case in more detail.

The caseM2 = 0

It is instructive to take a closer look at the usual Gribov-Zwanziger scenario. One finds forM2 = 0 that

σ(k)|k2
∼0 ∼ g2N

4π

(
π

4λ2
− k2

4λ4

)
, (32)

a result which is indeed free of infrared instabilities. We also point out that ordinary (perturbative) Yang-Mills
theory is recovered whenλ = 0. It is hence nice to observe that this again causes troubles in the infrared since
the λ → 0 limit diverges. This is just a manifestation of the fact that2D gauge theories are infrared sick at
the perturbative level, and need some (dynamical) regularization. Apparently, at least at the level of the ghost
propagator at one loop, the Gribov mass acts a natural regulator in the infrared sector.

2A negativeM2 would lead to tachyonic instabilities in the theory, see e.g. the vacuum functional as an example.
3We notice that there will be no terms of odd order ink, since this would correspond to an odd power ofq, which will vanish upon integration

due to reflection symmetry.
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We should still use the gap equation in (32) to find the correctghost propagator. The gap equation (8) forM2 = 0
is readily computed as

2

g2N
=

∫
d2p

(2π)2
1

p4 + λ4
=

1

8λ2
. (33)

Evoking this gap equation, we find

1 − σ(k) = 1 − g2N

4π

(
π

4λ2
− k2

4λ4

)
=

g2N

4π

k2

4λ4
=

1

πg2N
. (34)

Henceforth, we obtain

Gab(k)
∣∣
k2

∼0
= δab 1

k2

1

1 − σ(k)

∣∣∣∣
k2

∼0

=
πg2N

k4
. (35)

We conclude that the ghost propagator is clearly enhanced and displays the typical behavior∼ 1/k4 in the deep
infrared, in accordance with the usual Gribov-Zwanziger scenario.

Remark. As we already announced earlier in this section, let us have acloser look at theM2 = 0 case. In a way
completely similar to theM2 6= 0 case, we find, aroundk2 ∼ 0,

(1 − σ(k))|k2∼0 = g2N
kµkν

k2

∫
d2q

(2π)2
1

q4 + λ4

(
k2

q2
− 4

(k · q)2
q2

)(
δµν − kµkν

k2

)
+ O(k4) , (36)

where we have expanded the integrand w.r.t.q before integrating. Exploiting polar coordinates once more, we are
now brought to

(1 − σ(k))|k2
∼0 =

g2N

4π2
k2

∫ +∞

0

qdq

q2

1

q4 + λ4

∫ 2π

0

(1 − 4 cos2 θ)(1 − cos2 θ)dθ + O(k4) . (37)

Surprisingly, theθ-integral vanishes, as it can be easily checked. In fact, onecan extend this observation to all
orders ink. To do so, we write

q2

(q − k)2
=

q2

q2 + k2 − 2qk cos θ
=

1

1 + k2

q2 − 2k
q

cos θ
=

∞∑

n=0

(
k

q

)n

Un(cos θ) , (38)

where we introduced the Chebyshev polynomials of the secondkind,Un(x). It holds that [30]

Un(cos θ) =
sin((n + 1)θ)

sin θ
. (39)

Subsequently, we can rewrite

1 − σ(k) = g2N

∫
d2q

(2π)2

∞∑

n=1

(1 − cos2 θ)Un(cos θ)

(
k

q

)n
1

q4 + λ4
, (40)

where use has been made ofU0(x) = 1. Assuming that the integral and the infinite sum can be interchanged, we
are led to

1 − σ(k) =
g2N

4π2

∞∑

n=1

kn

∫ +∞

0

dq

qn−1

1

q4 + λ4

∫ 2π

0

(1 − cos2 θ)Un(cos θ)dθ . (41)

Sincen ≥ 1 and making use of (39), for theθ-integration we find
∫ 2π

0

(1 − cos2 θ)Un(cos θ)dθ =

∫ 2π

0

sin θ sin((n + 1)θ)dθ

=

∫ 2π

0

cos(nθ) − cos((n + 2)θ)

2
dθ = 0 . (42)

However, this does not make the integral in (41) well defined,as the remainingq-integral is infrared singular for
any occurring value ofn! In fact, exactly these infrared divergences forbid the interchange of integral and of the
infinite sum. This is a nice example of the fact that the integral of a infinite sum can be well defined, whereas the
(sum of the) individual integrals are not.

When we first integrate exactly for anyk and then expand in powers ofk2, we do recover the meaningful result
(34) atk2 ∼ 0.
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4 The gluon propagator and positivity violation

Before turning to the conclusion, we would like to recall that another typical feature of the Gribov-Zwanziger
scenario is that the gluon propagator vanishes at zero momentum. More precisely,D(0) = 0. This implies a
maximal violation of positivity, see e.g. [16], thereby signalling that the gluon is an unphysical degree of freedom
and hence “confined”.

In 3D and4D, we have shown that the effects originating from the coupling of the operatorϕϕ−ωω to the theory
gives a finite nonzero value toD(0), in accordance with the lattice data [16, 24]. Notice, however, that there is still
a clear violation of positivity notwithstanding thatD(0) 6= 0. Our results were in qualitative agreement with the
available lattice data [16, 24].

As we have argued already, we must discardϕϕ−ωω in 2D. Consequently,D(0) still vanishes in2D at tree level
due to the Gribov mass, as it is immediately verified from

D(p2) =
p2

p4 + λ4
. (43)

In principle, one could explicitly check whether this persists beyond tree level order. However, this leads to quite
complicated loop calculations, as can be appreciated from the4D or 3D counterpart done in [16, 24], and therefore
we shall not pursue this here.

5 Conclusion

In this letter, we have discussed why it is not possible to “refine” the Gribov-Zwanziger action in2D, in contrast
with the 3D or 4D case. In the latter case, we have shown in recent work [15, 16,24] that the inclusion of
dynamical effects related to a novel mass operator, constructed with the additional field present in the Gribov-
Zwanziger action, has a profound influence on the infrared behaviour of the theory, and considerably changes the
usual Gribov-Zwanziger predictions. The main conclusion is that the ghost propagator is not infrared enhanced
but retains its1

q2 singularity in the deep infrared, while the gluon propagator becomes finite and nonvanishing at
zero momentum. The usual Gribov-Zwanziger scenario predicts a1/k4 singularity for the ghost propagator, and
a vanishing gluon propagator at zero momentum,D(0) = 0. Surprisingly, lattice data at large volumes are in
compliance with the refined analytical results presented in[15, 16, 24]. Since the lattice data in2D still predicts
an infrared enhanced ghost and vanishingD(0) [12, 13, 14], we were motivated to discuss how this would fit into
our refined Gribov-Zwanziger scenario [15, 16]. We have shown that it is not possible to couple the particular
operator,ϕϕ − ωω, to the action in2D, as it triggers serious infrared instabilities, which are peculiar to the2D
case. Thence, the usual Gribov-Zwanziger scenario is so to say “protected” in2D. In fact, we have proven that the
emerging infrared singularities make it impossible to staywithin the Gribov regionΩ whenM2 6= 0. As a nice
byproduct of this work, we have seen that the Gribov mass can act as a natural infrared regulator, stabilizing the
otherwise ill-defined perturbative expansion.
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