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Abstract

Distributional forms of Little’s law relate the steady-state distributions of the number

of customers in a queueing system (system content) and the time a customer spends in the

system (delay). We discuss a new law for discrete-time multiserver queues with single-slot

service times, a first-come-first-served (FCFS) disciplineand heterogeneous server inter-

ruptions.

Introduction: Discrete-time queueing models are studied intensively because of their suitability

to describe congestion phenomena in digital communicationsystems. An important trend in the

queueing theory literature is the development of laws that connect the system content and the

customer delay. The most well-known result is Little’s law,which is valid for any arrival pro-

cess, service process or scheduling discipline, but only deals with the first moments of system

content and delay. Distributional forms of Little’s law relate their distributions, see e.g. [1]- [5],

in each case however for a specific class of queueing systems.In this letter, we derive a new

distributional law for multiserver queues with heterogeneous server interruptions. The law is

quitegeneral in the sense that it doesn’t depend explicitly on the customer arrival process (be

it independent or correlated from slot to slot). It is an extension of [3] (no server interruptions)

and [4] (homogeneous interruptions and independent arrivals). Server interruptions naturally

occur in many applications due to e.g. the breakdown of communication channels, machine re-

pair or processor failures. Therefore we believe that our law is a powerful tool for performance

evaluation purposes.

System description: We consider a discrete-time multiserver queueing system with infinite

buffer size. Time is divided into fixed-length slots. Customers (or “packets”) arrive to the

system according to a general arrival process and are served(or “transmitted”) by an available

server (or “output channel”) in a FCFS manner. The transmission of a packet can start or end

at slot boundaries only and takes exactly one slot. There arec groups of servers, where group

r containscr servers. Each group is subject to server interruptions independently from group
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to group. The number of available servers in groupr during slotk is denoted bytr,k, and for

different k-values thetr,k’s are independent and identically distributed (i.i.d.) variables, with

common probability generating function (pgf)Tr(z) , E[ztr,k ]. The service and arrival processes

are mutually independent. Finally, the system is assumed toreach a steady state.

Let vk be the system content (including packets under transmission, if any) at the start of slot

k, andak the number of packet arrivals in slotk. Then the following system equation holds:

vk+1 = max
(

0,vk −
c

∑
r=1

tr,k
)

+ak . (1)

Also, we define the steady-state joint probability

b(i, j) , Prob[v = i,a = j] = lim
k→∞

Prob[vk = i,ak = j] , (2)

with corresponding joint pgfB(z,x) , E[zv xa].

Distributional law: We define the delay of a packet as the total number of slots between the end

of the packet’s arrival slot and the end of the slot where the packet is transmitted. In this letter,

we prove the following relationship between the steady-state pgfV (z) of the system content at

the start of an arbitrary slot and the steady-state pgfD(z) of the delay of an arbitrary packet:

D(z) =
z−1
λz

C−1

∑
p=0

−1
T ′

(xp)(1− xp)2

{

1− z
z

V

(

1
xp

)

+
c1

∑
m1=0

. . .
cc

∑
mc=0

( c

∏
r=1

tr(mr)
) m−1

∑
i=0

(

1− xp
m−i) v(i)

}

, (3)

whereλ is the mean number of arrivals per slot,C is the number of servers,m = ∑c
r=1 mr,

tr(mr) = Prob[tr = mr], v(i) = Prob[v = i], T (x) = ∏c
r=1 Tr(x), thexp’s are theC solutions for

x in terms ofz of 1− zT (x) = 0, which we assume distinct, andT
′
(xp) is the first derivative of

T (x) with respect tox at x = xp.

Proof: Let us consider an arbitrary packet P, that arrives in the queueing system during some

slot J in the steady state. Letd with pgf D(z) be the delay of P. To deriveD(z), we first make

the following observations. The delay of P depends on the number of packetsq in the system

right after slotJ with service priority over P. As long as at the start of slotJ + i there are at least

∑c
r=1 tr,J+i packets in the system with service priority over P, the available servers are all busy



serving packets and P is still waiting for service in slotJ + i, and there are∑c
r=1 tr,J+i departures

at the end of slotJ + i. We may therefore conclude that

d > i ⇐⇒ q ≥ si , (4)

where the random variablessi are defined as

s0 , 0; si ,
i

∑
n=1

c

∑
r=1

tr,J+n , i ≥ 1. (5)

Note that as the variablestr,J+i in (5) are i.i.d. from slot to slot and independent from groupto

group, the pgf ofsi equals

Si(z) , E[zsi ] =
c

∏
r=1

Tr(z)
i = T (z)i . (6)

Secondly, we transform (4) into a relationship betweenD(z) and the pgfQ(z) of q. Using the

independence ofq and thesi’s and the probability generating property of pgfs, we get

D(z)−1
z−1

=
∞

∑
i=0

zi
∞

∑
j=0

Prob[q = j] Prob[q ≥ si |q = j]

=
∞

∑
j=0

Prob[q = j]
j

∑
n=0

∞

∑
i=0

1
n!

dn

dxn [Si(x)]

∣

∣

∣

∣

x=0
zi

=
∞

∑
j=0

Prob[q = j]
j

∑
n=0

1
n!

∂n

∂xn

[

1
1− zT (x)

]∣

∣

∣

∣

x=0
. (7)

Working out the sum overi in (7) requires that|zT (x)| < 1 in the neighborhood ofx = 0, which

is fulfilled for |z| ≤ 1, since|T (x)| < 1 for |x| < 1. Consideringz a constant andx the variable

of interest, we find the partial fraction expansion

1
1− zT(x)

=
C−1

∑
p=0

−1

zT ′
(xp)(x− xp)

. (8)

By substituting (8) in (7), working out the sum overn, and finally again using the expansion (8)



at x = 1, we then obtain

D(z) = (z−1)
C−1

∑
p=0

Q(1/xp)

zT ′
(xp)(1− xp)xp

. (9)

Thirdly, we derive a relationship betweenQ(z) andV (z). We define f as the number of

arrivals in slotJ but before P,vJ as the system content at the start of slotJ, and tr,J as the

number of available servers from groupr in slot J. Thenq is given by

q = max
(

0,vJ −
c

∑
r=1

tr,J
)

+ f . (10)

In order to deriveQ(z), we need the joint distribution ofvJ and f . This can be determined by

conditioning on the value ofaJ, the number of packet arrivals in slotJ, as follows:

Prob[vJ = i, f = j] =
∞

∑
ℓ= j+1

1
ℓ

Prob[vJ = i,aJ = ℓ] , (11)

since P is a random packet. Note that Prob[vJ = i,aJ = ℓ] corresponds to thefraction of packets

that arrive in a slot withℓ arrivals and a system contenti at the start of the slot. As P could

be any of theℓ arrivals in such a slot, Prob[vJ = i,aJ = ℓ] is proportional to bothb(i, ℓ) and the

numberℓ itself:

Prob[vJ = i,aJ = ℓ] =
ℓb(i, ℓ)

λ
. (12)

The joint pgf ofvJ and f is then obtained as

M(z,x) , E
[

zvJ x f
]

=
B(z,1)−B(z,x)

λ(1− x)
. (13)

By means of (11), (13) and some standardz-transform techniques, (10) can now be transformed

into

Q(z) = T

(

1
z

)

M(z,z)+
1

λ(z−1)

·E

[

t−1

∑
i=0

(

1− zi−t)
( ∞

∑
ℓ=0

b(i, ℓ)zℓ− v(i)
)

]

, (14)



wheret = ∑c
r=1 tr and the expected value needs to be taken over the joint distribution of the

random variablest1, . . ., tc. On the other hand, from (1) and following similar steps, we have

V (z) = T

(

1
z

)

B(z,z)+E

[

t−1

∑
i=0

∞

∑
j=0

b(i, j)
(

1− zi−t) z j

]

. (15)

From (13)-(15),Q(z) can be expressed in terms ofV (z) = B(z,1). Combination of the resulting

expression with (9), together with the independence of the variablestr, then yields (3).

Concluding remarks: Relation (3) is general in the sense that the exact nature of the arrival

process is not relevant. Hence, although the statistics of the system content and the delay may

heavily depend on the nature of the arrival process, knowledge of this process is not needed for

the transformation from system content to delay. By means of(3), not only the pgf but also

several other delay characteristics, such as moments and tail probabilities, can be determined

from the pgf of the system content.
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