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Abstract  
About a century after its first described application by Ivar Bang, the potential of sampling via 

dried blood spots (DBS) as an alternative for classical venous blood sampling is increasingly 

recognized. Perhaps best known is the use of DBS in newborn screening programs, ignited by the 

hallmark paper by Guthrie and Susi half a century ago. However, it is only recently that both 

academia and industry have recognized the many advantages that DBS sampling may offer for 

bioanalytical purposes, as reflected by the strong increase in published reports during the last few 

years. Currently, major DBS applications include newborn screening for metabolic disorders, 

epidemiological surveys (e.g. HIV monitoring), therapeutic drug monitoring (TDM), as well as 

toxicology. In this review, we provide a comprehensive overview of the distinct subdisciplines of 

toxicology for which DBS sampling has been applied. DBS sampling for toxicological evaluation 

has been performed from birth until autopsy, aiming at the assessment of therapeutic drugs, drugs 

of abuse, environmental contaminants, toxins, as well as (trace) elements, with applications 

situated in fields as toxicokinetics, epidemiology and environmental and forensic toxicology. We 

discuss the strengths and limitations of DBS in the different subdisciplines and provide future 

prospects for the use of this promising sampling technique in toxicology. 
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Introduction  
Already about a century ago, the potential of using dried blood spots (DBS) for biomonitoring 

was recognized by Ivar Bang, who demonstrated its usefulness for glucose monitoring (Bang, 

1913). However, it took another 50 years before the use of DBS became more widespread, 

ignited by the seminal paper by Guthrie and Susi, who demonstrated the applicability of 

screening newborn DBS for phenylketonuria (Guthrie and Susi, 1963). Since then, an ever 

increasing amount of biomarkers has been included in DBS newborn screening programs 

worldwide (Seashore and Seashore, 2005, Watson et al., 2006, Garg and Dasouki, 2006, 

Bodamer et al., 2007, Chace, 2009). Apart from its use for newborn screening, DBS sampling has 

also been applied in animals, children, adults and even post mortem, its applications rising 

rapidly the last few years, covering the analysis of DNA (e.g. HIV, serotyping of bacteria, 

genotyping), proteins (e.g. enzyme activity or antibody-based analysis), small molecules 

(endogenous or exogenous, e.g. amino acids or therapeutic drugs), as well as trace elements (e.g. 

lead).  

This review aims at covering the different subdisciplines of toxicology for which DBS sampling 

has been reported. More specifically, we will discuss the application of DBS for the analysis of 

therapeutic drugs (toxicokinetics), drugs of abuse, environmental contaminants, toxins and (trace) 

elements. Topics not covered by this review are the use of DBS for therapeutic drug monitoring 

(TDM) and for metabolic screening, two fields which, although having some overlap with 

toxicology because toxic effects may be encountered, are considered as distinct disciplines.  

The interest in using DBS for the purpose of TDM (including clinical toxicology), with sampling 

either in the clinic or at the patient’s home, has recently shown a strong increase. Also here, apart 

from follow-up and reassuring that therapeutic concentrations are reached in patients, toxicology 

may come into play when considering the purpose to monitor (and avoid) 
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supratherapeutic (potentially toxic) concentrations. However, it is beyond the scope of this 

review to provide a full overview of all therapeutic drugs for which DBS sampling has been 

applied. The reader is referred to other, comprehensive reviews on this topic (e.g. Edelbroek et 

al., 2009, Li and Tse, 2010, Stolk and Edelbroek, 2010).  

Metabolic screening programs based on DBS sampling aim at identifying disturbed balances in 

endogenous biomolecules, which may lead to toxic effects. A forensic application worth 

mentioning in this context is the “metabolic autopsy”, which can be performed on DBS to screen 

for inherited metabolic disorders in cases of sudden infant death syndrome or sudden unexplained 

death syndrome (Chace et al., 2001). These DBS can either be obtained post mortem or can be 

those that were obtained at birth in cases where only later a metabolic disorder is suspected in 

deaths of previously unknown cause.  

Dried Blood Spots – Sources  
In developed countries, typically five DBS, each corresponding to about 80 l of blood, are 

obtained by heel stick from the vast majority (>95%) of newborns within the first 1-3 days of life. 

With the exception of the ‘positive’ cases, only a limited amount of this material is used for 

newborn screening programs, which primarily focus on inborn errors of metabolism. Thus, a 

substantial amount of valuable material is left behind. These remainders have proven to be a 

useful matrix for assessing certain exposures at birth. The prime aim of these assessments is to 

monitor prenatal exposure to toxic compounds capable of crossing the foetoplacental barrier. 

However, as in most cases no information is available with respect to breastfeeding, it needs to be 

remarked that postpartum exposure of the newborn via mother milk cannot be excluded. 

Moreover, when interpreting the results in the context of epidemiological studies, several 

potential sources of bias need to be kept in mind (Searles-Nielsen et al., 2008). First, although 

newborn screening is almost universal in developed countries, non-participation is 
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unlikely to be random (e.g. infants may have died before DBS sampling or parents may have 

refused DBS sampling). Second, less (or no) material may be left from those newborns that tested 

positive in newborn screening programs. As analyses are typically performed on material that has 

been archived up to several years, contamination has to be excluded and analyses are limited to 

analytes with long-term stability in DBS. In addition, parameters potentially influencing the 

analytical result, such as haematocrit, blood volume spotted and site of punching (peripheral 

versus central) (Holub et al., 2006, O'Mara et al., 2011) have not been examined in many cases. 

Nevertheless, keeping these limitations in mind, newborn DBS can be valuable material for 

screening and may provide important retrospective information on the extent of exposure to a 

wide array of chemicals or elements. Given the fact that these early life exposures may be 

relevant to disease later in life, this information may not only result in a close follow-up of 

‘positively scored’ newborns, but may also form the basis for intervention studies, targeting 

women at specific locations and/or belonging to specific (social) groups.  

Apart from DBS sampling for newborn screening, more recently, this sampling technique has 

increasingly gained interest for its use in both animal and human studies. In humans (both adults 

and children), DBS are mostly obtained by finger prick. The resulting DBS, which may be 

directly applied from the finger onto the filter paper or via a precision capillary, are in general 

smaller than those obtained by heel stick. Advantages associated with the sampling itself 

primarily include its ease and its minimal invasiveness, facilitating sampling in remote areas and 

in paediatric studies by non-specialized individuals. Sampling from animals at specified time 

intervals after administration of a given drug is generally performed using microsampling devices 

(e.g. precision capillaries). The blood collected with these devices can be used to generate DBS, 

or it can be frozen, diluted in another solution or centrifuged to 
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prepare plasma (Smith et al., 2011, Stokes et al., 2011). Applications include pharmaco- and 

toxicokinetics, TDM and clinical, forensic and environmental toxicology.  

Analysis of Therapeutic Drugs - Toxicokinetics  
Currently, many pharmaceutical companies undertake major efforts to implement DBS rather 

than classical plasma samples as starting material for bioanalytical measurements. These efforts 

are situated in the preclinical phase of the drug discovery process (e.g. toxicokinetics) as well as 

in later phases (pharmacokinetics and TDM). Here, we will primarily focus on the use of DBS for 

toxicokinetics, determining the relationship between systemic exposure of an animal to a 

compound and the harmful effects (toxicity) of this compound. A preliminary safety assessment 

can be derived from parameters such as bioavailability and dose proportionality, serving as a 

basis to decide which doses can be used in future studies.  

From the point of view of animal welfare, DBS sampling conforms very well to the ‘3R principle 

(Replacement, Reduction, Refinement)’ in toxico- and pharmacokinetic studies. The fact that 

finer needles can be used to obtain DBS and that there is no need to warm the animals prior to 

sampling, causes less distress to the animals. Besides this refinement, resulting in less animal 

burden, the implementation of DBS sampling also leads to a strong reduction in the number of 

animals needed in early drug discovery and preclinical studies. More specifically, DBS sampling 

requires less blood to be taken at each time point than is the case when analyses are performed 

using the ‘classical’ matrices plasma or serum. For the latter, the number of samples that can be 

collected per animal is limited by both ethical and physiological constraints. These constraints are 

greatly relieved by ‘microsampling’, resulting in the generation of DBS and allowing serial 

sampling from a strongly reduced amount of laboratory animals, including small rodents such as 

mice. This allows the replacement of composite pharmaco- or toxicokinetic profiles (obtained 

from different animals) by serial 
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profiles (obtained within individual animals), which leads to higher data quality ( Clark et al., 

2010, Turpin et al., 2010, Crawford et al., 2011). Apart from a large improvement in animal 

welfare, DBS sampling is also beneficial for the (pharmaceutical) companies involved. From a 

financial point of view, there is a serious reduction in costs associated with animal studies 

(including amount of test compound that should be available) and with sample handling. The 

latter includes both transportation costs to a bioanalytical facility and storage costs. Both 

transportation and storage are often facilitated, as experience has learned that stability, though 

requiring analyte-specific evaluation, is generally good. Thus, in many cases prolonged storage, 

even at ambient temperatures, is possible. Despite these many advantages, however, 

pharmaceutical companies initially somewhat restrained from utilizing DBS as an alternative to 

plasma or serum. Importantly, the use of DBS instead of plasma or serum necessitated a 

rethinking of bioanalytical procedures, particularly in the pre-analytical phase. This not only 

includes the selection of the filter paper card, but ideally also encompasses evaluation of the 

influence of spotting temperature, anticoagulant, the spotting device used, the volume spotted, the 

site of punching and the haematocrit, in addition to evaluation of the “on spot stability” and the 

effect of drying and storage conditions. Additionally, one should also dispose of means for 

detecting contamination, such as evaluation of blanks and/or incurred sample reanalysis (Spooner 

et al., 2009, Denniff and Spooner, 2010a, Denniff and Spooner, 2010b, Barfield and Wheller, 

2011, Barfield et al., 2011, Timmerman et al., 2011). However, setting up new bioanalytical 

procedures is (was) not the main problem for the ‘switch’ from plasma to DBS. More important 

are regulatory constraints and the fact that plasma and serum have been used for decades as the 

gold standard, with all currently available toxico- and pharmacokinetic data having been obtained 

in these matrices. The latter implies that care should be taken, not only in evaluating how plasma 

concentrations correlate with blood or DBS concentrations, but also if and how capillary 

concentrations correlate with venous 
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concentrations (Emmons and Rowland, 2010). This may be particularly relevant when evaluating 

early time points in kinetic experiments (Mohammed et al., 2010). Another factor to consider is 

the anticipated concentration: when in the low- or sub-ng/ml range, the limited amount of 

available material may impose analytical challenges that have to be dealt with. Recent 

improvements in analytical equipment, with primarily LC-MS/MS becoming more widespread 

available, have catalyzed progress in this field. Currently, major efforts are also being undertaken 

to render DBS analysis high-throughput-capable. Examples include the automated analysis of 

DBS, the on-line extraction and analysis of DBS (‘direct elution’) and direct desorption of DBS 

(e.g. Crawford et al., 2011, Déglon et al., 2011a). These new developments have recently been 

reviewed elsewhere (Déglon et al., 2011b, Abu-Rabie, 2011).  

Analysis of Drugs of Abuse  
Several publications and meeting abstracts demonstrate (or suggest) the potential of DBS for 

detecting exposure to drugs of abuse. Analytes measured include both legal drugs (scheduled 

drugs available on prescription) and illegal drugs. It needs to be mentioned, though, that some of 

these reports focus on the potential of determining these drugs for TDM (e.g. narcotic painkillers) 

or for newborn screening (e.g. monitoring exposure to cocaine), rather than for forensic purposes. 

In addition, several reports have demonstrated the possibility to identify drugs of abuse, as well 

as ethyl glucuronide, a marker for alcohol abuse, in blood spotted on different surfaces, rather 

than on filter paper. As in these cases the resulting blood spots are bloodstains rather than DBS, 

we do not consider these as true ‘DBS applications’ (Schütz et al., 2002, Fuller and Pisana, 2009, 

Winkler et al., 2011,). Overall, two sources of DBS can be distinguished for monitoring drugs of 

abuse: firstly DBS obtained from adults, where the application can be classified under ‘forensic 

toxicology’, and secondly DBS from newborns, 
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where the aim is to assess exposure prior to birth. Owing to the low concentrations to be detected 

in minute amounts of material, LC-MS/MS has been the method of choice in the vast majority of 

applications, although also GC-MS has been applied in some cases (Table 1).  

Forensic Toxicology  
There is a substantial number of reports describing DBS applications for drugs of abuse (for an 

overview, see Table 1). Analytes of particular forensic interest that have been measured in DBS 

include benzodiazepines (alprazolam, clonazepam, diazepam, flunitrazepam, flurazepam, 

lorazepam, midazolam, nitrazepam, nordiazepam, oxazepam, phenazepam, temazepam), 

zolpidem, zopiclone, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-

methylenedioxyamphetamine (MDA), 3,4-methylenedioxyethylamphetamine (MDEA), 

amphetamine, methamphetamine, cocaine, tetrahydrocannabinol (THC), opiates (6-

monoacetylmorphine, morphine, codeine, hydromorphone, hydrocodone, oxycodone, 

noroxycodone), tramadol, methadone, buprenorphine, fentanyl, ketamine and their respective 

metabolites and gamma-hydroxybutyric acid (GHB) (Henderson et al., 1993, Sosnoff et al., 1996, 

Henderson et al., 1997, Alfazil and Anderson, 2008, Garcia Boy et al., 2008, Moll et al., 2009, 

Clavijo et al., 2010, Havard et al., 2010, Ingels et al., 2010, Marin et al., 2010, Mercolini et al., 

2010, Thomas et al., 2010, Clavijo et al., 2011a, Clavijo et al., 2011b, Hudson et al., 2011, Ingels 

et al., 2011, Jantos and Skopp, 2011, Jantos et al., 2011a, Jantos et al., 2011b, Langel et al., 2011, 

Lauer et al., 2011). Also interesting from a forensic point of view is the potential to monitor 

alcohol abuse via the determination of ethylglucuronide and ethylsulfate or phosphatidylethanol 

in DBS (Faller et al., 2011, Jones et al., 2011, Redondo et al., 2011).  

Although most reports have included patient samples, two important remarks need to be made. 

First, a substantial amount of these reports utilizes DBS prepared by pipetting venous blood 
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onto a paper card (e.g. Garcia Boy et al., 2008, Ingels et al., 2010, Faller et al., 2011, Jantos and 

Skopp, 2011, Jantos et al., 2011b, Jones et al., 2011), with only a limited amount of reports 

describing the analysis of true capillary DBS (e.g. Sosnoff et al., 1996, Mercolini et al., 2010, 

Ingels et al., 2011). Although the latter can be obtained by using a precision capillary (Mercolini 

et al., 2010), our experience learned that this significantly complicates the procedure and ideally 

requires some training. Instead, direct application of the blood drop from the pricked fingertip 

onto the paper is generally found to be easy, also for a non-trained individual. However, as DBS 

obtained in this way do not represent a fixed volume, quantitative evaluation requires the analysis 

of DBS punches rather than of complete DBS. This brings us to the second remark. Analysis of 

(very) large spots, obtained from spotting up to 100 l, has been performed in a substantial 

number of publications (e.g. Alfazil and Anderson, 2008, Garcia Boy et al., 2008, Faller et al., 

2011, Jantos and Skopp, 2011, Jantos et al., 2011b). These volumes are not easily obtained by 

finger prick; in our experience a spot applied directly from a pricked fingertip onto paper 

corresponds typically to less than 40 l of blood. Moreover, the non-volumetric application also 

has the consequence that disks (typically 3, 6 or 6.35 mm diameter) need to be punched from the 

paper, further reducing the amount of material available for analysis. Important to mention in this 

context is that the validation of methods starting from disk punches rather than from complete 

blood spots requires the evaluation of additional parameters such as punch location, haematocrit 

and volume spotted (Li and Tse, 2010, Ingels et al., 2011). Thus, although promising results have 

been obtained, suggesting more widespread applicability in forensic toxicology, true ‘on-field’ 

studies are needed for a substantial amount of compounds, in which DBS are obtained by a finger 

prick. Below we discuss more into detail two specific advantages associated with DBS sampling 

and the opportunities these offer for implementation in forensic toxicology: the ease of sampling 

(facilitating rapid sampling) and the stabilizing effect of DBS. 
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Ease of Sampling  

Although legislation in most countries does not (yet) allow non-medical staff to obtain DBS from 

someone else, the ease with which DBS can be taken renders it in principle possible to acquire a 

blood sample with a minimal loss of time. As this would imply that, at least in some instances, 

the sampling is done ‘on-field’, also care has to be taken to let the filter paper dry properly, as an 

analyte’s stability may be impacted by the drying time and drying conditions. In such situations, 

the paper can be dried by e.g. putting it in a box or bag with desiccant, taking care that the blood 

spots do not come into contact with other surfaces. This approach of pro-active drying has 

already been applied in field studies where blood was sampled from wild birds (Trudeau et al., 

2007).  

Rapid sampling is particularly relevant in cases in which the half-life of a drug is short. Examples 

include cocaine, heroin (and its metabolite 6-monoacetylmorphine, 6-MAM) and GHB 

(Henderson et al., 1993, Sosnoff et al., 1996, Henderson et al., 1997, Alfazil and Anderson, 2008, 

Garcia Boy et al., 2008, Mercolini et al., 2010, Ingels et al., 2010, Ingels et al., 2011). Whereas 

cocaine intake can be demonstrated by virtue of its metabolite benzoylecgonine, heroin abuse 

cannot be simply deduced from the presence of its hydrolysis end-product, morphine (see also 

below). An even more difficult case is presented by GHB, which is also endogenously present 

and is rapidly cleared from the circulation. GHB or one of its precursors is sometimes used in 

cases of drug-facilitated sexual assault (DFSA). In these cases, there is most often readily a delay 

before the victim presents at the police station, thus sampling should be done as fast as possible 

(without needing to wait for a doctor to arrive). DBS sampling may be a good option in these 

cases.  

The ease and speed of sampling also allows to investigate the epidemiology of drug abuse in a 

nightclub environment, where DBS could be obtained in “first aid” rooms (e.g. Wood et al., 

2009). As in these cases informed consent needs to be obtained from individuals who are 
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under the influence of drugs, this may pose bio-ethical issues, which can be dealt with via 

informed consent from a relative or via delayed informed consent.  

DBS sampling in the context of DUID (driving under the influence of drugs) has only been 

evaluated to a limited extent (DRUID, 2011). Although for DUID testing, oral fluid has become 

the matrix of choice for both screening and confirmation in many countries, some controversy 

exists whether the obtained concentrations always closely mirror blood concentrations 

(supposedly best correlating with intoxication) and whether falsification by e.g. mouth washing 

may be possible (Bosker and Huestis, 2009, Huestis et al., 2011). DBS sampling does not suffer 

from these drawbacks and combines the advantages (relevance and reliability) of obtaining the 

ultimate specimen for determination of drug concentrations - i.e. blood - with an easy and rapid 

collection procedure by non-specialized staff. A key issue related to DBS sampling in this context 

is the exclusion of contamination.  

For the follow-up of drug and alcohol addicts, DBS sampling may be useful to control abstinence 

from drugs and/or intake of substitution medication. Here, the use of DBS, though offering a 

more restricted window of detection, may offer an alternative for urine testing, which is now 

routinely used. Importantly, DBS sampling is gender neutral and is not hampered by privacy 

issues, which often lead to unsupervised sampling (and possibly adulteration) of urine. As there is 

also no need for medical staff, one may envisage a system in which unwittingly (former) addicts 

get a phone call at irregular time intervals and have to present themselves at a given centre to 

provide DBS under supervision. Moreover, given the higher prevalence of viral infections (e.g. 

hepatitis and HIV) in people with a history of intravenous drug abuse, the low biohazard risk 

posed by the resulting DBS is an additional important advantage. No manipulation of the blood is 

required (in contrast to e.g. the preparation of plasma, requiring centrifugation) and DBS can be 

transported via regular mail with no risk of breaking or leaking, thus minimizing the risk of 

transmitting blood-borne 
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viruses and overcoming the need for taking special safety precautions (SCDHEC, 2011). In fact, 

viruses such as HIV-1 lose their infectivity as their envelope is disrupted upon drying, which has 

led to the use of DBS for routine HIV monitoring in screening and follow-up programs in 

developing countries (Johannessen, 2010).  

Stabilizing Effect  

Multiple publications have pointed out that DBS may have a stabilizing effect (e.g. Bowen et al., 

2010, D'Arienzo et al., 2010). In a forensic context, this can be exemplified by several examples. 

First, the stabilizing effect on drugs having e.g. an ester function was demonstrated by the 

increased stability (reduced hydrolysis) of cocaine and 6-monoacetylmorphine (6-MAM, a 

metabolite of heroin) in DBS, as compared to whole blood (Henderson et al., 1993, Alfazil and 

Anderson, 2008, Garcia Boy et al., 2008). This is of particular importance as identification of 6-

MAM unequivocally demonstrates heroin use (whereas the presence of morphine alone doesn’t). 

Secondly, DBS may also overcome the problem of ex vivo formation of a given compound. 

Whereas ex vivo formation of the club drug GHB in whole blood has been reported (Berankova et 

al., 2006, Zörntlein et al., 2011), prolonged storage of DBS at room temperature (up to 6 months) 

demonstrated no significant changes (Ingels et al., 2011). Similarly, whereas the presence of 

ethanol in blood may result in the ex vivo generation of phosphatidylethanol (1-palmitoyl-2-oleyl-

sn-glycero-4-phosphoethanol) upon storage (Aradottir et al., 2004, Jones et al., 2011), this ex vivo 

formation does not take place in DBS (Jones et al., 2011). Thus, DBS sampling is able to counter 

a serious drawback associated with classical venous sampling, thereby increasing the 

trustworthiness of the result.  

Apart from the aforementioned “metabolic autopsy” (Chace et al., 2001), which can be 

performed on DBS samples taken at autopsy, we found only one report in which analysis of DBS 

(obtained by spotting venous blood) from a post mortem sample has been described 
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(Henderson et al., 1993). Although obviously for post mortem analysis there is no sampling 

advantage anymore, the increased stability of some analytes may still warrant DBS sampling. 

Yet, another difficulty is posed by the fact that post mortal blood may be lyzed or coagulated, 

leading to a different spread of the blood on the filter paper. Indeed, DBS generated from lyzed 

blood have been shown to differ ultrastructurally from those obtained from fresh blood (Cizdziel, 

2007), which, dependent on the analyte to be measured, may (or may not) lead to skewing of the 

results (Cizdziel, 2007, Abu-Rabie and Spooner, 2010).  

In the forensic toxicology laboratory, the use of DBS may also offer the possibility to preserve 

small amounts of sample in an economical way in ‘closed cases’, where all other evidence is to 

be discarded. When, for one reason or another, a case is to be reopened, there is at least some 

material left, potentially allowing targeted analysis. A similar approach has also been suggested 

for other biological matrices, such as urine (DuBey and Caplan, 1996). Obviously, a limitation is 

that only analytes can be detected that remain stable for an extended period of time (DuBey and 

Caplan, 1996).  

Newborn Screening  
Benzoylecgonine and cotinine, which are metabolites of cocaine and nicotine, respectively, have 

been determined in newborn DBS to assess the prevalence of the use of cocaine and tobacco 

products among childbearing women (Henderson et al., 1993, Sosnoff et al., 1996, Henderson et 

al., 1997, Spector et al., 2007). An inherent limitation here is that positive results will only 

indicate the mother’s use of cocaine or tobacco near the time of delivery, thus only offering a 

limited view on the use during pregnancy. On the other hand, a factor likely extending the 

interval for detecting positive cases, is the immature liver function in newborns. Although 

immunological assays have been found to be a useful tool for initial screening of 

benzoylecgonine in DBS, confirmation is required using other techniques, such 
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as mass spectrometry (GC-MS or LC-MS/MS) (Henderson et al., 1993, Sosnoff et al., 1996, 

Henderson et al., 1997). With respect to decision-making, any positive signal (above the limit of 

detection, LOD, or lower limit of quantification, LLOQ) may raise an alert. This implies that the 

lower the LOD or LLOQ of a given method, the higher the expected detection rate. Implementing 

a cut-off value in DBS testing of newborns for drugs of abuse may facilitate the inter-laboratory 

comparison of prevalences. While defining this decision limit, the potential error caused by the 

possible effect of e.g. varying haematocrit and volume spotted should be taken into account. 

However, as the cut-off would necessarily be above the LOD or LLOQ, the % of false negatives 

will undoubtedly increase.  

Analysis of Environmental Contaminants  
Screening for environmental contaminants has been performed using DBS from both humans 

(primarily newborns) and animals. Examples of analytes that have been monitored include 

environmental pollutants such as benzene oxide (a metabolite of benzene, monitored via its 

adducts with haemoglobin) (Funk et al., 2008), organochlorine pesticides (Dua et al., 1996, Burse 

et al., 1997, Shlosberg et al., 2011b), perfluoroalkyl compounds (PFCs) (Spliethoff et al., 2008, 

Kato et al., 2009, Shlosberg et al., 2011b), polychlorinated biphenyls (PCBs) (Lu et al., 2011, 

Shlosberg et al., 2011b), polybrominated diphenyl esters (PBDEs) used as flame-retarding 

chemicals (Lu et al., 2011, Shlosberg et al., 2011b), perchlorate (Otero-Santos et al., 2009), heavy 

metals, as well as certain toxins. Although no published reports are available, yet, DBS have also 

been suggested to be useful for monitoring bisphenol A (Leonard et al., 2011).  

An alternative, indirect way for assessing the exposure to a contaminant, is the monitoring of a 

biological activity directly influenced by this contaminant (via a so-called ‘biomarker of effect’). 

Insecticides like organophosphates and carbamates are good candidates for this 
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approach, as exposure can be assessed by virtue of their inhibition of cholinesterase activity. The 

first reports on the determination of cholinesterase activity in blood samples absorbed on filter 

paper readily date back to 1953 (Augustinsson and Heimburger, 1953, Heilbronn, 1953), a 

decade before Guthrie and Susi published on the detection of phenylalanine in newborn DBS 

(Guthrie and Susi, 1963). It needs to be remarked, though, that sensitivity is rather limited and 

ideally one should know an individual’s enzyme activity prior to exposure, with only 

considerable intoxications resulting in a significant decrease in enzyme activity. Yet, multiple 

other publications have shown the potential to use (dried) blood and plasma spots for monitoring 

cholinesterase activity, primarily for occupational surveillance of exposed workers (Augustinsson 

and Holmstedt, 1965, Holmstedt and Oudart, 1966, Collombel and Perrot, 1970, Oudart and 

Holmstedt, 1970, Augustinsson et al., 1978, Eriksson and Faijersson, 1980, Rhyanen et al., 1984, 

Hilborn and Padilla, 2004, Quandt et al., 2010). Several of the DBS applications for monitoring 

environmental contaminants are discussed more into depth below.  

Newborn Screening  
The organochlorine dichlorodiphenyldichloroethylene (DDE, a metabolite of DDT) and the PFCs 

perfluorooctane sulphonate (PFOS) and perfluorooctanate (PFOA), as well as benzene oxide and 

perchlorate, have been detected in all evaluated newborns’ DBS (Burse et al., 1997, Funk et al., 

2008, Spliethoff et al., 2008, Kato et al., 2009, Otero-Santos et al., 2009), mirroring their general 

spread in ecosystems and their presence in virtually 100% of the adult population, including 

pregnant women (Woodruff et al., 2011). Interestingly, a sharp decline in perfluoroalkyl content 

in DBS from newborns after the year 2000, coinciding with the phasing-out of PFOS in the US, 

nicely demonstrates the utility of this approach for assessing temporal trends in exposure to 

environmental chemicals (Spliethoff et al., 2008). Newborn DBS have also been demonstrated to 

have the potential for monitoring exposure to 
17  



 
supraphysiological levels of trace elements (e.g. lead), allowing the extraction of 

(semi)quantitative information (Langer et al., 2010). However, most of these studies have not 

been performed within the context of newborn screening and are therefore discussed in a separate 

paragraph.  

Biomonitoring of Animals  
Intoxication of animals with cholinesterase inhibitors (e.g. organophosphate and carbamate 

insecticides) may occur via ingestion (e.g. of exposed prey) or via dermal contact. Assessment of 

cholinesterase activity in DBS of avian species has been found sensitive enough to serve as a 

diagnostic tool for identifying exposure to cholinesterase-inhibiting pesticides. DBS sampling of 

animals allows the collection of samples at remote areas and in non-specialized centres, where no 

special equipment like a centrifuge is available and where proper storage of a blood sample is 

difficult (Trudeau et al., 2007).  

A recent initiative in the context of monitoring exposure of animals to toxic substances, 

somewhat paralleling the efforts done for evaluating a newborn’s exposure to environmental 

contaminants via DBS, is DABSE (“Database for avian blood spot examination”) (Shlosberg et 

al., 2011a). This biomonitoring project aims at setting up reference values for exposure of wild 

birds to five groups of environmental contaminants: trace elements, organochlorine pesticides, 

PCBs, PFCs and PBDEs. Referral to the values within this database should help to pinpoint a 

possible cause in cases in which an individual bird or a bird population presents with a problem. 

A first application of this biomonitoring project was performed on griffon vultures, 

demonstrating detectable levels of several contaminants in DBS obtained from these birds 

(Shlosberg et al., 2011b).  

Environmental health can also be assessed by monitoring the exposure of top predators, acting as 

sentinels. In coastal waters in the Gulf of Mexico, this approach has been used for 
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monitoring the exposure of bottlenose dolphins to the marine algal biotoxins domoic acid and 

brevetoxins, respectively produced by members of the diatom genus Pseudo-nitzschia and by the 

dinoflagellate Karenia brevis (Twiner et al., 2011). Both biotoxins have been measured in DBS, 

obtained by spotting filter paper cards with 100 l of blood, obtained from either exposed 

laboratory test animals (mice, rats or the fish species striped mullet) or from free-living dolphins 

(Fairey et al., 2001, Woofter et al., 2003, Woofter et al., 2005, Schwacke et al., 2010, Twiner et 

al., 2011). Toxin detection in DBS extracts has been performed using receptor-binding assays 

(Fairey et al., 2001) and radio immuno-assay (RIA, for brevetoxins) (Woofter et al., 2003) and, 

more recently, by competitive ELISA, either detecting brevetoxins and their metabolites, or 

domoic acid (Maucher and Ramsdell, 2005, Maucher et al., 2007). Ciguatoxins are another class 

of highly potent neurotoxins, sharing with brevetoxins the binding site 5 on the α-subunit of 

voltage-gated sodium channels as effector site (Wang, 2008). Using a neuroblastoma cytotoxicity 

assay, ciguatoxins have been determined in DBS extracts from exposed mice (Bottein Dechraoui 

et al., 2005).  

Elemental Analysis  
Biomonitoring of toxic trace elements (metals and metalloids) in human blood has been applied 

for decades. Examples include lead, which exerts neurological toxicity, and arsenic, cadmium, 

mercury, chromium, copper, nickel and vanadium, all of which have distinct toxicity profiles. 

When aiming at (primarily) single-element analysis, analysis is usually performed by atomic 

absorption spectrometry (AAS), or more recently by (solid sampling) graphite furnace atomic 

absorption spectrometry ((SS-)GFAAS) (Verebey et al., 1991, Resano et al., 2007). Inductively 

coupled plasma mass spectrometry (ICP-MS) has been used for both single-element and for 

multi-element analysis, with more recent developments being 
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laser ablation-ICP-(TOF-)MS and sector-field-ICP-MS (Cizdziel, 2007, Chaudhuri et al., 2009, 

Langer et al., 2010, Hsieh et al., 2011).  

Considering the analysis of trace elements in DBS, most attention has been given to the 

determination of Pb in DBS obtained from children. Although the determination of venous Pb 

concentrations is considered the gold standard, venipuncture of infants and toddlers is 

impractical, may be traumatic for the children and in many countries is not widely accepted by 

the parents as a screening test for asymptomatic children (Shen et al., 2003). As children are 

particularly sensitive to Pb and in most countries Pb concentrations peak at approximately 2 years 

of age (American Academy of Pediatrics; Committee on Environmental Health, 2005, Chandran 

and Cataldo, 2010), a minimally invasive technique such as DBS sampling offers many 

advantages for obtaining a representative blood sample. Micro-sampling of blood for Pb 

determination in DBS was first reported in the early seventies (Delves, 1970, Cernik and Sayers, 

1971). Although since then, many reports have been published on the determination of Pb in 

DBS, this approach has also been the subject of controversy, given the risk of contamination that 

may take place, as opposed to blood collection by venipuncture (Verebey et al., 1991, Stanton et 

al., 1999, Moyer et al., 1999, Verebey, 2000, Moyer et al., 2000, Stanton et al., 2000). Indeed, 

given the ubiquitous presence of Pb in the environment, special care has to be taken to avoid 

contamination at every step, from paper handling, sampling, and drying, over transport to 

analysis. More specifically, falsely elevated Pb concentrations may result from contamination by 

Pb present on the skin (thus necessitating suitable cleansing before sampling) and/or by improper 

paper handling (El-Hajjar et al., 2007, Moyer et al., 1999, Moyer et al., 2000). In contrast to a 

controlled clinical environment, in which the issue of contamination can be dealt with from 

sampling to analysis, one has to be aware that DBS sampling ‘on-field’, with less control on pre-

analytical variables, potentially suffers from an increased risk of contamination. Yet, especially in 

developing countries, where studies have 
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shown that the threshold limit of Pb poisoning is exceeded in a large percentage of children (Shen 

et al., 1996, Ahamed and Siddiqui, 2007, Zhang et al., 2009), the lack of resources renders DBS 

sampling one of the most feasible ways for screening large populations (Shen et al., 2003). 

Sampling can be done on-site by a relatively untrained collector and samples can be sent by mail 

to an analytical laboratory. To correct for possibly inhomogeneous Pb distribution on the filter 

paper, analysis of 5 replicates (3.2-mm punches obtained from a single 50- l blood spot) has 

been recommended by Resano and colleagues (Resano et al., 2007). However, in practice, blood 

spots often correspond to smaller blood volumes, which may limit the number of punches and/or 

may pose a problem when larger punches (e.g. 6 or 6.35 mm diameter) are to be analysed (Peck 

et al., 2009). The Pb concentrations determined in DBS have been shown to be independent from 

the volume spotted and from the site of punching (excluding the area near the perimeter, where 

concentrations are higher owing to a higher amount of red blood cells). Moreover, a good 

correlation was found between Pb concentrations in DBS and those in venous blood (El-Hajjar et 

al., 2007, Resano et al., 2007). DBS obtained from subjects with strongly deviating haematocrit 

values, however, may give rise to discordant results (El-Hajjar et al., 2007).  

Apart from Pb, also other toxic metals, as well as elements of clinical or forensic interest, have 

been determined (or have been shown to be detectable) in DBS, including As, Ba, Be, Bi, Ca, Cd, 

Co, Cr, Cs, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Rb, S, Sb, Se, Tl, V and Zn (Lombeck et 

al., 1989, Chaudhuri et al., 2009, Langer et al., 2010, Hsieh et al., 2011, Shlosberg et al., 2011b). 

Quantification of several of these elements may lead to the generation of an individual’s 

“metallic profile”, from which exposure to a certain contamination source may be deduced 

(Goullé et al., 2010). An important obstacle for fully quantitative analysis of a substantial amount 

of elements, however, is the variable contribution by the filter paper (both within and between 

lots) and possible contamination, 
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requiring adequate control of blank filter paper. This implies the control of different lots of 

unexposed blank paper, directly from the manufacturer, as well as the control of paper (“internal 

blanks”) at some distance from the DBS. Yet, still, one cannot fully exclude the scenario in which 

contamination within, but not near the DBS took place (Chaudhuri et al., 2009, Langer et al., 

2010). The background values obtained from the controls can either be used for subtracting 

(possibly causing a negative bias) or can merely be used for evaluating the overall extent of 

contamination. Either way, replicate analysis of the same DBS (punch) and/or analysis of another 

DBS (punch) from positive cases is recommended to reduce the reporting of false positives 

(Cizdziel, 2007, Chaudhuri et al., 2009). In this respect, the technique of laser ablation ICP-TOF-

MS, providing a “line scan” with several data points per blank and per DBS, allows easy 

discrimination of potential random contamination (Cizdziel, 2007). Moreover, as reported by 

Cizdziel, the use of isotope ratio’s determined by this technique may also allow to discriminate 

contamination extraneous to the blood sample (Cizdziel, 2007). To overcome the major problem 

of contamination encountered in elemental analysis of DBS and, at the same time, to account for 

possible variations in haematocrit and/or volume spotted, normalization may be another possible 

future improvement. This can be done using one or multiple elements, having a narrow 

physiological distribution and/or being (almost) absent in blank filter paper. As suggested by 

Langer et al., one such candidate could be potassium (Langer et al., 2010). Finally, it is important 

to mention that decision-making in the case of environmental pollution (including the analysis of 

trace elements) is somewhat distinct from that in the case of drugs of abuse. Whereas for the 

latter any positive signal (above the LOD, LLOQ or a certain cut-off) can raise an alert, positivity 

for the former can in many cases be considered as ‘normal’, with only levels exceeding a certain 

threshold warranting further follow-up. 
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Conclusion and Future Perspectives  
DBS sampling is being applied in a wide range of applications in toxicology, covering fields as 

toxicokinetics, epidemiology and environmental and forensic toxicology. The analytes measured 

in DBS include therapeutic drugs, drugs of abuse, environmental contaminants and (trace) 

elements. Among the advantages associated with DBS sampling, the ease of collecting a 

representative sample with minimal discomfort is of particular importance for its application in 

toxicology. This holds true for sampling of animals, newborns, children, but also for adults, 

considering the potential of DBS sampling at home or in the context of DFSA, DUID or the 

follow-up of drug addicts. The stabilizing effect of DBS, largely preventing both ex vivo 

degradation and de novo formation of analytes, is another significant advantage associated with 

this sampling technique, facilitating sample handling and transport and often allowing long-term 

storage of samples. Despite these -as well as other- important advantages, also some remarks 

should be made with respect to the use of DBS for toxicological purposes. A first remark is the 

issue of contamination, which primarily (but not only) is a problem in the field of elemental 

analysis. Although this issue can be largely dealt with in a tightly controlled environment, 

contamination can never be excluded, especially in the case of ‘on-field’ sampling. Given the 

bioanalyst’s awareness of this problem, various avenues are being explored to increase the 

confidence one may have in a positive result. As mentioned above, these include e.g. the analysis 

of blank controls, the acquisition of multiple data points from a single spot or from replicate spots 

and/or attempts to normalize for e.g. haematocrit using one or multiple elements. A second 

remark is that for many analytes the influence of parameters such as haematocrit, volume spotted 

and site of punching has not been examined. Lack of knowledge about the influence of these (as 

well as other) parameters adds an additional, often neglected, factor of uncertainty to the reported 

analytical result. Thirdly, although promising results have been obtained in e.g. forensic 

toxicology, the approaches followed are often not 
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fully compatible with the collection of true ‘on-field’ capillary blood samples, requiring more 

extensive validation. Apart from these points of attention, requiring more work to be done, it is 

our feeling that the largest contribution of DBS sampling in toxicology may lie in the field of 

drug development. There, its implementation of ‘refinement’ and ‘reduction’, allowing “small 

sampling of small animals” closely follows the 3R principle and is even accompanied by 

improved data quality. Also in (pre)clinical studies, the implementation of DBS sampling may be 

an incentive, e.g. by facilitating patient recruitment. As this evolution will evidently lead to a 

large amount of samples to be analyzed, current efforts are now being focused on automation and 

rapid, direct analyses of DBS.  
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Analyte  Technique  Selected References  
(MARKERS OF) DRUGS OF ABUSE  
Amphetamine  LC-MS/MS GC-MS  Jantos and Skopp, 2011; Lauer et al., 2011  

Langel et al., 2011  
MDMA, MDA  LC-MS/MS GC-MS  Jantos and Skopp, 2011; Jantos et al., 2011b; Lauer et al., 2011  

Langel et al., 2011  
MDEA  LC-MS/MS  Lauer et al., 2011  
Methamphetamine  LC-MS/MS GC-MS  Lauer et al., 2011  

Langel et al., 2011  
Cocaine, benzoylecgonine 
and other metabolites  

RIA, GC-MS  
RIA, LC-MS  
LC-FLUO  
LC-MS/MS  
GC-MS  

Henderson et al., 1993  
Henderson et al., 1997  
Mercolini et al., 2010  
Sosnoff et al., 1996; Alfazil and Anderson, 2008; Lauer et al., 2011  
Langel et al., 2011  

Benzodiazepines  LC-MS/MS  
GC-MS  

Alfazil and Anderson, 2008; Havard et al., 2010; Thomas et al, 2010; Jantos and Skopp, 
2011; Lauer et al., 2011  
Langel et al., 2011  

Zolpidem  LC-MS/MS  Hudson et al., 2011; Lauer et al., 2011  
Zopiclone  LC-MS/MS GC-MS  Jantos and Skopp, 2011; Lauer et al., 2011  

Langel et al., 2011  
Ketamine and norketamine  LC-MS/MS  Moll et al., 2009  
Gamma-hydroxybutyric acid  GC-MS  Ingels et al., 2010; Ingels et al.,2011  
Opiates and metabolites  LC-MS/MS  

GC-MS  
Garcia Boy et al., 2008; Thomas et al., 2010; Marin et al., 2010; Clavijo et al., 2011a; 
Jantos et al., 2011a; Lauer et al., 2011  
Langel et al., 2011  



Buprenorphine and 
metabolites  

LC-MS/MS GC-MS  Thomas et al., 2010; Marin et al., 2010, Lauer et al., 2011  
Langel et al., 2011  

Methadone and metabolites  LC-MS/MS GC-MS  Clavijo et al., 2010, Lauer et al., 2011  
Langel et al., 2011  

Fentanyl and metabolites  LC-MS/MS  Clavijo et al., 2011b; Jantos et al., 2011a, Lauer et al., 2011  
Tramadol  GC-MS  Langel et al., 2011  
Tetrahydrocannabinol and 
metabolites  

LC-MS/MS GC-MS  Thomas et al., 2010  
Langel et al., 2011  

Cotinine  GC-MS  Spector et al., 2007  
Ethylglucuronide – 
ethylsulfate  

LC-MS/MS  Redondo et al., 2011  

Phosphatidylethanol  LC-MS/MS  Faller et al., 2011; Jones et al., 2011  

ENVIRONMENTAL CONTAMINANTS  
Benzene oxide  GC-MS  Funk et al., 2008  
Organochlorine pesticides  GC-ECD  

GC-HRMS  
Dua et al., 1996; Burse et al., 1997  
Shlosberg et al., 2011b  

Perfluoroalkyl compounds  LC-MS/MS  Spliethoff et al., 2008; Kato et al., 2009, Shlosberg et al., 2011b  
Polychlorinated biphenyls  GC-HRMS  Shlosberg et al., 2011b; Lu et al., 2011  
Polybrominated diphenyl 
esters  

GC-HRMS  Shlosberg et al., 2011b; Lu et al., 2011  

Perchlorate  IC-MS/MS  Otero-Santos et al., 2009  
Bisphenol A  LC-MS/MS  Leonard et al., 2011  
Cholinesterase Inhibitors  Cholinesterase 

activity 
measurement  

Heilbronn, 1953; Augustinsson and Heimburger, 1953; Augustinsson and Holmstedt, 
1965; Holmstedt and Oudart, 1966; Collombel and Perrot, 1970; Oudart and Holmstedt, 
1970; Augustinsson et al., 1978; Eriksson and Faijersson, 1980; Rhyanen et al., 1984; 
Hilborn and Padilla, 2004; Trudeau et al., 2007; Quandt et al., 2010  

 
BIOTOXINS  
Domoic acid  C-ELISA  Maucher and Ramsdell, 2005  
Brevetoxins  R-binding assay  

RIA  
C-ELISA  

Fairey et al., 2001; Woofter et al., 2003  
Woofter et al., 2003; Woofter et al., 2005  
Maucher et al., 2007  

Ciguatoxin  Cytotox. assay  Bottein Dechraoui et al., 2005  

(TRACE) ELEMENTS  
As  ICP-MS  Shlosberg et al., 2011b  
Ba  LA-ICP-MS  Hsieh et al., 2011  
Be  LA-ICP-MS  Hsieh et al., 2011  
Bi  LA-ICP-MS  Hsieh et al., 2011  
Ca  LA-ICP-TOF-MS  

SF-ICP-MS  
Cizdziel, 2007  
Langer et al., 2010  

Cd  ICP-MS  
SF-ICP-MS  
LA-ICP-MS  

Chaudhuri et al., 2009; Shlosberg et al., 2011b  
Langer et al., 2010  
Hsieh et al., 2011  

Co  LA-ICP-MS  Hsieh et al., 2011  
Cr  SF-ICP-MS  Langer et al., 2010  
Cs  SF-ICP-MS  Langer et al., 2010  
Cu  LA-ICP-TOF-MS  

SF-ICP-MS  
LA-ICP-MS  

Cizdziel, 2007  
Langer et al., 2010  
Hsieh et al., 2011  

Fe  LA-ICP-TOF-MS  
SF-ICP-MS  

Cizdziel, 2007  
Langer et al., 2010  

Hg  ICP-MS  Chaudhuri et al., 2009; Shlosberg et al., 2011b  
K  SF-ICP-MS  Langer et al., 2010  
Li  SF-ICP-MS  Langer et al., 2010  
Mg  SF-ICP-MS  

LA-ICP-MS  
Langer et al., 2010  
Hsieh et al., 2011  

Mn  LA-ICP-MS  Hsieh et al., 2011  
Mo  SF-ICP-MS  Langer et al., 2010  
Na  SF-ICP-MS  Langer et al., 2010  
Ni  SF-ICP-MS  

LA-ICP-MS  
Langer et al., 2010  
Hsieh et al., 2011  

P  SF-ICP-MS  Langer et al., 2010  



Pb  AAS  
GFAAS  
SS-GFAAS  
ICP-MS  
LA-ICP-TOF-MS  
SF-ICP-MS  
LA-ICP-MS  

Cernik et al., 1971; Verebey et al., 1991  
Shen et al., 2003  
Resano et al., 2007  
El-Hajjar et al., 2007; Chaudhuri et al., 2009; Shlosberg et al., 2011b  
Cizdziel, 2007  
Langer et al., 2010  
Hsieh et al., 2011  

Rb  SF-ICP-MS  Langer et al., 2010  
S  SF-ICP-MS  Langer et al., 2010  
Sb  LA-ICP-MS  Hsieh et al., 2011  
Se  AAS  

ICP-MS  
Lombeck et al., 1989  
Shlosberg et al., 2011b  

Tl  LA-ICP-MS  Hsieh et al., 2011  
V  LA-ICP-TOF-MS  Cizdziel, 2007  
Zn  LA-ICP-TOF-MS  

SF-ICP-MS  
LA-ICP-MS  

Cizdziel, 2007  
Langer et al., 2010  
Hsieh et al., 2011  



 
Table 1. Overview of the analytes discussed in this review, with referral to the utilized analytical 
techniques.  
Abbreviations: AAS: atomic absorption spectrometry; C-ELISA: Competitive enzyme-linked 
immunosorbent assay; GC-ECD: Gas chromatography with electron capture detection; GC-HRMS: Gas 
chromatography with high resolution mass spectrometric detection; GC-MS: Gas chromatography 
with mass spectrometric detection; IC-MS/MS: Ion chromatography with tandem mass spectrometric 
detection; ICP-MS: Inductively coupled plasma mass spectrometry; LA-ICP-MS: Laser ablation 
inductively coupled plasma mass spectrometry; LA-ICP-TOF-MS: Laser-ablation inductively coupled 
plasma time-of flight mass spectrometry; LC-MS: Liquid chromatography with mass spectrometric 
detection; LC-MS/MS: Liquid chromatography with tandem mass spectrometric detection; R-binding 
assay: Receptor-binding assay; RIA: Radio-immuno assay; SF-ICP-MS: Sector-field inductively coupled 
plasma mass spectrometry; SS-GFAAS: solid sampling graphite furnace atomic absorption 
spectrometry  

 


