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2 Bogaert

Abstract—Novel formulas are presented that allow the rapid estonatif

the number of termg. that needs to be taken into account in the translation
operator of thevectorial Nondirective Stable Plane Wave Multilevel Fast
Multipole Algorithm (NSPWMLFMA). This is especially imptant for low
frequencies, since the needed for error-controllability can be substantially
higher than the. required in the scalar case. Although these formulas were
originally derived for use in the NSPWMLFMA, they are eqyaliseful in

at least three other fast matrix multiplication methods.

1. INTRODUCTION

When integral equations for electromagnetic scatteriegtaratively solved,
the computationally most intensive step is the multiplaratof the system
matrix with a vector. In essence, this is the calculatiorheffields generated
by a collection of sources. When there a¥esources andV points where
the fields need to be calculated (observation poiniéy, operations are
needed. In the past, many fast matrix multiplication mesh@dMMMs) have
been developed to perform this task more efficiently, uguatiucing the
complexity toO (N) or O (N log N) [1-7]. This reduction of the complexity
is achieved by subdividing the geometry of the problem intoiexarchy
of boxes (usually called a tree) and invoking a decompasitibthe Green
function to let the boxes interact as a whole. Figure 1 shawh & possible
configuration of boxes.

Because a decomposition of the Green dyadic is used insfetick o
Green dyadic itself, an error is introduced, making FMMM#&drently
approximate. Therefore, it is of the utmost importance ttiat error

Figure 1. An example box configuration.
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introduced by decomposing the Green dyadic is tightly abiew. This
error-control takes different forms in different FMMMs. fFexample, in
multipole or Taylor series decompositions, the number whgein the series
is increased to obtain a higher accuracy. In plane wave HasgdMs, the
number of radiation pattern samples is increased. Howswene FMMMs
have certain commonalities. More specifically the MultdelFast Multipole
Algorithm (MLFMA), its multipole-based equivalent [8], ¢hNondirective
Stable Plane Wave Multilevel Fast Multipole Algorithm (NSRILFMA)
[9, 10] and the pseudospherical harmonic-based FMMM [11-at8 all
based on the following fundamental addition theorem

L

h((]2) (k"l") ~ Z(_l)lTl,l(rAer)I(lvlf‘A>lvlfaT)v (l)
=0

with I(l,7 4,1, 77) given by (B2)from Appendix B and

20+ 1)(2I' +1)
47

Here k is the wavenumberrr = Ry — R; is the translation vector and
r4 = 19 — 171 — 77 IS called the aggregation vector. Normalized vectors are
denoted with a hat, and the norm of a vector is denoted by tie sgmbol

as the vector but non-bold, so for example = 7474 andry = rprp.
Also, r = r4 + rp is the sum of the aggregation and translation vector

andj; (-) and hl(2) () are the spherical Bessel and Hankel functions. Since
these four FMMMs all derive from the same addition theordmirtnumber

of multipoles or sample points can be obtained from the &tion bound

of (1), i.e. L. For example in the MLFMA, the number of plane waves is
(L 4+ 1)(2L + 1) while in the NSPWMLFMA the number of plane waves
is (L + 1)2. In the pseudospherical harmonic-based FMMM, the maximum
order of the pseudospherical harmonicglisnd finally, in the multipole-
based FMMM, the maximum order of the spherical Hankel fumdiin the
translation matrices i&. Therefore, an efficient and simple way to estimate
L is very useful for at least four FMMMg:irst of all, having an estimate for

L is very valuable from a theoretical point of view for undarsting of the
error behavior of an FMMM. Also, it is useful in a solverlifis calculated
on-the-fly. Indeed, in such a solvéris usually determined by means of
a numerical testing approach, i.e. the truncation bouncettisasan initial
estimate, and then gradually adjusted until the error inestasting scenario
has been reduced to just below the target accuradyhis numerical testing
yields quasi-optimal results but can take a long time in #iasphase if the
initial estimate forL is not close to the final value. Therefore, if a good initial
estimate of the truncation bound can be found quickly, thise process can
be sped up by an order of magnitude. A considerable amouiterdture is

W (krr) i (kra) . 2

T (ra,rr) =
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devoted to finding dedicated formulas for initial estimabtés. in various
frequency ranges. For example, the excess bandwidth farmprgsented in
[14] provides an initial estimate for the high-frequency-jitase. In[15,16],
the excess bandwidth formula is supplemented with additifmmmulas such
that L. can be estimated for medium frequencies also. For low frecjas
(LF), dedicated formulas can also be derived.

However, these approximate formulas only guarantee theestegd
relative precision when evaluating the Green function. a@¥e if serious
cancelation occurs between two evaluations at slightlfedint positions,
the final result can have a much higher relative error. Uunfately, this
is exactly what happens when evaluating the electric andnetegGreen
dyadic arising from Maxwell's equations. Indeed, the sgadierivatives
occurring in the electric and magnetic Green dyadic can teepreted as the

) )
limit of (1) =" (k”"" Ad]) for vanishingA. The vectord is the direction

in which the derlvatlve is taken. Clearly this process ésis@rious numerical
cancelations.

The aim of this paper is the development of formulas for thienedion
of L when evaluating the electric and magnetic Green dyadic.theHF
case, this work has already been accomplished in [8] (sees[8392).
The conclusion was that the scalarhad to be increased by and 2 for
the magnetic and electric Green dyadic respectively. Hewedwo the best
knowledge of the authors, no work has to this date been haulighat
treats theL determination in the medium and low frequency ranges for the
magnetic and electric Green dyadic. In the following, it shown that
simply addingl or 2 to the scalai. does not lead to a controlled error.

To avoid developing a patchwork of approximate formulas;heaf
them valid in a specific frequency range, we will not extenel éistimation
formulas from the literature to the dyadic case but rathet §tom a slightly
modified version of an approach proposed in [9]. This apgreaarks for all
frequencies, hence we only need to extend one formula toythdic case.
In the slightly modified version of the approach in [2]js chosen such that
the relative error on (1), defined by

ES(L rAarT) —
‘h(z (kr) — Sfo(— )TII(TAJ‘T)I(ZJA“AJJA“T)‘
1 (kr)

: ®3)

is smaller than the target accuraey The values forr4 and 7 must be
chosen such that any other choice would result in a smalier,ére. they
must be the worst case scenario. In practice, it turns otitttieaerror £
is maximal if r4, andrr are aligned (and otherwise arbitrarily oriented),
because then the Legendre polynomial in (B2) attains themaamplitude.
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As a consequence;s, = rge, andrp = rpé, is usually a very good
choice, withrz the maximal value-4 can attain, i.e. /3 times the side
of the boxes in Figure 1. Clearly, checking at which value Kothe error
(3) drops below the target accuracy is an algorithn©gfL.) computational
complexity, which is very computationally cheap. The residtained by
means of formula (3) provides an excellent estimatd_furat can, if wanted,
be refined using a numerical testing scheme.

The layout of this paper is as follows: In Section 2 the elecand
magnetic Green dyadics are briefly introduced, along widir thlane wave
representation as used in the MLFMA. In Section 3, the catioel that leads
to the loss of precision will be more thoroughly demonsttatiaking the
electric field integral equation (EFIE) as an example. Il al$o be shown
that it is possible to compensate for the deleterious effettcancelation
by using a highet than the one obtained from equation (3). In Section 4,
formulas similar to (3) are presented for the approximaterd@nation of
this newL. Finally, in Section 5 some numerical results will be repdrand
discussed.

It will be assumed that the reader is familiar with the MLFM#&related
techniques. For a detailed discussion of the method we tef@®] and [8].
Also, ae’“! time dependence will be assumed and suppressed throughout
this paper.

2. THE VECTORIAL Multilevel Fast Multipole Algorithm

The Green function of the scalar Helmholtz equation is glygn

e _ gk,
Go(r) = e _Eho (kr), 4)
and satisfies
V2Go(r) + k*Go(r) = —6(r). (5)
The electric and magnetic Green dyadics used in this papagieen by
Golkr) = |1+ ~vv |12 (kr) (6)
e - ]{72 0 )
and
1
Gun(kr) = 2V x [1hg” (k)] - (7)

In the abovel is the3 by 3 identity matrix.
We now turn to constructing plane wave integral represemsitfor
the Green dyadics (6) and (7). For this, the veatds again seen as the
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sum ofr4 andrr. The scalar MLFMA is based on the following integral
representation of the spherical Hankel function of the sddond
@ ()~ L P —ikkera 1d
hy” (kr) = 1 T (krr,k)e dk, (8)

™ JSs

with the so-called translation operator defined by

L
T (krr, k) =" 5720+ VAP (krr) B(ir - k) - (9)
=0

The integral with subscripf, denotes integration over the unit sphere

R R 27 pm R
F(k)dk = / F((0,$)) sin 0d0dg, (10)
So 0 JO
with the wavevector
. cos ¢ sin 6
k(0,¢) = |singsind | . (11)
cos 0

Expression (8) is approximate because of the truncatioheo$éries in (9).

Following [8], substituting the integral representatioh tbe scalar
Green function (8) into (28) and (29) yields integral repraations of the
electric and magnetic Green dyadics

1 ~ ~ o~ D ~
Gelkr) = o | Tulkrr, k) []1 - kk} e~ IRRTA (R, (12)
2
and
G (k) ~ 4]7 ) Ty (krr, k) [1 x k| e Rradk, (13)
2

These expressions have been used in the literature to wonsgtrfully
vectorial MLFMA which uses only two radiation patterns facdé MLFMA
box [8].

For the HF case, the excess bandwidth formula can be adj[&t¢al
give anL that is appropriate for the vectorial case. For the LF casegher,
this adjustment is not sufficient.

3. CANCELLATION IN THE EFIE

To demonstrate the occurrence of numerical cancelatiomvilveonsider the
calculation of electric field integral equation (EFIE) nbattlements. These
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matrix elements are defined as
z], = / £ (7) - / Go(r — 1) - by (r')dSdS. (14)

with ¢,,(r) and b,,(r") the test and basis functions respectively. In this
section, we will use the familiar RWGs [17]. Due to the divaéarmity of
these functions, the EFIE matrix elements can be cast in tkedapotential

form
o= [ 16 &=, as'as
+ﬁ//[v‘tn<rﬂhé2 (k[[r = 7'|[) [V - b (r')] dS"dS.  (15)

The surface divergence of the RWGs consists of two adjacgrigular
patches on which an equal but opposite charge is uniformgyriluted.
The proximity of the two patches and the fact that they havemposite
sign causes a cancelation between the contributions fresettwo patches,
leading to a severe deterioration of the accuracy.

As a numerical example, consider the RWGs depicted in Figuiehe
boxes depicted in solid lines have a totall6fRWGs associated with them,
i.e. 2 RWGs on every vertex. For example, on the vertex with locatio
3 [é. + &, + &.], the first RWG is defined by the triangles (a1, a2, a3)
and A (as,as3,a4), While the second RWG is defined by the triangles
A (al, as, a4) andA (al, as, a4), with

a; = ?fc(eo + 09, o), (162)
as = gk(&o, b0 + J4), (16b)
as ? (6o, do — 6g), (16c)
ay ﬁ’%( o — dg, ¢0), (16d)
0y = arccos (%) , (16e)
b0 =7, (16f)
g =0y = 0.2 (160)

In this way, the two RWGs are sensitive to two orthogonal feelchponents.
In addition, all the RWGs are on the edge of the range wheradiion
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theorem (1) is supposed to have controllable accuracy,eimay provide a
suitable worst case testing scenario.

The RWGs in the lower box will be taken as the basis functiop&r’)
while the RWGs in the upper box will be the test functiohgr). The
EFIE matrix elements are both computed exactly using (6) usidg the
NSPWMLFMA for the casé = 0.01m~!. To evaluate the worst-case error
between the two matrices, we will define an error associatddarso-called
vertex pair. Such a pair consists of one of &wertices of the lower box and
one of the8 vertices of the upper box. Obviously, there are in tétakuch
vertex pairs. Also, there are two RWGs located at each vertkich allows
us to compute & x 2 EFIE matrixZ,,, ,,, for each vertex pair{; andns
denote the indices of the two vertices in their respectiveebp The error on
this EFIE matrix will be defined as
ZNSPWMLFMAn1 e — 7Exact

ni,n2

Dgn,m — H (17)

‘ ‘ZExact

ni,n2 H

The worst-case error will now be evaluated as the maximuior ewer all
possible vertex pairs

De = max,, n, (D2V"?). (18)

Figure 3 shows the actual calculated error on the matrix badptedicted
error E5(L, \/§éz,3éz) for various values ofL. Clearly, the actual error
decreases much more slowly than the error predicted by (8 fact that we
used the mixed-potential formulation of the EFIE is not tlaeise of this,
since numerical experiments show that the slow convergstiteoccurs
when the dyadic formulation is used. This leads us to comclindt the
electric Green dyadic itself converges more slowly to theem result, and
that a suitabld. can be found for which the target accuracy is obtained.

In the next Section we will search for a formula of similar plitity as
equation (3) for the determination &f for the electric and magnetic Green
dyadic. For some basic mathematical properties of the Larggrolynomials
and spherical harmonics, to be used in the sequel, the réeadeferred to
Appendix A.

4. DETERMINING L FOR THE DYADIC Green functions

Using the orthogonality of the spherical harmonics (A8) #mal spherical
harmonic addition theorem (A9), the integral represeotail8) is easily
shown to reduce to (1). Clearly, i is chosen large enough such that (1)
has converged with a toleranegthen (8) has also converged with the same
accuracy. In practice, there are other sources of errois asamumerical
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Figure 2. The used RWGs.

interpolation error, integration error, roundoff errotc.e However, these
errors can always be assumed to be of the same magnituele lasleed,
if one source of error would greatly dominate, it would be adageous
to make the other sources of error larger as well, since dsingeduces
the computational burden. Therefore we will assume thegetlwther error
generating mechanisms are not dominant. Under this assmiitis clear
that (3) yields a reasonably good approximationfan the scalar case.

In the vectorial case the following question naturally esis can the
integral representations (12) and (13) be reduced to aresgion as simple
as (1) ? In the following, this question will be answered ie #ifirmative.
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o Calculated erroD,
— Predicted erro
_lo T T T T L L L |
0 5 10 15 20 25 30 35 40
L

Figure 3. The calculated error on the electric Green dyadic, givengn.E
(18), does not converge as predicted by formula (3).

4.1. The magnetic Green dyadic

Equation (13) is a plane wave decomposition of the magne&eGdyadic.
Using the well-known Jacobi-Anger expansion of a plane wave

e—jkk-rA _ Z(2l + l)j_ljl (]{TT‘A) Pl(];: . ')A“A) s (29)
=0

and the explicit expression of the translation operatqrtf@) following result
is easily obtained

L
Gu(kr) ~ 1 x Y (-1)'GY, (20)

with G! given by

(2 0 jl U'+1
G, = 2L+ )y~ (krr) Y
I'=0

x i (kra) / PZ(T‘T k:) k:Pl/(k: rA) dk. (21)

(2 +1)
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In appendix B, the remaining integral has been evaluatelytaaly. The
result is given by (B3) and allows the elimination of the sum{d1)

Gl, = m1(ra,ro) (L + 1,7 4,1, 77)
—T—1(ra, rr) (1= 1,7 4,1, 77). (22)

4.2. The electric Green dyadic

For the plane wave representation of the electric Greeniclygigen in (12),
we can again use expansion (19) to evaluate the integralextes s

L

Ge(kr) ~ > (-1)'GL, (23)

=0

with
GL = i G e (ray rr)
I'=0
X /S (g k) [0~ kk] P (k- 7.4) dk. (24)

The remaining integral can again be evaluated analyticallyeit through
significantly more effort. The result is given in appendix(BZ) and (B10))
and again allows to reduce the infinite sum in (23) to a finite on

GL = T gsa(ra, ro)lpy (1 + 2,74, 1,77)
+ Tl,l(rAer) [I(lvl’%AJv,f‘T)]]- - I];;];;(L"%Av l>'f‘T)]
+ Tl,l—2(7“A77“T)|fcfc(l —2,74,0,77). (25)

4.3. Convergence Criteria

Checking whether series (20) or (23) have converged to tlescpbed
precision requires a way of comparing the right and left haitgé. The
problem is that we are dealing with dyadics, and it is not irdiaely
clear which component to choose for calculating the erroideéd, some
components may become exactly zero, such that the relative @& one
component is meaningless. To avoid this problem we will igerhatrix
2-norm, i.e. the largest singular value, to test the converge For more
information about the definition of the matrix norm, see [f8m page54
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onwards.Now define the following measures of error

Gnlkr) — 1 x SEA(-1)G,
Enlbrarr) = Gl L e
Golhr) ~ Sho(~1)'GL
Ee(L,ra,rr) = HGE(]:”"())H (27)

The matrix norms occurring in these expressions can be cupusing
SVDs of the3 by 3 matrices. Surprisingly enough, however, it is possible to
find simple and explicit formulas for the matrix norms in trendminators.
Indeed, the derivatives occurring in (6) and (7) can be etatliusing (4)
and the recurrences for the spherical Hankel functionstheoelectric Green
dyadic this yields [8]

Ge(kr) = B (kr) Kz—j + i) i

kr — (kr)?
n (1_%}_@) (11—7%;«)], (28)

while the magnetic Green dyadic becomes
_ @ e
G (kr) = hy (kr) [€p€s — €géy] . +7), (29)

with 7, e4 and ey the unit vectors in spherical coordinateBhe (unsorted)
singular values of the Green dyadics are easily found fragsdrformulas,
since the singular values of a matAxare nothing else than the square roots
of the eigenvalues oA A. By means of (28) we get the singular values of
the electric Green dyadic

oi(kr) =o5(kr) = , (30)

(2) J 1
8w (- )
W (kr) <% + ﬁ) , (31)

while for the magnetic Green dyadic, the following singulalues are
obtained

o5 (kr) =

of'(kr) = oy (kr) = : (32)

kr
oy'(kr) = 0. (33)

hy (kr) <i +j)
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From this, the denominators in (26) and (27) are found to be

|G (kr)[| = 01" (kr), (34)
[|Ge(kr)|| = max (of (kr), 05 (k) - (35)

The matrix norm in the numerator of (26) can also be found auith
using SVDs. Indeed, the matrix norm of an expression of thefb x v,
with v a vector, is simply the vector norm of Clearly this allowsF,, to be
calculated more easily as

h? (kr) (i +3) = Slo(-1)'Gh|
of*(kr) |

The matrix norm in the numerator of (27) should be computéuube
SVD of the3 by 3 dyadics, as no analytical simplification was found by the
authors. However, if one allows an error of a fact@, the Frobenius norm
||| » (see [18] on pagé5) may be used, since it is an equivalent norm¥or
by 3 matrices with bounds

E(L,ra,rp) = (36)

1
%HAHFSHAHSHAHF' @37)

5. NUMERICAL RESULTS

As afirst test, thd. obtained using formulas (3), (26) and (27) are compared
to the excess bandwidth formula and the formula present§tbin Figure

4 shows the required as a function of the wavenumber. The parameters
for the L calculation arer, = v/3é,, rr = 3é, and the target accuracy
ise = 107°. It can be seen that, for low frequencies, formula (3), the
excess bandwidth formula and the approach from [16] givierdift results.
The difference with the excess bandwidth formula is caugethé fact that
the excess bandwidth formula is essentially a high frequersymptotic
approximation forL. The difference with the approach in [16] is caused
by the fact that it is focused on the MLFMA. Therefore it hasdtml with

the MLFMA's inherent numerical instability (low frequendyreakdown),
which influences the obtainefl. For high frequencies, all thé curves
approximately go to the same asymptotic limit, i.e. the egdeandwidth
formula.

The convergence formulas (26) and (27) will now be numdsid¢akted
using the benchmark box configurations shown in Figure 5. [Otrwes
have sides ofm. The box configuration on the left depicts the worst-case
interaction when two buffer boxes are used, whereas thegroafion on the
right is the worst-case interaction when only one buffer sonsed. Both
situations will be studied here.
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10 : :
—— Scalar Green function
-~ Magnetic Green dyadic
___Electric Green dyadic
Excess bandwidth
,||——Approach from [16]
10°} 1
S T
10' 1
100 L L L L
107 10! 10° 10" 10°

Wavenumbek

Figure 4. The requiredL as a function of the wavenumber. The line for the
approach from [16] is only shown for wavenumbers for whicé BMLFMA
does not suffer from the low-frequency breakdown (accgrdan[16]).

To compute the error, three elementary dipole sources asdradrs
were put on the vertices of the source and observer boxegimd-(5). The
electric and magnetic fields generated by the source dipoldéke observer
dipoles were computed both directly and by means of the NSRANA
(as a function ofL). Since these interactions are nothing else than the
components of the electric and magnetic Green dyadic, itossiple to
compute the following error measures:

Gun(n1,m2) — GNSPWMLEMAG,, ) ‘
Fm(L7n1’n2) = HG (nl nZ)H 7 (38)

Ge(n1,m2) — GENSPWMLFMA(”MHQ)‘
Fe(L7n1’n2) - HG (nl nZ)H ’ (39)

wheren; andns are the indices of the vertices in the source and observer
box. To get the worst-case error, the maximum error is taken

Fn(L) =MaXy; n, [Fn(L,n1,m2)], (40)
F.(L) =MmMaX,, n, [Fe(L,ny1,n2)]. (41)
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Figure 5. The used benchmark box configurations. The arrows on the
vertices of the lower and upper boxes are the dipoles soamg®bservers
respectively.

A similar error measure for the scalar case is also introdluce
Go(ni,na) — G(l)\lSPWMLFMA(
Go(ni,n2)

n17n2)

(42)

Fy(L) =max,, n,

In Figure 6 the calculated error is shown for the two buffex base. The
predicted errotf, (L, v/3é., 3é.) is also plotted. The valug = 0.01m=!
was used for the wavenumber. It is clear that formulas (26)(@d) much
better capture the convergence behavior of the magnetiel@cottic Green
dyadic than formula (3). This better approximation of thestbehavior also
translates into better estimates for For example, if one wants an accuracy
of 1074, then (3) would implyL =~ 16, while (27) impliesL ~ 31. From
Figure 6, it is seen thal. ~ 30 would be chosen ifL were determined
numerically, which is very close to the result obtained gg@v).

In Figure 7, the same analysis is performed, with the solergifice
being the number of buffer boxes used in the NSPWMLFMA. As ban
seen, convergence is very slow. In fact, the result dirgrges before slowly
starting to converge. The slow convergence is not due to 8BR_RWMLFMA,
since formulas (26) and (27) also predict this behavior.ait also be seen
that the scalar Green function converges slowly, but sieadlhe slow
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Figure 6. Convergence as a function of the truncation bolrfdr the scalar
Green function, magnetic Green dyadic and the electrici@dgadic for the
case where two buffer boxes are used.

convergence of the scalar Green function can be traced baoble tfact that
the spheres circumscribing the source and observer boxsaliooch. A
quick analysis shows that applying derivatives to the s¢afeen function to
obtain the electric or magnetic Green dyadic adds factaypgstional toL
(for the magnetic Green dyadic) @F (for the electric Green dyadic) to the
error. These factors are the cause of the diverging errcavb@hfor small
L. For largeL, the exponential convergence as a functior.a$é regained,
but by thenL is impractically large. Therefore, we can conclude thahgisi
an FMMM based on spherical modes for the vectorial (dyadisecat low
frequencies and using only one buffer box leads to a hugeadtiom bound
L or, alternatively, to inaccurate results.

The behavior of the error as a function of the wavenumber lss a
been investigated. Figure 8 shows the calculated and peeldicrors for the
electric Green dyadic, magnetic Green dyadic and scalagrGranction for
L = 20, using the dipole arrangement with two buffer boxes fromuFeg
5. As can be seen in Figure 8, the predicted and calculatedsenave a
very similar behavior which further validates (27) and (28 interesting
phenomenon is the 'dip’ that occurs aroukd= 4m~! in the error curves
for E., F., E,, andF,,. It appears that, for low frequencies, the truncation
bound L decreases with increasing frequency. The same effect can also be
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—+ Calculated errof
—o- Calculated error,
- - Calculated errof,
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Figure 7. Convergence as a function of the truncation boiufdr the scalar
Green function, magnetic Green dyadic and the electricagadic for the
case where only one buffer box is used.

observed in Figure 4, where the requirédfor the magnetic and electric
Green dyadic exhibits a dip arouthd= 4m~!. Up to this point, the authors
have found no physical or intuitive explanation for this pbeenon.

6. CONCLUSION

Novel formulas were presented that allow the rapid estwnadf the number

of terms in the translation operator of the vectorial NSPVAWA. In
contrast to existing estimates for the scalar case, thesaufas are tailored

to the Green dyadic that is used (electric or magnetic). Sioneeesting
results were obtained. For example, it is shown that thecation bound
obtained from the scalar case is too low when used for theokiattcase

at low frequencies Also at low frequenciesit turns out that the electric
Green dyadic requires a higher truncation bound than thenetagGreen
dyadic. Hence, when the NSPWMLFMA is used on the EFIE or MFIE
at low frequenciesthese novel estimates yield a much better error control
than estimates for the scalar cagdso, these novel estimates are valuable
from a theoretical point of view for understanding of theoefpehavior of
the NSPWMLFMA.In addition, the use of these estimates is not limited to
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— Calculated errof

o I| -o- Calculated errof;,

10" 4 _ . _ Calculated errof. ot
Predicted errof,

10 'l - - Predicted errof,, 21/
- __Predicted errof, & /

Wavenumbek

Figure 8. The predicted and calculated error fbr= 20 as a function of
the frequency for the scalar Green function, magnetic Gdyawlic and the
electric Green dyadic.

the NSPWMLFMA, since they are useful in at least three othst matrix
multiplication methods.

APPENDIX A. SPHERICAL HARMONICS

The Legendre polynomialB;(¢) are defined as

Pt = o~ 1) (A1)
YT ’
and satisfy the following recurrence relations
20+ 1)tR(t) = (I + D) Pa(t) + 1P (t), (A2)
d
U+ 1)R(t) = T [Pra(t) — P1(t)],
= Pl,+1(t) - Pl/—l(t) : (A3)
The derivative of the Legendre polynomial is denoted as
d
Pl(t)=—=R(t). (A4)

dt
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For the stable numerical calculation of the Legendre patyiats, recurrence
(A2) should be used with starting valugs(t) = 1 and P, (t) =t

The spherical harmonics ,,, ( ) are defined as

Yim (k) = (- 1)”’”";”' (k. +]k) 7 (k.) . (A5)

Here,l andm are integers such thagt [0, co] andm € [, (]. Furthermore

Kim= A6
b (I +m) (A6)
and
m dl+m 2 !
7; (t) = dtl+m {1 —t } ) (A7)
The spherical harmonics satisfy the following orthogagaielation
/ Yll m1 Ylg mo (k) d’% = 51171257711,7712' (A8)

The spherical harmonics also satisfy the so-called spdlefi@armonic
addition theorem

Pk ko) = %4—11 i Vi (k) Yim (k2) - (A9)

APPENDIX B. USEFUL INTEGRALS

In this Appendix, the necessary mtegrals for this papegaen. For brevity,

the dot products 4 - 7, 74 - k andrr - k will be denoted as, v4 andyr
respectively. The first integral is

I(la,#a, by, 7)) = /5 P, () P, (14) dke. (B1)
2

By means of the spherical harmonic addition theorem (A9) &mel
orthogonality (A8) of the spherical harmonics, the follogiresult is easily
obtained

47

Ip mpl,q (7) - (B2)

I(la, 74,17, 77) =61,
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Remember that = 7 4 - 7. The second integral of interest is
Lilaiateir) = [ Po(or) kP () dk (83)
2

This integral could be readily evaluated using the sphEn@amonic addition
theorem and the recurrences of the spherical harmonicsevtavthe result
still contains a sum a2/ + 1 terms, with each term containing a complicated
square root. Instead we will derive a closed formfgr As a starting point,
the following can be shown by means of (A3)

[ — i) - kP, (74)
1

= g1 VAL () — Pua(a)l, (B4)

whereV 4 = |35, dy%, 12-|. Since the dot product af, andk in the left

hand side can be absorbed into the Legendre polynomial bpsmaaA2),
the following is found

(204 + 1)kP,, (74) =
ValPui1(va) — Pry—1(va)l
+Pal(la+1)Pyv1(va) +1aP,—1(ya)] - (B5)

This result, combined with (B2), allows us to construct thkofving closed
form expression fof ;,

47
20 +1)(2l4 +1)

{0+ 1)004 110 + 140,10 74 Pi (7)

+ Barrir = a10] VaPr(0) ). (B6)

I(la, 70,17, 77) = (

This expression is not very symmetrical but can be simplifisidg
VAP, (v) = [Fr — vt a] P.(7) (B7)

and the various recurrences of the Legendre polynomial® rébult then
becomes

Ik(lAa If’Aa lT7 'f'T) =
rrP () —7aP/ (7)

4
0L+ D2 + 1)

[5lA+1,lT _5lA,lT+1] . (B8)
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The third and final integral is
liz(la, 74, lp,77) = /5 Py, (vr) kk Py, (v4) dke (B9)
2

The rightmostl% can again be removed by means of expression (B5).
The remaining integral is expressible in terms Kf(l4, 7 4,17, 77) and
derivatives thereof. After a lengthy calculation and vasigimplifications,
the following symmetrical form is obtained

47
la+lp—1)(a+1lr+1)(la+1r+3)

< { [Prpr Pl () +#af AP, (7)]
X (014042 = 2004 17 014 +2,07]
+ [P a4 + T aTT]
% 81000 (VP () + PL(7))
—Oiair+2P 1 () — 51A+2,1TP/;+1(7)}
+ 1 (80,0 (0P, (1) = P (7))
—0uir+2Pir 1 (7) — 5lA+2,lTPl/A+1(7)j| } (B10)

In (B2), (B8) and (B10), the first and second derivatives efltegendre
polynomials need to be evaluated. Calculating these coufatinciple be
done by means of the following recurrence

(1= )P (t) = =I(tBi(t) — Pra(1)). (B11)

However, this calculation is not numerically stable whea #ingument is

close to+1. For a fully stable and robust calculation 8f(¢) and P/ (¢)

for [ € [0, L], all the Legendre polynomialB(¢) for [ € [0, L — 1] should
be calculated first. Then recurrence (A3) can be used tordeterthe first
derivatives. For the second derivatives,

(20 + D P/(t) = Py (t) = P4 (1), (B12)

lir(la, 7 a,lp,7r) = (

can be used. Itis worthwhile to point out that using theskriepies, both the
Legendre polynomials and their first and second derivatiaesbe calculated
in O (L) operations. An obvious consequence is that calculatinfy, and
iz fori4 < Landly < L takes onlyO (L) operations.
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