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Abstract—Novel formulas are presented that allow the rapid estimation of
the number of termsL that needs to be taken into account in the translation
operator of thevectorial Nondirective Stable Plane Wave Multilevel Fast
Multipole Algorithm (NSPWMLFMA). This is especially important for low
frequencies, since theL needed for error-controllability can be substantially
higher than theL required in the scalar case. Although these formulas were
originally derived for use in the NSPWMLFMA, they are equally useful in
at least three other fast matrix multiplication methods.

1. INTRODUCTION

When integral equations for electromagnetic scattering are iteratively solved,
the computationally most intensive step is the multiplication of the system
matrix with a vector. In essence, this is the calculation of the fields generated
by a collection of sources. When there areN sources andN points where
the fields need to be calculated (observation points),N2 operations are
needed. In the past, many fast matrix multiplication methods (FMMMs) have
been developed to perform this task more efficiently, usually reducing the
complexity toO (N) orO (N log N) [1–7]. This reduction of the complexity
is achieved by subdividing the geometry of the problem into ahierarchy
of boxes (usually called a tree) and invoking a decomposition of the Green
function to let the boxes interact as a whole. Figure 1 shows such a possible
configuration of boxes.

Because a decomposition of the Green dyadic is used instead of the
Green dyadic itself, an error is introduced, making FMMMs inherently
approximate. Therefore, it is of the utmost importance thatthe error
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Figure 1. An example box configuration.
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introduced by decomposing the Green dyadic is tightly controlled. This
error-control takes different forms in different FMMMs. For example, in
multipole or Taylor series decompositions, the number of terms in the series
is increased to obtain a higher accuracy. In plane wave basedFMMMs, the
number of radiation pattern samples is increased. However,some FMMMs
have certain commonalities. More specifically the Multilevel Fast Multipole
Algorithm (MLFMA), its multipole-based equivalent [8], the Nondirective
Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA)
[9, 10] and the pseudospherical harmonic-based FMMM [11–13] are all
based on the following fundamental addition theorem

h
(2)
0 (kr) ≈

L
∑

l=0

(−1)lτl,l(rA, rT )I(l, r̂A, l, r̂T ), (1)

with I(l, r̂A, l, r̂T ) given by (B2)from Appendix B and

τl,l′(rA, rT ) =
(2l + 1)(2l′ + 1)

4π
h

(2)
l (krT ) jl′ (krA) . (2)

Here k is the wavenumber,rT = R2 − R1 is the translation vector and
rA = r2 − r1 − rT is called the aggregation vector. Normalized vectors are
denoted with a hat, and the norm of a vector is denoted by the same symbol
as the vector but non-bold, so for examplerA = rAr̂A andrT = rT r̂T .
Also, r = rA + rT is the sum of the aggregation and translation vector
andjl (·) andh

(2)
l (·) are the spherical Bessel and Hankel functions. Since

these four FMMMs all derive from the same addition theorem, their number
of multipoles or sample points can be obtained from the truncation bound
of (1), i.e. L. For example in the MLFMA, the number of plane waves is
(L + 1)(2L + 1) while in the NSPWMLFMA the number of plane waves
is (L + 1)2. In the pseudospherical harmonic-based FMMM, the maximum
order of the pseudospherical harmonics isL and finally, in the multipole-
based FMMM, the maximum order of the spherical Hankel functions in the
translation matrices isL. Therefore, an efficient and simple way to estimate
L is very useful for at least four FMMMs.First of all, having an estimate for
L is very valuable from a theoretical point of view for understanding of the
error behavior of an FMMM. Also, it is useful in a solver ifL is calculated
on-the-fly. Indeed, in such a solverL is usually determined by means of
a numerical testing approach, i.e. the truncation bound is set at an initial
estimate, and then gradually adjusted until the error in some testing scenario
has been reduced to just below the target accuracyε. This numerical testing
yields quasi-optimal results but can take a long time in the setup phase if the
initial estimate forL is not close to the final value. Therefore, if a good initial
estimate of the truncation bound can be found quickly, this entire process can
be sped up by an order of magnitude. A considerable amount of literature is
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devoted to finding dedicated formulas for initial estimatesof L in various
frequency ranges. For example, the excess bandwidth formula, presented in
[14] provides an initial estimate for the high-frequency (HF) case. In [15,16],
the excess bandwidth formula is supplemented with additional formulas such
that L can be estimated for medium frequencies also. For low frequencies
(LF), dedicated formulas can also be derived.

However, these approximate formulas only guarantee the requested
relative precision when evaluating the Green function. Clearly, if serious
cancelation occurs between two evaluations at slightly different positions,
the final result can have a much higher relative error. Unfortunately, this
is exactly what happens when evaluating the electric and magnetic Green
dyadic arising from Maxwell’s equations. Indeed, the spatial derivatives
occurring in the electric and magnetic Green dyadic can be interpreted as the

limit of
h
(2)
0 (kr)−h

(2)
0 (k||r−∆d||)
∆ for vanishing∆. The vectord is the direction

in which the derivative is taken. Clearly this process entails serious numerical
cancelations.

The aim of this paper is the development of formulas for the estimation
of L when evaluating the electric and magnetic Green dyadic. Forthe HF
case, this work has already been accomplished in [8] (see pages 88-92).
The conclusion was that the scalarL had to be increased by1 and 2 for
the magnetic and electric Green dyadic respectively. However, to the best
knowledge of the authors, no work has to this date been published that
treats theL determination in the medium and low frequency ranges for the
magnetic and electric Green dyadic. In the following, it will be shown that
simply adding1 or 2 to the scalarL does not lead to a controlled error.

To avoid developing a patchwork of approximate formulas, each of
them valid in a specific frequency range, we will not extend the estimation
formulas from the literature to the dyadic case but rather start from a slightly
modified version of an approach proposed in [9]. This approach works for all
frequencies, hence we only need to extend one formula to the dyadic case.
In the slightly modified version of the approach in [9],L is chosen such that
the relative error on (1), defined by

Es(L, rA, rT ) =
∣

∣

∣h
(2)
0 (kr) − ∑L

l=0(−1)lτl,l(rA, rT )I(l, r̂A, l, r̂T )
∣

∣

∣

∣

∣

∣h
(2)
0 (kr)

∣

∣

∣

, (3)

is smaller than the target accuracyǫ. The values forrA and rT must be
chosen such that any other choice would result in a smaller error, i.e. they
must be the worst case scenario. In practice, it turns out that the errorEs

is maximal if rA and rT are aligned (and otherwise arbitrarily oriented),
because then the Legendre polynomial in (B2) attains the maximal amplitude.
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As a consequence,rA = rBêz and rT = rT êz is usually a very good
choice, withrB the maximal valuerA can attain, i.e.

√
3 times the side

of the boxes in Figure 1. Clearly, checking at which value forL the error
(3) drops below the target accuracy is an algorithm ofO (L) computational
complexity, which is very computationally cheap. The result obtained by
means of formula (3) provides an excellent estimate forL that can, if wanted,
be refined using a numerical testing scheme.

The layout of this paper is as follows: In Section 2 the electric and
magnetic Green dyadics are briefly introduced, along with their plane wave
representation as used in the MLFMA. In Section 3, the cancelation that leads
to the loss of precision will be more thoroughly demonstrated, taking the
electric field integral equation (EFIE) as an example. It will also be shown
that it is possible to compensate for the deleterious effects of cancelation
by using a higherL than the one obtained from equation (3). In Section 4,
formulas similar to (3) are presented for the approximate determination of
this newL. Finally, in Section 5 some numerical results will be reported and
discussed.

It will be assumed that the reader is familiar with the MLFMA or related
techniques. For a detailed discussion of the method we referto [9] and [8].
Also, a ejωt time dependence will be assumed and suppressed throughout
this paper.

2. THE VECTORIAL Multilevel Fast Multipole Algorithm

The Green function of the scalar Helmholtz equation is givenby

G0(r) =
e−jkr

4πr
= − jk

4π
h

(2)
0 (kr) , (4)

and satisfies

∇
2G0(r) + k2G0(r) = −δ(r). (5)

The electric and magnetic Green dyadics used in this paper are given by

Ge(kr) =

[

1 +
1

k2
∇∇

]

h
(2)
0 (kr) , (6)

and

Gm(kr) =
1

k
∇ ×

[

1h
(2)
0 (kr)

]

. (7)

In the above,1 is the3 by 3 identity matrix.
We now turn to constructing plane wave integral representations for

the Green dyadics (6) and (7). For this, the vectorr is again seen as the
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sum ofrA andrT . The scalar MLFMA is based on the following integral
representation of the spherical Hankel function of the second kind

h
(2)
0 (kr) ≈ 1

4π

∫

S2

TL(krT , k̂)e−jkk̂·rAdk̂, (8)

with the so-called translation operator defined by

TL(krT , k̂) =
L

∑

l=0

j−l(2l + 1)h
(2)
l (krT ) Pl

(

r̂T · k̂
)

. (9)

The integral with subscriptS2 denotes integration over the unit sphere
∫

S2

F (k̂)dk̂ =

∫ 2π

0

∫ π

0
F (k̂(θ, φ)) sin θdθdφ, (10)

with the wavevector

k̂(θ, φ) =





cos φ sin θ
sinφ sin θ

cos θ



 . (11)

Expression (8) is approximate because of the truncation of the series in (9).
Following [8], substituting the integral representation of the scalar

Green function (8) into (28) and (29) yields integral representations of the
electric and magnetic Green dyadics

Ge(kr) ≈ 1

4π

∫

S2

TL(krT , k̂)
[

1− k̂k̂

]

e−jkk̂·rAdk̂, (12)

and

Gm(kr) ≈ j

4π

∫

S2

TL(krT , k̂)
[

1× k̂

]

e−jkk̂·rAdk̂. (13)

These expressions have been used in the literature to construct a fully
vectorial MLFMA which uses only two radiation patterns for each MLFMA
box [8].

For the HF case, the excess bandwidth formula can be adjusted[8] to
give anL that is appropriate for the vectorial case. For the LF case, however,
this adjustment is not sufficient.

3. CANCELLATION IN THE EFIE

To demonstrate the occurrence of numerical cancelation, wewill consider the
calculation of electric field integral equation (EFIE) matrix elements. These
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matrix elements are defined as

[Z]nm =

∫

tn(r) ·
∫

Ge(r − r
′) · bm(r′)dS′dS. (14)

with tn(r) and bm(r′) the test and basis functions respectively. In this
section, we will use the familiar RWGs [17]. Due to the div-conformity of
these functions, the EFIE matrix elements can be cast in the mixed-potential
form

[Z]nm =

∫ ∫

h
(2)
0

(

k
∣

∣

∣

∣r − r
′
∣

∣

∣

∣

)

tn(r) · bm(r′)dS′dS

+
1

k2

∫ ∫

[∇ · tn(r)] h
(2)
0

(

k
∣

∣

∣

∣r − r
′
∣

∣

∣

∣

) [

∇ · bm(r′)
]

dS′dS. (15)

The surface divergence of the RWGs consists of two adjacent triangular
patches on which an equal but opposite charge is uniformly distributed.
The proximity of the two patches and the fact that they have anopposite
sign causes a cancelation between the contributions from these two patches,
leading to a severe deterioration of the accuracy.

As a numerical example, consider the RWGs depicted in Figure2. The
boxes depicted in solid lines have a total of16 RWGs associated with them,
i.e. 2 RWGs on every vertex. For example, on the vertex with location
1
2 [êx + êy + êz], the first RWG is defined by the triangles∆ (a1,a2,a3)
and ∆ (a2,a3,a4), while the second RWG is defined by the triangles
∆ (a1,a2,a4) and∆ (a1,a3,a4), with

a1 =

√
3

2
k̂(θ0 + δθ, φ0), (16a)

a2 =

√
3

2
k̂(θ0, φ0 + δφ), (16b)

a3 =

√
3

2
k̂(θ0, φ0 − δφ), (16c)

a4 =

√
3

2
k̂(θ0 − δθ, φ0), (16d)

θ0 = arccos

(

1√
3

)

, (16e)

φ0 =
π

4
, (16f)

δθ = δφ = 0.2 (16g)

In this way, the two RWGs are sensitive to two orthogonal fieldcomponents.
In addition, all the RWGs are on the edge of the range where theaddition
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theorem (1) is supposed to have controllable accuracy, hence they provide a
suitable worst case testing scenario.

The RWGs in the lower box will be taken as the basis functionsbm(r′)
while the RWGs in the upper box will be the test functionstn(r). The
EFIE matrix elements are both computed exactly using (6) andusing the
NSPWMLFMA for the casek = 0.01m−1. To evaluate the worst-case error
between the two matrices, we will define an error associated with a so-called
vertex pair. Such a pair consists of one of the8 vertices of the lower box and
one of the8 vertices of the upper box. Obviously, there are in total64 such
vertex pairs. Also, there are two RWGs located at each vertex, which allows
us to compute a2 × 2 EFIE matrixZn1,n2 for each vertex pair (n1 andn2

denote the indices of the two vertices in their respective boxes). The error on
this EFIE matrix will be defined as

Dn1,n2
e =

∣

∣

∣

∣

∣

∣Z
NSPWMLFMA

n1,n2 − ZExact
n1,n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ZExact
n1,n2

∣

∣

∣

∣

∣

∣

. (17)

The worst-case error will now be evaluated as the maximum error over all
possible vertex pairs

De = maxn1,n2 (Dn1,n2
e ) . (18)

Figure 3 shows the actual calculated error on the matrix and the predicted
error Es(L,

√
3êz, 3êz) for various values ofL. Clearly, the actual error

decreases much more slowly than the error predicted by (3). The fact that we
used the mixed-potential formulation of the EFIE is not the cause of this,
since numerical experiments show that the slow convergencestill occurs
when the dyadic formulation is used. This leads us to conclude that the
electric Green dyadic itself converges more slowly to the correct result, and
that a suitableL can be found for which the target accuracy is obtained.

In the next Section we will search for a formula of similar simplicity as
equation (3) for the determination ofL for the electric and magnetic Green
dyadic. For some basic mathematical properties of the Legendre polynomials
and spherical harmonics, to be used in the sequel, the readeris referred to
Appendix A.

4. DETERMINING L FOR THE DYADIC Green functions

Using the orthogonality of the spherical harmonics (A8) andthe spherical
harmonic addition theorem (A9), the integral representation (8) is easily
shown to reduce to (1). Clearly, ifL is chosen large enough such that (1)
has converged with a toleranceǫ, then (8) has also converged with the same
accuracy. In practice, there are other sources of errors such as numerical
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Figure 2. The used RWGs.

interpolation error, integration error, roundoff error, etc. However, these
errors can always be assumed to be of the same magnitude asǫ. Indeed,
if one source of error would greatly dominate, it would be advantageous
to make the other sources of error larger as well, since doingso reduces
the computational burden. Therefore we will assume that these other error
generating mechanisms are not dominant. Under this assumption, it is clear
that (3) yields a reasonably good approximation forL in the scalar case.

In the vectorial case the following question naturally arises: can the
integral representations (12) and (13) be reduced to an expression as simple
as (1) ? In the following, this question will be answered in the affirmative.
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Figure 3. The calculated error on the electric Green dyadic, given in Eqn.
(18), does not converge as predicted by formula (3).

4.1. The magnetic Green dyadic

Equation (13) is a plane wave decomposition of the magnetic Green dyadic.
Using the well-known Jacobi-Anger expansion of a plane wave

e−jkk̂·rA =
∞
∑

l=0

(2l + 1)j−ljl (krA) Pl

(

k̂ · r̂A

)

, (19)

and the explicit expression of the translation operator (9), the following result
is easily obtained

Gm(kr) ≈ 1×
L

∑

l=0

(−1)lGl
m, (20)

with G
l
m given by

G
l
m = (2l + 1)h

(2)
l (krT )

∞
∑

l′=0

jl−l′+1

4π
(2l′ + 1)

× jl′ (krA)

∫

S2

Pl

(

r̂T · k̂
)

k̂Pl′

(

k̂ · r̂A

)

dk̂. (21)
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In appendix B, the remaining integral has been evaluated analytically. The
result is given by (B3) and allows the elimination of the sum in (21)

G
l
m = τl,l+1(rA, rT )I

k̂
(l + 1, r̂A, l, r̂T )

− τl,l−1(rA, rT )I
k̂
(l − 1, r̂A, l, r̂T ). (22)

4.2. The electric Green dyadic

For the plane wave representation of the electric Green dyadic, given in (12),
we can again use expansion (19) to evaluate the integral as a series

Ge(kr) ≈
L

∑

l=0

(−1)lGl
e, (23)

with

G
l
e =

∞
∑

l′=0

j−l′+lτl,l′(rA, rT )

×
∫

S2

Pl

(

r̂T · k̂
) [

1− k̂k̂

]

Pl′

(

k̂ · r̂A

)

dk̂. (24)

The remaining integral can again be evaluated analytically, albeit through
significantly more effort. The result is given in appendix B ((B2) and (B10))
and again allows to reduce the infinite sum in (23) to a finite one

G
l
e = τl,l+2(rA, rT )I

k̂k̂
(l + 2, r̂A, l, r̂T )

+ τl,l(rA, rT )
[

I(l, r̂A, l, r̂T )1− I
k̂k̂

(l, r̂A, l, r̂T )
]

+ τl,l−2(rA, rT )I
k̂k̂

(l − 2, r̂A, l, r̂T ). (25)

4.3. Convergence Criteria

Checking whether series (20) or (23) have converged to the prescribed
precision requires a way of comparing the right and left handside. The
problem is that we are dealing with dyadics, and it is not immediately
clear which component to choose for calculating the error. Indeed, some
components may become exactly zero, such that the relative error of one
component is meaningless. To avoid this problem we will use the matrix
2-norm, i.e. the largest singular value, to test the convergence. For more
information about the definition of the matrix norm, see [18]from page54
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onwards.Now define the following measures of error

Em(L, rA, rT ) =

∣

∣

∣

∣

∣

∣Gm(kr) − 1× ∑L
l=0(−1)lGl

m

∣

∣

∣

∣

∣

∣

||Gm(kr)|| , (26)

Ee(L, rA, rT ) =

∣

∣

∣

∣

∣

∣Ge(kr) − ∑L
l=0(−1)lGl

e

∣

∣

∣

∣

∣

∣

||Ge(kr)|| . (27)

The matrix norms occurring in these expressions can be computed using
SVDs of the3 by 3 matrices. Surprisingly enough, however, it is possible to
find simple and explicit formulas for the matrix norms in the denominators.
Indeed, the derivatives occurring in (6) and (7) can be evaluated using (4)
and the recurrences for the spherical Hankel functions. Forthe electric Green
dyadic this yields [8]

Ge(kr) = h
(2)
0 (kr)

[(

2j

kr
+

2

(kr)2

)

r̂r̂

+

(

1 − j

kr
− 1

(kr)2

)

(1− r̂r̂)

]

, (28)

while the magnetic Green dyadic becomes

Gm(kr) = h
(2)
0 (kr) [êφêθ − êθêφ]

(

1

kr
+ j

)

, (29)

with r̂, êφ and êθ the unit vectors in spherical coordinates.The (unsorted)
singular values of the Green dyadics are easily found from these formulas,
since the singular values of a matrixA are nothing else than the square roots
of the eigenvalues ofAHA. By means of (28) we get the singular values of
the electric Green dyadic

σe
1(kr) = σe

2(kr) =

∣

∣

∣

∣

h
(2)
0 (kr)

(

1 − j

kr
− 1

(kr)2

)∣

∣

∣

∣

, (30)

σe
3(kr) =

∣

∣

∣

∣

h
(2)
0 (kr)

(

2j

kr
+

2

(kr)2

)
∣

∣

∣

∣

, (31)

while for the magnetic Green dyadic, the following singularvalues are
obtained

σm
1 (kr) = σm

2 (kr) =

∣

∣

∣

∣

h
(2)
0 (kr)

(

1

kr
+ j

)∣

∣

∣

∣

, (32)

σm
3 (kr) = 0. (33)
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From this, the denominators in (26) and (27) are found to be

||Gm(kr)|| = σm
1 (kr), (34)

||Ge(kr)|| = max (σe
1(kr), σe

2(kr)) . (35)

The matrix norm in the numerator of (26) can also be found without
using SVDs. Indeed, the matrix norm of an expression of the form 1 × v,
with v a vector, is simply the vector norm ofv. Clearly this allowsEm to be
calculated more easily as

Em(L, rA, rT ) =

∣

∣

∣

∣

∣

∣r̂h
(2)
0 (kr)

(

1
kr

+ j
)

− ∑L
l=0(−1)lGl

m

∣

∣

∣

∣

∣

∣

σm
1 (kr)

. (36)

The matrix norm in the numerator of (27) should be computed using the
SVD of the3 by 3 dyadics, as no analytical simplification was found by the
authors. However, if one allows an error of a factor

√
3, the Frobenius norm

||·||F (see [18] on page55) may be used, since it is an equivalent norm for3
by 3 matrices with bounds

1√
3
||A||F ≤ ||A|| ≤ ||A||F . (37)

5. NUMERICAL RESULTS

As a first test, theL obtained using formulas (3), (26) and (27) are compared
to the excess bandwidth formula and the formula presented in[16]. Figure
4 shows the requiredL as a function of the wavenumber. The parameters
for the L calculation arerA =

√
3êz, rT = 3êz and the target accuracy

is ε = 10−5. It can be seen that, for low frequencies, formula (3), the
excess bandwidth formula and the approach from [16] give different results.
The difference with the excess bandwidth formula is caused by the fact that
the excess bandwidth formula is essentially a high frequency asymptotic
approximation forL. The difference with the approach in [16] is caused
by the fact that it is focused on the MLFMA. Therefore it has todeal with
the MLFMA’s inherent numerical instability (low frequencybreakdown),
which influences the obtainedL. For high frequencies, all theL curves
approximately go to the same asymptotic limit, i.e. the excess bandwidth
formula.

The convergence formulas (26) and (27) will now be numerically tested
using the benchmark box configurations shown in Figure 5. Theboxes
have sides of1m. The box configuration on the left depicts the worst-case
interaction when two buffer boxes are used, whereas the configuration on the
right is the worst-case interaction when only one buffer boxis used. Both
situations will be studied here.
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Figure 4. The requiredL as a function of the wavenumber. The line for the
approach from [16] is only shown for wavenumbers for which the MLFMA
does not suffer from the low-frequency breakdown (according to [16]).

To compute the error, three elementary dipole sources and observers
were put on the vertices of the source and observer boxes in Figure (5). The
electric and magnetic fields generated by the source dipoleson the observer
dipoles were computed both directly and by means of the NSPWMLFMA
(as a function ofL). Since these interactions are nothing else than the
components of the electric and magnetic Green dyadic, it is possible to
compute the following error measures:

Fm(L, n1, n2) =

∣

∣

∣

∣

∣

∣Gm(n1, n2) − GNSPWMLFMA
m (n1, n2)

∣

∣

∣

∣

∣

∣

||Gm(n1, n2)||
, (38)

Fe(L, n1, n2) =

∣

∣

∣

∣

∣

∣Ge(n1, n2) − GNSPWMLFMA
e (n1, n2)

∣

∣

∣

∣

∣

∣

||Ge(n1, n2)||
, (39)

wheren1 andn2 are the indices of the vertices in the source and observer
box. To get the worst-case error, the maximum error is taken

Fm(L) =maxn1,n2 [Fm(L, n1, n2)] , (40)
Fe(L) =maxn1,n2 [Fe(L, n1, n2)] . (41)
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Figure 5. The used benchmark box configurations. The arrows on the
vertices of the lower and upper boxes are the dipoles sourcesand observers
respectively.

A similar error measure for the scalar case is also introduced

Fs(L) =maxn1,n2

∣

∣

∣

∣

∣

G0(n1, n2) − GNSPWMLFMA
0 (n1, n2)

G0(n1, n2)

∣

∣

∣

∣

∣

. (42)

In Figure 6 the calculated error is shown for the two buffer box case. The
predicted errorEe(L,

√
3êz, 3êz) is also plotted. The valuek = 0.01m−1

was used for the wavenumber. It is clear that formulas (26) and (27) much
better capture the convergence behavior of the magnetic andelectric Green
dyadic than formula (3). This better approximation of the true behavior also
translates into better estimates forL. For example, if one wants an accuracy
of 10−4, then (3) would implyL ≈ 16, while (27) impliesL ≈ 31. From
Figure 6, it is seen thatL ≈ 30 would be chosen ifL were determined
numerically, which is very close to the result obtained using (27).

In Figure 7, the same analysis is performed, with the sole difference
being the number of buffer boxes used in the NSPWMLFMA. As canbe
seen, convergence is very slow. In fact, the result firstdiverges before slowly
starting to converge. The slow convergence is not due to the NSPWMLFMA,
since formulas (26) and (27) also predict this behavior. It can also be seen
that the scalar Green function converges slowly, but steadily. The slow
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Figure 6. Convergence as a function of the truncation boundL for the scalar
Green function, magnetic Green dyadic and the electric Green dyadic for the
case where two buffer boxes are used.

convergence of the scalar Green function can be traced back to the fact that
the spheres circumscribing the source and observer box almost touch. A
quick analysis shows that applying derivatives to the scalar Green function to
obtain the electric or magnetic Green dyadic adds factors proportional toL
(for the magnetic Green dyadic) orL2 (for the electric Green dyadic) to the
error. These factors are the cause of the diverging error behavior for small
L. For largeL, the exponential convergence as a function ofL is regained,
but by thenL is impractically large. Therefore, we can conclude that using
an FMMM based on spherical modes for the vectorial (dyadic) case at low
frequencies and using only one buffer box leads to a huge truncation bound
L or, alternatively, to inaccurate results.

The behavior of the error as a function of the wavenumber has also
been investigated. Figure 8 shows the calculated and predicted errors for the
electric Green dyadic, magnetic Green dyadic and scalar Green function for
L = 20, using the dipole arrangement with two buffer boxes from Figure
5. As can be seen in Figure 8, the predicted and calculated errors have a
very similar behavior which further validates (27) and (26). An interesting
phenomenon is the ’dip’ that occurs aroundk = 4m−1 in the error curves
for Ee, Fe, Em andFm. It appears that, for low frequencies, the truncation
boundL decreases with increasing frequency. The same effect can also be
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Figure 7. Convergence as a function of the truncation boundL for the scalar
Green function, magnetic Green dyadic and the electric Green dyadic for the
case where only one buffer box is used.

observed in Figure 4, where the requiredL for the magnetic and electric
Green dyadic exhibits a dip aroundk = 4m−1. Up to this point, the authors
have found no physical or intuitive explanation for this phenomenon.

6. CONCLUSION

Novel formulas were presented that allow the rapid estimation of the number
of terms in the translation operator of the vectorial NSPWMLFMA. In
contrast to existing estimates for the scalar case, these formulas are tailored
to the Green dyadic that is used (electric or magnetic). Someinteresting
results were obtained. For example, it is shown that the truncation bound
obtained from the scalar case is too low when used for the vectorial case
at low frequencies. Also at low frequencies, it turns out that the electric
Green dyadic requires a higher truncation bound than the magnetic Green
dyadic. Hence, when the NSPWMLFMA is used on the EFIE or MFIE
at low frequencies, these novel estimates yield a much better error control
than estimates for the scalar case.Also, these novel estimates are valuable
from a theoretical point of view for understanding of the error behavior of
the NSPWMLFMA.In addition, the use of these estimates is not limited to
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Figure 8. The predicted and calculated error forL = 20 as a function of
the frequency for the scalar Green function, magnetic Greendyadic and the
electric Green dyadic.

the NSPWMLFMA, since they are useful in at least three other fast matrix
multiplication methods.

APPENDIX A. SPHERICAL HARMONICS

The Legendre polynomialsPl(t) are defined as

Pl(t) =
1

2ll!

dl

dtl
(t2 − 1)l, (A1)

and satisfy the following recurrence relations

(2l + 1)tPl(t) = (l + 1)Pl+1(t) + lPl−1(t) , (A2)

(2l + 1)Pl(t) =
d

dt
[Pl+1(t) − Pl−1(t)] ,

= P ′
l+1(t) − P ′

l−1(t) . (A3)

The derivative of the Legendre polynomial is denoted as

P ′
l (t) =

d

dt
Pl(t) . (A4)
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For the stable numerical calculation of the Legendre polynomials, recurrence
(A2) should be used with starting valuesP0(t) = 1 andP1(t) = t.

The spherical harmonicsYl,m

(

k̂

)

are defined as

Yl,m

(

k̂

)

= (−1)l+m Kl,m

2ll!

(

k̂x + jk̂y

)m
T m

l

(

k̂z

)

. (A5)

Here,l andm are integers such thatl ∈ [0,∞] andm ∈ [−l, l]. Furthermore

Kl,m =

√

2l + 1

4π

(l − m)!

(l + m)!
, (A6)

and

T m
l (t) =

dl+m

dtl+m

[

1 − t2
]l

, (A7)

The spherical harmonics satisfy the following orthogonality relation
∫

S2

Yl1,m1

(

k̂

)

Y ∗
l2,m2

(

k̂

)

dk̂ = δl1,l2δm1,m2 . (A8)

The spherical harmonics also satisfy the so-called spherical harmonic
addition theorem

Pl

(

k̂1 · k̂2

)

=
4π

2l + 1

l
∑

m=−l

Y ∗
l,m

(

k̂1

)

Yl,m

(

k̂2

)

. (A9)

APPENDIX B. USEFUL INTEGRALS

In this Appendix, the necessary integrals for this paper aregiven. For brevity,
the dot productŝrA · r̂T , r̂A · k̂ andr̂T · k̂ will be denoted asγ, γA andγT

respectively. The first integral is

I(lA, r̂A, lT , r̂T ) =

∫

S2

PlT (γT )PlA(γA) dk̂. (B1)

By means of the spherical harmonic addition theorem (A9) andthe
orthogonality (A8) of the spherical harmonics, the following result is easily
obtained

I(lA, r̂A, lT , r̂T ) = δlA,lT

4π

2lA + 1
PlA(γ) . (B2)



20 Bogaert

Remember thatγ = r̂A · r̂T . The second integral of interest is

I
k̂
(lA, r̂A, lT , r̂T ) =

∫

S2

PlT (γT ) k̂PlA(γA) dk̂. (B3)

This integral could be readily evaluated using the spherical harmonic addition
theorem and the recurrences of the spherical harmonics. However the result
still contains a sum of2l + 1 terms, with each term containing a complicated
square root. Instead we will derive a closed form forI

k̂
. As a starting point,

the following can be shown by means of (A3)

[1− r̂Ar̂A] · k̂PlA(γA)

=
1

2lA + 1
∇A [PlA+1(γA) − PlA−1(γA)] , (B4)

where∇A =
[

d
dxA

, d
dyA

, d
dzA

]

. Since the dot product of̂rA andk̂ in the left
hand side can be absorbed into the Legendre polynomial by means of (A2),
the following is found

(2lA + 1)k̂PlA(γA) =

∇A [PlA+1(γA) − PlA−1(γA)]

+ r̂A [(lA+1)PlA+1(γA) + lAPlA−1(γA)] . (B5)

This result, combined with (B2), allows us to construct the following closed
form expression forI

k̂

I
k̂
(lA, r̂A, lT , r̂T ) =

4π

(2lT + 1)(2lA + 1)

×
{

[(lA+1)δlA+1,lT + lAδlA−1,lT ] r̂APlT (γ)

+ [δlA+1,lT − δlA−1,lT ] ∇APlT (γ)
}

. (B6)

This expression is not very symmetrical but can be simplifiedusing

∇APlT (γ) = [r̂T − γr̂A] P ′
lT

(γ) (B7)

and the various recurrences of the Legendre polynomials. The result then
becomes

I
k̂
(lA, r̂A, lT , r̂T ) =

× 4π
r̂T P ′

lT
(γ) − r̂AP ′

lA
(γ)

(2lA + 1)(2lT + 1)
[δlA+1,lT −δlA,lT +1] . (B8)
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The third and final integral is

I
k̂k̂

(lA, r̂A, lT , r̂T ) =

∫

S2

PlT (γT ) k̂k̂PlA(γA) dk̂ (B9)

The rightmost k̂ can again be removed by means of expression (B5).
The remaining integral is expressible in terms ofI

k̂
(lA, r̂A, lT , r̂T ) and

derivatives thereof. After a lengthy calculation and various simplifications,
the following symmetrical form is obtained

I
k̂k̂

(lA, r̂A, lT , r̂T ) =
4π

(lA+lT −1)(lA+lT +1)(lA+lT +3)

×
{ [

r̂T r̂T P ′′
lT

(γ)+r̂Ar̂AP ′′
lA

(γ)
]

× [δlA,lT +2−2δlA,lT +δlA+2,lT ]

+ [r̂T r̂A + r̂Ar̂T ]

×
[

δlA,lT

(

2γP ′′
lT

(γ) + P ′
lT

(γ)
)

−δlA,lT +2P
′′
lT +1(γ) − δlA+2,lT P ′′

lA+1(γ)
]

+ 1

[

δlA,lT

(

2γP ′
lA

(γ) − PlA(γ)
)

−δlA,lT +2P
′
lT +1(γ) − δlA+2,lT P ′

lA+1(γ)
] }

(B10)

In (B2), (B8) and (B10), the first and second derivatives of the Legendre
polynomials need to be evaluated. Calculating these could in principle be
done by means of the following recurrence

(1 − t2)P ′
l (t) = −l(tPl(t) − Pl−1(t)). (B11)

However, this calculation is not numerically stable when the argumentt is
close to±1. For a fully stable and robust calculation ofP ′

l (t) andP ′′
l (t)

for l ∈ [0, L], all the Legendre polynomialsPl(t) for l ∈ [0, L − 1] should
be calculated first. Then recurrence (A3) can be used to determine the first
derivatives. For the second derivatives,

(2l + 1)P ′
l (t) = P ′′

l+1(t) − P ′′
l−1(t) , (B12)

can be used. It is worthwhile to point out that using these techniques, both the
Legendre polynomials and their first and second derivativescan be calculated
in O (L) operations. An obvious consequence is that calculatingI, I

k̂
and

I
k̂k̂

for lA ≤ L andlT ≤ L takes onlyO (L) operations.
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