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Abstract

This is the third paper dealing with the classification of the dense
near octagons of order (3, t). Using the partial classification of the
valuations of the possible hexes obtained in [12], we are able to show
that almost all such near octagons admit a big hex. Combining this
with the results of [11], where we classified the dense near octagons
of order (3, t) with a big hex, we get an incomplete classification for
the dense near octagons of order (3, t): there are 28 known examples
and a few open cases. For each open case, we have a rather detailed
description of the structure of the near octagons involved.
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1 Introduction

In this introduction, we will only recall the basic notions from the theory
of near polygons. In Section 2 we will explain some of the more advanced
notions. The reader will also find there the definitions of the near polygons
which will occur in the various propositions, theorems and corollaries of this
introduction.

A near polygon S = (P ,L, I), I ⊆ P×L, is a partial linear space with the
property that for every point p and every line L, there exists a unique point
on L nearest to p. Here distances d(·, ·) are measured in the point graph or
collinearity graph Γ of S. If d is the diameter of Γ, then the near polygon
is called a near 2d-gon. A near 0-gon is just a point and a near 2-gon is a
line. In the sequel, we will denote the unique line with s + 1 points by Ls+1.
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Near quadrangles are usually called generalized quadrangles (GQ’s; Payne
and Thas [17]).

A near polygon is said to have order (s, t) if every line is incident with
precisely s + 1 points and if every point is incident with precisely t + 1
lines. A near polygon is called dense if every line is incident with at least
three points and if every two points at distance 2 have at least two common
neighbours. By Lemma 19 of Brouwer and Wilbrink [2], every point of a
dense near polygon S is incident with the same number of lines. We denote
this number by tS + 1. By Theorem 4 of [2], every two points of a dense
near polygon at distance δ from each other are contained in a unique convex
sub-2δ-gon. These convex subpolygons are called quads if δ = 2 and hexes
if δ = 3. The existence of quads was already shown in Proposition 2.5 of
Shult and Yanushka [19]. A convex subpolygon F 6= S of a dense near
polygon S is called big in S if every point of S not contained in F is collinear
with a (necessarily unique) point of F . A convex subpolygon F of a dense
near polygon S is called classical in S if for every point x of S there exists
a (necessarily unique) point πF (x) in F such that d(x, y) = d(x, πF (x)) +
d(πF (x), y) for every point y of F . Every big subpolygon is classical.

All generalized quadrangles of order (3, t) have been determined by Dix-
mier and Zara [16], see also Payne and Thas [17, 6.2]. In De Bruyn [4], a
partial classification of the dense near hexagons of order (3, t) was obtained.
There are 10 known examples and 4 open cases (the so-called exceptional
near hexagons of type (I), (II), (III) and (IV)). The present paper is the
third one dealing with the classification of the dense near octagons of order
(3, t). In De Bruyn [11], we determined “all” dense near octagons of order
(3, t) with a big hex:

Proposition 1.1 If S is a dense near octagon of order (3, t) with a big
hex, then S is isomorphic to either L4 ×H for some exceptional dense near
hexagon H of order (3, t), or to one of the near octagons of the following list:
L4 × L4 × L4 × L4, L4 × L4 ×W (3), L4 × L4 ×Q(4, 3), L4 × L4 ×GQ(3, 5),
L4 × L4 × Q(5, 3), L4 × DW (5, 3), L4 × DQ(6, 3), L4 × DH(5, 9), L4 ×
(GQ(3, 5)⊗GQ(3, 5)), L4×(Q(5, 3)⊗Q(5, 3)), W (3)×W (3), W (3)×Q(4, 3),
W (3) × GQ(3, 5), W (3) × Q(5, 3), Q(4, 3) × Q(4, 3), Q(4, 3) × GQ(3, 5),
Q(4, 3)×Q(5, 3), GQ(3, 5)×GQ(3, 5), GQ(3, 5)×Q(5, 3), Q(5, 3)×Q(5, 3),
DH(5, 9) ⊗ Q(5, 3), (Q(5, 3) ⊗ Q(5, 3)) ⊗1 Q(5, 3), (Q(5, 3) ⊗ Q(5, 3)) ⊗2

Q(5, 3), (GQ(3, 5)⊗GQ(3, 5))⊗1GQ(3, 5), (GQ(3, 5)⊗GQ(3, 5))⊗2GQ(3, 5),
DW (7, 3), DQ(8, 3), DH(7, 9).

In De Bruyn [12], we obtained a partial classification of the valuations of the
dense near hexagons of order (3, t). In the present paper, we will use this
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classification to show that almost all dense near octagons of order (3, t) must
have a big hex:

Theorem 1.2 Let S be a dense near octagon of order (3, t) without big hexes.
Then all quads are isomorphic to L4 × L4 and all hexes are isomorphic to
L4 × L4 × L4 or to an exceptional hex of type (IV ).

Proposition 1.1 and Theorem 1.2 give a classification of the dense near oc-
tagons of order (3, t): there are 28 examples and five open cases (four in
Proposition 1.1 and one in Theorem 1.2).

It is not know whether there exist near octagons as described in Theorem
1.2. The following result, which is an immediate corollary of De Bruyn [7,
Corollary 3] and Theorem 1.2, says something about their structure.

Corollary 1.3 Let S be a dense near octagon of order (3, t) without big
hexes. Then there exist constants α1 and α2 such that every point is contained
in α1 hexes isomorphic to L4×L4×L4 and α2 exceptional hexes of type (IV ).

In Section 5.1, we will show the following:

Theorem 1.4 (Section 5.1) Let V denote a class of dense near 2δ-gons,
δ ≥ 2, and let S be a dense near 2d-gon, d ≥ δ + 1, satisfying the following
property.

For every convex sub-(2δ +2)-gon F of S, there exists a constant
αF such that every point of F is contained in precisely αF convex
subpolygons which are contained in F and which are isomorphic
to an element of V.

Then there exists a constant α such that every point of S is contained in
precisely α convex subpolygons isomorphic to an element of V.

Combining Theorem 1.4 with the partial classification of the dense near hexa-
gons of order (3, t) (see Proposition 2.4), we immediately obtain the following
corollary (see Section 5.2):

Corollary 1.5 Let S be a dense near polygon of order (3, t) and let Q be
one of the five generalized quadrangles of order (3, t). Then there exists a
constant α such that every point of S is contained in α quads isomorphic to
Q.
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Combining Theorem 1.4 with Proposition 1.1, Theorem 1.2 and Corollary
1.3, we will obtain the following result in Section 5.2.

Corollary 1.6 Let S be a dense near polygon of order (3, t) and let H be a
dense near hexagon of order (3, t) isomorphic to either W (3)×L4, Q(4, 3)×
L4, GQ(3, 5)×L4, DW (5, 3), DQ(6, 3), DH(5, 9), GQ(3, 5)⊗GQ(3, 5) or an
exceptional near hexagon of type (I), (II), (III) or (IV ). Then there exists
a constant α such that every point of S is contained in α hexes isomorphic
to H.

Similar properties hold for the other near hexagons if we impose extra con-
ditions on the structure of the near polygon.

Corollary 1.7 Let S be a dense near polygon of order (3, t) which does not
contain convex suboctagons isomorphic to (Q(5, 3)⊗Q(5, 3))⊗2Q(5, 3). Then
every point of S is contained in the same number of L4 ×L4 ×L4-hexes, the
same number of Q(5, 3)×L4-hexes and the same number of Q(5, 3)⊗Q(5, 3)-
hexes.

2 More advanced notions and properties

Suppose S is a near polygon. As usual, we will denote distances in S by
d(∗1, ∗2), where each of ∗1, ∗2 can be either a point or a nonempty set of
points. We denote by Γi(∗) the set of points at distance i from ∗, and
〈∗1, . . . , ∗k〉 denotes the smallest convex subspace containing ∗1, . . . , ∗k, i.e.
the intersection of all convex subspaces containing ∗1, . . . , ∗k.

Dense near polygons satisfy several nice properties. Besides the existence
of convex subpolygons and the fact that all points are incident with the same
number of lines, there are two others which we would like to mention.

Proposition 2.1 ([7, Theorem 1]) Let S be a dense near 2d-gon. Then
there exist constants ni, i ∈ {0, . . . , d}, such that ni = |Γi(x)| for every
i ∈ {0, . . . , d} and for every point x of S.

Proposition 2.2 ([19, Proposition 2.6]) Let x be a point and Q a quad
of a dense near polygon. Then precisely one of the following holds.

(a) There exists a unique point πQ(x) in Q nearest to x and d(x, y) =
d(x, πQ(x)) + d(πQ(x), y) for every point y of Q.

(b) The points in Q nearest to x form an ovoid of Q, i.e. a set of points
meeting each line in a unique point.
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If case (a) of Proposition 2.2 occurs, then x is called classical with respect to
Q. If case (b) occurs, then x is called ovoidal with respect to Q.

If K and L are two lines of a near polygon, then N = |{d(k, l) | k ∈ K, l ∈
L}| ∈ {2, 3}. If N = 2, then for every point k ∈ K, there exists a unique
point l ∈ L such that d(k, l) = d(K, L). In this case, K and L are called
parallel (K ‖L).

The maximal and next-to-maximal singular subspaces of a polar space of
rank n ≥ 2 define a near 2n-gon, which is called a dual polar space ([3], [19]).
Dual polar spaces are also called classical near polygons. We will denote
dual polar spaces by putting the letter “D” in front of the name of the
corresponding polar spaces. So, DW (2n− 1, q) denotes the dual polar space
associated with a symplectic polarity in PG(2n−1, q), DQ(2n, q) denotes the
dual polar space associated with a nonsingular parabolic quadric in PG(2n, q)
and DH(2n−1, q2) denotes the dual polar space associated with a nonsingular
hermitian variety in PG(2n − 1, q2). As in [17, 3.1.1], we will denote the
classical generalized quadrangles of order (3, t) by W (3), Q(4, 3) and Q(5, 3),
respectively. We will denote the unique generalized quadrangle of order (3, 5)
by GQ(3, 5).

If A1 and A2 are two near polygons, then there exists up to isomorphism a
unique near polygonA1×A2 whose point graph is isomorphic to the cartesian
product of the point graphs of A1 and A2. We say that A1×A2 is the direct
product of A1 and A2.

In [5], a construction was given which can be used to construct so-called
glued near polygons of type A1 ⊗ A2 from given near polygons A1 and A2

satisfying nice properties. We refer to [5] for the precise definition. For the
purpose of this paper, it suffices to know that such a glued near polygon S
satisfies the following properties: (i) there exists a partition Ti, i ∈ {1, 2}, of
S in convex subpolygons isomorphic to Ai; (ii) every element of T1 intersects
every element of T2 in a line; (iii) every line of S is contained in an element
of T1∪T2; (iv) for every i ∈ {1, 2}, for every F ∈ Ti and for all F ′

1, F
′
2 ∈ T3−i,

the lines F ∩ F ′
1 and F ∩ F ′

2 are parallel. For a given near polygon S, let
∆1(S) denote the set of all unordered pairs {T1, T2} satisfying the above-
mentioned conditions (i), (ii), (iii) and (iv). If there are up to isomorphism
k glued near polygons of type A1⊗A2, then we will denote these glued near
polygons by A1 ⊗1 A2, A1 ⊗2 A2, . . ., A1 ⊗k A2. If there is only one glued
near polygon of type A1 ⊗ A2, then we will denote this glued near polygon
by A1 ⊗ A2. In Proposition 1.1, (Q(5, 3) ⊗ Q(5, 3)) ⊗1 Q(5, 3) denotes the
unique glued near octagon of type (Q(5, 3)⊗Q(5, 3))⊗Q(5, 3) satisfying the
property that the three Q(5, 3)-quads through any given point have a line in
common. Similarly, (GQ(3, 5) ⊗ GQ(3, 5)) ⊗1 GQ(3, 5) denotes the unique
glued near octagon of type (GQ(3, 5) ⊗ GQ(3, 5)) ⊗ GQ(3, 5) satisfying the
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property that the three GQ(3, 5)-quads through any given point have a line
in common. (We refer to Sections 3.3 and 3.4 of [11] for more details.)

The classifications of the generalized quadrangles and the dense near hexagons
of order (3, t) are given in the following propositions.

Proposition 2.3 ([16]; [17, 6.2]) Every generalized quadrangle of order (3,
t) is isomorphic to either the (4× 4)-grid L4 × L4, W (3), Q(4, 3), GQ(3, 5)
or Q(5, 3).

Proposition 2.4 (Main Theorem of [4]) Let S be a dense near hexagon
of order (3, t).

(1) If S is classical or glued, then S is isomorphic to either L4×L4×L4,
W (3)× L4, Q(4, 3)× L4, GQ(3, 5)× L4, Q(5, 3)× L4, DW (5, 3), DQ(6, 3),
DH(5, 9), GQ(3, 5) ⊗ GQ(3, 5) or Q(5, 3) ⊗ Q(5, 3).

(2) If S is neither classical nor glued, then only quads isomorphic to the
(4 × 4)-grid or to Q(4, 3) occur and none of these quads is big. Moreover,
there exist constants a and b such that every point of S is contained in a grids
and b quads isomorphic to Q(4, 3). If v denotes the total number of points
of S, then (v, t, a, b) is equal to either (5848, 19, 160, 5), (6736, 21, 171, 10),
(8320, 27, 120, 43) or (20608, 34, 595, 0).

A non-classical and non-glued dense near hexagon of order (3, t) is called
exceptional of type (I), (II), (III), respectively (IV), if (v, t, a, b) is equal to
(5848, 19, 160, 5), (6736, 21, 171, 10), (8320, 27, 120, 43), respectively (20608,
34, 595, 0).

Let S = (P ,L, I) be a dense near polygon. A function f from P to N is
called a valuation of f if it satisfies the following properties (f(x) is called
the value of x):

(V1) there exists at least one point with value 0;

(V2) every line L of S contains a unique point xL with smallest value and
f(x) = f(xL) + 1 for every point x of L different from xL;

(V3) every point x of S is contained in a convex subpolygon Fx satisfying
the following properties:

• f(y) ≤ f(x) for every point y of Fx,

• every point z of S which is collinear with a point y of Fx and
which satisfies f(z) = f(y)− 1 also belongs to Fx.
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It can be shown, see Proposition 2.5 of [13], that the convex subpolygon Fx

in Property (V3) is unique. If f is a valuation, then we denote by Of the set
of points with value 0. A quad of S is called special if it contains at least two
points of Of , or equivalently, if Q∩Of is an ovoid of Q ([13, Corollary 2.11]).
Valuations were used in [15] to classify all dense near octagons of order (2, t)
and in the present paper, we will use them to obtain a partial classification
of the dense near octagons of order (3, t). The reason why valuations are
such an important tool for classifying dense near polygons is because of the
following proposition, which we take from [13, Proposition 2.6].

Proposition 2.5 Let S be a dense near 2n-gon and let F be a convex sub-
polygon of S. For every point x of S and for every point y of F , we define
fx(y) := d(x, y)− d(x, F ). Then fx is a valuation of F .

Several classes of valuations were described in [13]. We list the ones which
we will need in the present paper.

Examples. (a) Let x denote an arbitrary point of a dense near polygon
S. For every point y of S, we define f(y) = d(x, y). Then f is a so-called
classical valuation of S.

(b) Let O be an ovoid of S. For every point y of S, we define f(y) = 0 if
y ∈ O and f(y) = 1 otherwise. Then f is a so-called ovoidal valuation of S.

(c) Let x be a point of a dense near 2n-gon S (n ≥ 2) and let O be a set
of points at distance n from x with the property that every line at distance
n − 1 from x has a unique point in common with O. If y is a point of S,
then we define f(y) = d(x, y) if d(x, y) ≤ n − 1, f(y) = n − 2 if y ∈ O and
f(y) = n− 1 otherwise. Then f is a so-called semi-classical valuation of S.

(d) Let S be a dense near polygon and let F be a convex subpolygon of
S which is classical in S. Suppose f ′ is a valuation of F . For every point y
of S, we define f(y) = d(y, πF (y)) + f ′(πF (y)). Then f is a valuation of S,
which is called the extension of f ′.

(e) The following type of valuation was described in [10]. Let S be a
dense glued near hexagon of type A1 ⊗ A2, and let {T1, T2} ∈ ∆1(S) such
that every quad of Ti, i ∈ {1, 2}, is isomorphic to Ai. Suppose X is a set of
points of S satisfying the following properties: (i) d(x1, x2) = 2 for any two
distinct points x1 and x2 of X; (ii) every quad of T1 ∪ T2 has a unique point
in common with X. For every point y of S, we define f(y) = d(y, X). Then
f is a so-called semi-diagonal valuation of S.

We take the following proposition from [15, Lemma 5.3].
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Near Hex. semi-cl. ovoid. ext. semi-diag. other

L4 × L4 × L4 1 1 1 – –
W (3)× L4 – – 1 – –
Q(4, 3)× L4 1 – 2 – –

GQ(3, 5)× L4 – 1 2 – –
Q(5, 3)× L4 – – 1 – –
DW (5, 3) – – 1 – –
DQ(6, 3) – – – – –
DH(5, 9) – – – – –

Q(5, 3)⊗Q(5, 3) – – – 1 –
GQ(3, 5)⊗GQ(3, 5) – 1 1 1 –

Except, Type (I) – ? – – –
Except, Type (II) – ? – – –
Except, Type (III) – ? – – –
Except, Type (IV) ? ? – – ?

Table 1: The non-classical valuations of the dense near hexagons of order
(3, t)

Proposition 2.6 Let F be a hex of a dense near octagon S and let x be a
point of S at distance 2 from F . For every point y of F , we define fx(y) :=
d(x, y)−2. Then fx is a valuation of S which is neither classical nor ovoidal.

In [12], we studied the valuations of the dense near hexagons of order (3, t).
The non-classical valuations of these near hexagons are given in Table 1.
We give the number of nonisomorphic valuations for each type. We put a
question mark if nothing is known about their existence. The near hexagons
Q(4, 3)× L4 and GQ(3, 5)× L4 have two types of quads with ovoids, giving
rise to two classes of extended valuations.

3 The existence of big hexes

In Theorem 1.5 of [12], we have shown the following:

Proposition 3.1 ([12]) Let S be a dense near octagon of order (3, t) con-
taining an exceptional hex H of type (I), (II) or (III), then H is big in S
and S ∼= H × L4.
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In this section, we will prove that a dense near octagon S of order (3, t) has
big hexes if all hexes of S are classical or glued. The case of dense near
octagons of order (3, t) with an exceptional hex of type (IV) will be treated
in Section 4.

Consider the following ordering of the known dense near hexagons of order
(3, t): N1 = L4 × L4 × L4, N2 = Q(4, 3) × L4, N3 = W (3) × L4, N4 =
GQ(3, 5)×L4, N5 = Q(5, 3)×L4, N6 = DW (5, 3), N7 = GQ(3, 5)⊗GQ(3, 5),
N8 = Q(5, 3)⊗Q(5, 3), N9 = DQ(6, 3) and N10 = DH(5, 9). In this section,
we will prove the following result.

Proposition 3.2 Let S be a dense near octagon of order (3, t) with the prop-
erty that every hex is classical or glued. Let i ∈ {1, . . . , 10} be the biggest
integer such that S contains a hex isomorphic to Ni. Then every hex iso-
morphic to Ni is big in S.

This proposition has the following corollary.

Corollary 3.3 Let S be a dense near octagon of order (3, t) with the property
that every hex is classical or glued. Then S contains a big hex and hence is
isomorphic to one of the 28 near octagons mentioned in Proposition 1.1.

Suppose that Proposition 3.2 is not true. Then there exists a hex H ∼= Ni

and a point x at distance 2 from H. The map f : H → N; y 7→ d(x, y) − 2
is a valuation of H which is neither classical nor ovoidal by Proposition 2.6.
Hence, i 6= 9 and i 6= 10 by Table 1.

Lemma 3.4 If i ≤ 6, then the valuation f is semi-classical.

Proof. Suppose f is not semi-classical, then f is of extended type by Table
1. Let Q denote the unique special quad of H (with respect to f). Then
〈x, Q〉 is a hex, and its quad Q is not big. This is impossible, since every hex
of S is classical (i ≤ 6). Hence f is semi-classical. 2

By Table 1, N3, N4, N5 and N6 do not have semi-classical valuations. Hence,

Corollary 3.5 i ∈ {1, 2, 7, 8}.

The case i = 8.

Lemma 3.6 If Q is a special quad of H (for the valuation f), then 〈x, Q〉 ∼=
Q(5, 3)⊗Q(5, 3). So, every quad through x and a point of Of is a grid.
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Proof. If Q is a special quad, then 〈x, Q〉 is a hex, and its grid-quad Q is
not big. It follows that 〈x, Q〉 is isomorphic to either Q(5, 3) ⊗ Q(5, 3) or
GQ(3, 5) ⊗ GQ(3, 5). If 〈x, Q〉 ∼= GQ(3, 5) ⊗ GQ(3, 5), then there exists a
GQ(3, 5)-quad of 〈x, Q〉 intersecting a Q(5, 3)-quad of H in a line. The hex
through these two quads would then contradict Proposition 2.4. So, 〈x, Q〉
is isomorphic to Q(5, 3)⊗Q(5, 3). 2

Now, let y denote an arbitrary point of Of . Since f is a semi-diagonal
valuation, see Table 1, y is contained in 9 special grid-quads G1, . . . ,G9. Let
L denote an arbitrary line through y contained in the grid-quad 〈x, y〉 and
let Li, i ∈ {1, . . . , 9}, be the line of Gi which is contained in a Q(5, 3)-quad
together with L. Two of these lines, say L1 and L2, are contained in the
same Q(5, 3)-quad of H. The hex 〈L, L1, L2〉 then has three Q(5, 3)-quads
through the point y, contradicting Proposition 2.4. (Recall that there are no
DH(5, 9)-hexes since i = 8.)

The case i = 7.

The valuation f cannot be of extended type, otherwise 〈x, Q〉, with Q the
unique special quad of f , would be a hex containing a GQ(3, 5)-quad which
is not big. This is impossible by Proposition 2.4. So, f is of semi-diagonal
type by Table 1. If Q is a special quad, then 〈x, Q〉 is a hex and its grid-quad
Q is not big. It follows that 〈x, Q〉 ∼= GQ(3, 5)⊗GQ(3, 5) (recall i = 7).

We can now use a similar reasoning as in the case i = 8 to obtain a
contradiction. Let y denote an arbitrary point of Of and let G1, . . . ,G5 denote
the five special quads through y. Let L denote a line through y contained in
the grid-quad 〈x, y〉 and let Li, i ∈ {1, . . . , 5}, denote the line of Gi which is
contained in a GQ(3, 5)-quad with L. Two of these lines, say L1 and L2, are
contained in the same GQ(3, 5)-quad with L. The hex 〈L, L1, L2〉 has three
GQ(3, 5)-quads through the point y, contradicting Proposition 2.4.

The case i = 2.

Every quad is isomorphic to L4×L4 or Q(4, 3) and every hex is isomorphic to
either L4 ×L4 ×L4 or Q(4, 3)×L4. Let v denote the total number of points
of S and let ni, i ∈ {0, . . . , 4}, denote the constants such that |Γi(x)| = ni

for every point x of S (see Proposition 2.1). We have n0 = 1, n1 = 3(t + 1)
and n0 − n1

3
+ n2

9
− n3

27
+ n4

81
= 0 ([9, Theorem 1.2]). Hence,

v = n0 + n1 + n2 + n3 + n4 = 4n3 − 8n2 + 28n1 − 80n0. (1)

By [7, Corollary 2 + Section 6] there exist constants α, β, A and B such that
each point is contained in α grid-quads, β Q(4, 3)-quads, A hexes isomorphic
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to L4 × L4 × L4 and B hexes isomorphic to Q(4, 3) × L4. Since every two
intersecting lines are contained in a unique quad, we have

2α + 12β = (t + 1)t. (2)

Since every two points at distance 2, respectively distance 3, are contained
in a unique quad, respectively hex, we have

n2 = 9α + 27β, (3)

n3 = 27A + 81B. (4)

Counting in two different ways the number of pairs (Q,L) with Q a quad of
order (3, i), i ∈ {1, 3}, through x and L a line through x not contained in Q,
gives

β(t− 3) = B, (5)

α(t− 1) = 3A + 12B. (6)

By equations (1), (3), (4), (5) and (6), n3 = 9α(t− 1)− 27β(t− 3) and

v = (36t− 108)α + (108− 108t)β + 84t + 4. (7)

Since H has no ovoids, we have Γ3(H) = ∅.

Lemma 3.7 |Γ2(y) ∩H| = 1 for every point y ∈ Γ2(H).

Proof. For every point z of H, define g(z) = d(y, z) − 2. Then g is a
valuation of H which is neither classical nor ovoidal by Proposition 2.6.

Suppose g is of extended type. If Q is the unique special quad of H, then
〈y, Q〉 is a hex and its quad Q is not big. This is impossible since all hexes
are classical.

Hence, g is semi-classical by Table 1. If z∗ is the unique point of H for
which g(z∗) = 0, then Γ2(y) ∩H = {z∗}. 2

From |Γ0(H)| = 160, |Γ1(H)| = 480(t−4), |Γ2(H)| = 160(n2−63−45(t−4))
(use Lemma 3.7) and |Γ3(H)| = 0,

v = 1440α + 4320β − 6720t + 16960. (8)

By equations (2), (7) and (8), α and β are solutions of the following linear
system of equations:{

2α + 12β = t2 + t,
(43− t) · α + (117 + 3t) · β = 189t− 471.

We find

α =
3t3 + 120t2 − 2151t + 5652

18t− 282
.
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Lemma 3.8 Let y be a point of S and let Q be a quad. Then y is classical
with respect to Q if and only if d(y, Q) ≤ 2.

Proof. Obviously, y is classical with respect to Q if d(y, Q) ≤ 1 and y is
ovoidal with respect to Q if d(y, Q) = 3. Suppose that d(y, Q) = 2 and that
y is ovoidal with respect to Q, then the quad Q of the hex 〈y, Q〉 is not big,
a contradiction. 2

Lemma 3.9 We have the following restrictions on the number t + 1:

(a) t + 1 ≥ 4β;

(b) t + 1 is even, 30 ≤ t + 1 ≤ 50 and t+1
2
− 15 ≤ β.

Proof. (a) If t + 1 < 4β, then there exists a line L which is contained in
two Q(4, 3)-quads Q1 and Q2. The hex 〈Q1, Q2〉 contains two Q(4, 3)-quads
through a line, contradicting i = 2.

(b) Let Q be a Q(4, 3)-quad of H not containing the unique point of H
at distance 2 from x. Let {x1, . . . , x10} denote the ovoid of Q consisting of
all points of Q at distance 3 from x. Put Hi := 〈x, xi〉, i ∈ {1, . . . , 10}.
If L is a line through x contained in Γ3(Q), then the ovoids Γ3(z) ∩ Q,
z ∈ L, of Q partition the point set of Q. This is impossible, since Q(4, 3)
has no partition in ovoids (see e.g. [4, Lemma 2.2]). So, every line through
x contains a point of Γ2(Q) and hence is contained in at least one of the
hexes Hi, i ∈ {1, . . . , 10}. Suppose that a line L through x is contained in
two distinct hexes Hi1 and Hi2 (i1, i2 ∈ {1, . . . , 10}). If y denotes the unique
point of L at distance 2 from xi1 , then by Lemma 3.8, y is classical with
respect to Q and hence d(y, xi2) = d(y, xi1)+d(xi1 , xi2) = 4, a contradiction,
since y and xi2 belong to Hi2 . Suppose that among the hexes H1, . . . , H10, δ1

are isomorphic to L4 ×L4 ×L4 and δ2 are isomorphic to Q(4, 3)×L4. Then
we have δ1 + δ2 = 10, 3δ1 + 5δ2 = t + 1 and δ2 ≤ β. Property (b) now easily
follows. 2

Since t ∈ {29, . . . , 49} and α ∈ N, t ∈ {29, 33, 37, 39, 46}. The value t = 46 is
excluded since t+1 must be even. For t = 29, we have α = 489 and β = −9.
For t = 33, we have α = 555 and β = 1. For t = 37, we have α = 631 and
β = 12. For t = 39, we have α = 672 and β = 18. None of these possibilities
can occur by Lemma 3.9.

The case i = 1.

In this case S is a so-called regular near octagon ([1, Section 6.4], [9, Chapter
3]) with parameters s = 3, t2 = 1, t3 = 2 and t. Let A denote the collinearity
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matrix of A. There are well-known techniques for calculating the eigenvalues
and multiplicities of A in function of t, see [1], [9], [18]. (In [9, Section
3.3] or [18, Theorem 7.8], there are explicit formulas for the eigenvalues and
multiplicities in function of the parameters.) There exists only one value
of t for which all eigenvalues are integral, namely t = 3. In this case S ∼=
L4×L4×L4×L4. But this is impossible since we assumed that there exists
a point x and a hex H such that d(x, H) = 2.

4 Dense near octagons of order (3, t) without

big hexes

In this section, we will prove Theorem 1.2. So, let S denote a dense near
octagon of order (3, t) without big hexes. By Proposition 3.1,

Lemma 4.1 S does not contain exceptional hexes of type (I), (II) or (III).

By Corollary 3.3, S has a hex H of type (IV). By Proposition 2.1, there exist
constants ni, i ∈ {0, . . . , 4}, such that |Γi(x)| = ni for every point x of S.
Obviously, n0 = 1 and n1 = 3(t + 1).

Lemma 4.2 Every quad Q isomorphic to either W (3), GQ(3, 5) or Q(5, 3)
is classical in S.

Proof. By Proposition 2.2, this holds if Q ∼= W (3) or Q ∼= Q(5, 3), since
these generalized quadrangles do not have ovoids [17, 3.4.1]. So, Suppose
Q ∼= GQ(3, 5). Let x denote an arbitrary point of S. If d(x, Q) ≤ 1, then x
is obviously classical with respect to Q.

Suppose d(x, Q) = 2 and that x is ovoidal with respect to Q, then the hex
〈x, Q〉 contains a quad isomorphic to GQ(3, 5) which is not big, contradicting
Proposition 2.4. Hence, every point of Γ2(Q) is classical with respect to Q.

Suppose now that x ∈ Γ3(Q). Then x is ovoidal with respect to Q. Let
x′ be a point collinear with x at distance 2 from Q. Then x′ is classical with
respect to Q. Now, let L be the line x′x. By Lemma 9 of [2], every point of
L\{x′} is ovoidal with respect to Q. The three ovoids Γ3(z)∩Q, z ∈ L\{x′},
all contain the point πQ(x′) and partition the set of points of Q at distance 2
from πQ(x′). Such a configuration of ovoids cannot exist in a GQ(3, 5)-quad,
see [4, Lemma 2.2]. This proves the lemma. 2

Lemma 4.3 If a certain Q(4, 3)-quad is classical in S, then all Q(4, 3)-quads
are classical in S.
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Proof. Let Q be a given Q(4, 3)-quad. If x is a point of Γ2(Q) which is
ovoidal with respect to Q, then the hex 〈x, Q〉 contains a Q(4, 3)-quad which
is not big. By Proposition 2.4, 〈x, Q〉 is an exceptional hex of type (I), (II)
or (III). This contradicts Lemma 4.1. Hence, every point of Γ2(Q) is classical
with respect to Q. Obviously, every point of Γ3(Q) is ovoidal with respect to
Q. Hence, a Q(4, 3)-quad Q is classical in S if and only if the total number
of points of S is equal to |Γ0(Q)| + |Γ1(Q)| + |Γ2(Q)|. Now, |Γ0(Q)| = 40,
|Γ1(Q)| = 40 · 3(t − 3) and |Γ2(Q)| = |Q| · (n2 − 27 − 12 · 3(t − 3)). Hence,
|Γ0(Q)|+ |Γ1(Q)|+ |Γ2(Q)| is independent from the chosen Q(4, 3)-quad Q.
The lemma now readily follows. 2

The following lemma is a special case of Theorem 2.32 of [9].

Lemma 4.4 Let Q be a quad of S which is classical in S, then every hex
which meets Q has at least one line in common with Q.

Lemma 4.5 No hex is isomorphic to DW (5, 3).

Proof. Suppose the contrary. Let H be a hex of S isomorphic to DW (5, 3).
Since H is not big in S, there exists a point x in S at distance 2 from H. The
map fx : H → N; y 7→ d(x, y)−2 is a non-classical and non-ovoidal valuation
by Proposition 2.6. By Table 1, fx is of extended type. If Q is the unique
special quad, then the hex 〈x, Q〉 contains a Q(4, 3)-quad which is not big,
contradicting Proposition 2.4 and Lemma 4.1. 2

Lemma 4.6 If Q is a quad of S, then every point x of S is contained in a
quad isomorphic to Q.

Proof. By connectedness of S, it suffices to prove this for every point
x ∈ Γ1(Q). Now, consider the hex 〈x, Q〉 and apply Proposition 2.4. 2

Lemma 4.7 Precisely one of the following cases occurs:

(1) Every quad is isomorphic to L4 × L4 and every hex is isomorphic to
either L4 × L4 × L4 or an exceptional near hexagon of type (IV ).

(2) Every quad is isomorphic to either L4×L4 or Q(4, 3) and both types of
quads occur. Every hex is isomorphic to either L4×L4×L4, Q(4, 3)×
L4 or an exceptional near hexagon of type (IV ). No Q(4, 3)-quad is
classical.

Proof. Let Q denote the set of all thick quads Q (i.e. Q 6∼= L4 × L4) which
are classical in S. If Q 6= ∅, then by Proposition 2.3 and Lemmas 4.2, 4.3,
4.6, there exists a quad Q ∈ Q containing a point x ∈ H. By Lemma 4.4,
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Q ∩ H is a line L. If every line through x is contained in Q ∪ H, then by
Theorem 2.31 of [9], H is big in S, which is impossible. Hence, there exists a
line L′ through x not contained in Q ∪H. Let Q′ denote a quad through L′

such that Q∩Q′ = {x}. Now, by Lemma 4.4, there are precisely tQ +1 ≤ 10
hexes through Q′. On the other hand, every hex through Q′ intersects H in
at most a quad. So, if Q′∩H = {x}, then tQ+1 ≥ tH+1

2
= 35

2
, a contradiction.

If Q′ ∩H is a line, then tQ + 1 ≥ tH , also a contradiction. As a consequence,
Q = ∅. Hence by Lemma 4.2, S does not contain quads isomorphic to W (3),
Q(5, 3) or GQ(3, 5). Also no Q(4, 3)-quad is classical in S. The lemma now
readily follows. 2

We will now show that case (2) in Lemma 4.7 cannot occur. Suppose the
contrary and let S satisfy the conditions of Lemma 4.7 (2). Then we can say
the following.

Lemma 4.8 There exist constants α1, α2, β1, β2 and β3 such that every
point of S is contained in α1 L4×L4-quads, α2 Q(4, 3)-quads, β1 L4×L4×L4-
hexes, β2 Q(4, 3)× L4-hexes and β3 exceptional hexes of type (IV).

Proof. This has been shown in [7] (case (5) of Section 6). 2

Lemma 4.9 There exist constants γ1, γ2, γ3 such that for every point x and
every Q(4, 3)-quad Q such that d(x, Q) = 3, there are γ1 L4×L4×L4-hexes,
γ2 Q(4, 3) × L4-hexes and γ3 exceptional hexes through x meeting Q in a
point.

Proof. Let O be the ovoid Γ3(x)∩Q of Q. Since |O| = 10, there are precisely
10 hexes through x which meet Q in a point. Hence,

γ1 + γ2 + γ3 = 10. (9)

We will now show that every line L through x is contained in precisely one
of the 10 above-mentioned hexes. If L ⊆ Γ3(Q), then the ovoids Γ3(z) ∩ Q,
z ∈ L, of Q determine a partition of Q in ovoids, which is impossible, since
Q(4, 3) does not have a partition in ovoids [4, Lemma 2.2]. Hence, L contains
a point z′ ∈ Γ2(Q). If z′ is ovoidal with respect to Q, then the hex 〈z′, Q〉
contains a Q(4, 3)-quad which is not big, a contradiction. Hence, z′ is classical
with respect to Q. Obviously, the line L is contained in the hex 〈x, πQ(z′)〉.
Suppose that L is contained in another hex H ′ which meets Q in a point
u. Then d(z′, u) = d(z′, πQ(z′)) + d(πQ(z′), u) = 2 + 2 = 4, contradicting
the fact that z′ and u belong to the hex H ′. Hence, every line through x is
contained in precisely one of the hexes through x meeting Q. It follows that

3γ1 + 5γ2 + 35γ3 = t + 1. (10)
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By (9) and (10), γ2

16
+ γ3 = t−29

32
. Hence,

t− 49

32
≤ γ3 ≤

t− 29

32
, (11)

since γ2 ≤ 10. Now, γ3 is uniquely determined by (11) and hence only
depends on t. By (9) and (10), also γ1 and γ2 only depend on t. This proves
the lemma. 2

Lemma 4.10 (a) Let x be a point and let Q be a Q(4, 3)-quad such that
d(x, Q) = 3. Then every exceptional hex through x meets Q.

(b) t + 1 ≥ 62.

Proof. (a) Let H1, . . . , H10 denote the 10 hexes through x meeting Q. Sup-
pose that H ′ is an exceptional hex through x disjoint from Q. Then H ′

meets each Hi, i ∈ {1, . . . , 10}, in at most a quad. Hence, at most 20 lines
of H ′ through x are contained in H1 ∪ · · · ∪ H10. This is impossible, since
tH′ + 1 = 35 and since every line through x is contained in H1 ∪ · · · ∪ H10,
by the proof of Lemma 4.9.

(b) By equation (10), t + 1 = 3(γ1 + γ2 + γ3) + 2γ2 + 32γ3. Now, γ3 ≥ 1
(see (a) and Lemma 4.8), γ2 ≥ 0 and γ1 +γ2 +γ3 = 10. Hence, t+1 ≥ 62. 2

Lemma 4.11 There exists a constant δ such that for every point x of S,
there are precisely δ Q(4, 3)-quads Q for which d(x, Q) = 3.

Proof. Let x be a given point of S. Let Ni, i ∈ {0, 1, 2, 3}, denote the
number of Q(4, 3)-quads such that d(x, Q) = i. Then N0 + N1 + N2 + N3

is the total number of Q(4, 3)-quads of S. If d(x, Q) ≤ 2, then x is classical
with respect to Q and hence Q contains a unique point nearest to x. We
have (with α2 as in Lemma 4.8)

α2 = N0, (12)

3(t + 1) · α2 = N1 + 12N0, (13)

n2 · α2 = N2 + 12N1 + 27N0. (14)

By (12), (13) and (14), N0, N1 and N2 are independent from the chosen point
x. Hence, also N3 does not depend on the chosen point x. 2

Remark. Since Γ3(Q) 6= ∅ for every Q(4, 3)-quad Q, δ ≥ 1.

Lemma 4.12 Let x be a point of S. Then there are precisely β3 = γ3 excep-
tional hexes through x and any two of these hexes intersect each other only
in the point x.
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Proof. Since δ ≥ 1, there exists a Q(4, 3)-quad Q such that d(x, Q) = 3.
Now, the lemma follows from Lemma 4.10 and the proof of Lemma 4.9. 2

We are now ready to derive a contradiction. Let Q be a Q(4, 3)-quad, let x be
a point of Q and let G be a grid-quad through x such that G∩Q = {x}. (Such
a grid exists through every exceptional hex through x.) Let y be a point of G
at distance 2 from x. Let H1, . . . , Ht−5 denote all the t−5 Q(4, 3)×L4-hexes
through Q which intersect G only in the point x. Then d(y, Hi) = 2 for every
i ∈ {1, . . . , t − 5}. (If y′ were a point of Hi collinear with y, then y′ is on a
shortest path between y and x and hence y′ ∈ G, which is impossible.) Put
fi : Hi → N; u 7→ d(y, u) − 2. By Proposition 2.6, fi is a valuation of Hi

which is neither classical nor ovoidal.

Suppose that fi is semi-classical for a certain i ∈ {1, . . . , t−5}. Let R1, R2, R3

denote the three Q(4, 3)-quads of Hi different from Q and let ui, i ∈ {1, 2, 3},
denote the unique point of Ri collinear with x. Then d(y, R1) = d(y, R2) =
d(y, R3) = 3. For each i ∈ {1, 2, 3}, the γ3 exceptional hexes through y are
precisely the γ3 exceptional hexes through y intersecting Ri. If 〈y, u1〉 =
〈y, u2〉 = 〈y, u3〉 is not an exceptional hex, then there are at least 3γ3 ex-
ceptional hexes through y intersecting Hi, a contradiction. Hence, 〈y, u1〉 =
〈y, u2〉 = 〈y, u3〉 is an exceptional hex and there are at least 3γ3 − 2 ex-
ceptional hexes through y intersecting Hi. It follows that γ3 = 1. Since
t + 1 ≥ 62, there exists a line L through x not contained in 〈y, u1〉 ∪ Q.
Let j ∈ {1, . . . , t − 5} such that Hj = 〈Q, L〉. By the above reasoning we
know that fj cannot be semi-classical (otherwise 〈y, L〉 and 〈y, u1〉 are two
distinct exceptional hexes through y, contradicting γ3 = 1). Hence, there
exists a special quad Q′ in Hj. But then the hex 〈y, Q′〉 must be exceptional
since its quad Q′ is not big. Again this is impossible, since 〈y, u1〉 is the only
exceptional hex through y.

Hence, all valuations fi, i ∈ {1, . . . , t − 5}, are of extended type. If Q′

is a special quad with respect to one of these valuations, then Q′ ∼= L4 × L4

and 〈y, Q′〉 is exceptional, since the quad Q′ of the hex 〈y, Q′〉 is not big.
In fact H∗ := 〈y, Q′〉 is the unique exceptional hex through the grid G, see
Lemma 4.12. It follows that each of the t − 5 hexes H1, . . . , Ht−5 meet the
unique exceptional hex through G. This means that every line through x not
contained in Q is contained in H∗. This is impossible, since t + 1 ≥ 62.

We can conclude that case (2) of Lemma 4.7 cannot occur. This proves
Theorem 1.2.
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5 Corollaries

5.1 Proof of Theorem 1.4

For every point x of S, let α(x) denote the number of convex subpolygons
through x isomorphic to an element of V .

Now, let x1 and x2 denote two distinct collinear points of S. For every
convex subpolygon F of S through the line x1x2, let µF denote the number
of convex sub-2δ-gons of F through x1x2 isomorphic to an element of V .
Since every sub-2δ-gon through x1 not containing x2 is contained in a unique
sub-(2δ + 2)-gon containing x2, we have

α(x1) = µS +
∑

F

(αF − µF ),

where the summation ranges over all convex sub-(2δ+2)-gons F through the
line x1x2. Similarly,

α(x2) = µS +
∑

F

(αF − µF ).

Hence, α(x1) = α(x2) for any two distinct collinear points x1 and x2 of S.
The lemma now follows from the connectedness of S.

5.2 Applications

In Table 2, we list the number of quads of each type through a given point of
a dense near hexagon of order (3, t). We have used the notation ⊗2GQ(3, 5)
for the glued near hexagon GQ(3, 5)⊗GQ(3, 5) and the notation ⊗2Q(5, 3)
for the glued near hexagon Q(5, 3)⊗Q(5, 3). Corollary 1.5 is an immediate
corollary of Theorem 1.4 and Table 2.

In Table 3, we list the number of hexes of each type through a given
point of a known dense near octagon of order (3, t). In the table, µi, i ∈
{1, . . . , 10}, denotes the number of Hi-hexes through a given point of the
near octagon. For the definition of Hi, see Table 2. The numbers in the
table are readily deduced from [6] and [8]. (In Section 3 of [6], we have
studied the convex subpolygons of product and glued near polygons. For
the glued near octagons of type ⊗3GQ(3, 5) and ⊗3Q(5, 3), we also need the
information provided by Propositions 5.1, 5.2 and 5.3 of [8].) Notice that
only (⊗2Q(5, 3))⊗2 Q(5, 3) has two types of points. There are points which
are contained in 729 L4 × L4 × L4-hexes and 3 ⊗2Q(5, 3)-hexes, and points
which are contained in 648 L4 × L4 × L4-hexes, 18 Q(5, 3)× L4 hexes and 2
⊗2Q(5, 3)-hexes. Corollaries 1.6 and 1.7 now readily follow from Proposition
1.1, Theorem 1.2, Corollary 1.3, Theorem 1.4 and Table 3.
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L4 × L4 W(3) Q(4,3) GQ(3, 5) Q(5, 3)
H1 = L4 × L4 × L4 3 – – – –
H2 = W (3)× L4 4 1 – – –
H3 = Q(4, 3)× L4 4 – 1 – –
H4 = GQ(3, 5)× L4 6 – – 1 –
H5 = Q(5, 3)× L4 10 – – – 1
H6 = DW (5, 3) – – 13 – –
H7 = DQ(6, 3) – 13 – – –
H8 = DH(5, 9) – – – 91 –
H9 = ⊗2GQ(3, 5) 25 – – 2 –
H10 = ⊗2Q(5, 3) 81 – – – 2
Exceptional, type I 160 – 5 – –
Exceptional, type II 171 – 10 – –
Exceptional, type III 120 – 43 – –
Exceptional, type IV 595 – – – –

Table 2: The number of quads through a given point of a dense near hexagon
of order (3, t)
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