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[1] In this paper, the full wave simulation of a 2‐D Luneburg lens is reported, using the
Multilevel Fast Multipole Algorithm (MLFMA). To stabilize the MLFMA at low
frequencies, it is augmented with a normalized plane‐wave method, yielding a fully
broadband solver. To test the proposed method, the Luneburg lens is partitioned into
concentric shells with a constant permittivity, resulting in a complex simulation target
that consists of multiple embedded dielectric objects. The numerical results are
in good agreement with the analytical solutions for both the continuous and
discretized lens.
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1. Introduction
[2] Due to the growing interest in technology based on

electromagnetics, such as wireless communication and
photonics, it is important to be able to solve Maxwell’s
equations as quickly and as precisely as possible. When
considering piecewise homogeneous media and perfect
or imperfect conductors, one of the most popular and
efficient simulation methods is the use of boundary
integral equations and to discretize them using the
method of moments (MoM) [Harrington, 1968]. In the
MoM, the boundaries of the objects are divided into
segments and for each segment the fields are expressed as
a linear combination of basis functions. In this paper the
Poggio‐Miller‐Chang‐Harrington‐Wu‐Tsai (PMCHWT)
formulation for the boundary integral equations is used,
which yields accurate solutions, but is ill conditioned
[Kolundzija and Djordjevic, 2002]. Applying the MoM
leads to a set of linear equations for which the system
matrix is a dense matrix. A direct solution of this set
requires O(N3) operations, with N the number of un-
knowns, which becomes unfeasible for largeN. By solving
the set of equations using Krylov‐based, iterative meth-
ods, the complexity can be reduced to O(PN2), as each of
the P iterations requires the evaluation of matrix‐vector
products. If the problem is well conditioned thenP is much

smaller than N. A further reduction of the complexity can
be achieved by applying the Multilevel Fast Multipole
Algorithm (MLFMA) [Chew et al., 2001]. The MLFMA
reduces the complexity of the matrix‐vector multiplication
from O(N2) to O(N log N), allowing to solve problems
with a large number of unknowns.
[3] If the number of unknowns N is large, the com-

putational requirements exceed the capabilities of a single
processor and a parallel MLFMA has to be invoked. A
partitioning scheme for a scalable parallel MLFMA has
been presented by Fostier and Olyslager [2008] and
Ergül and Gürel [2009a].
[4] All the previously mentioned methods and algo-

rithms are implemented in Nero2d, which is open source
and can be downloaded free of charge at http://www.
openfmm.net.
[5] This paper focuses on the simulation of the Luneburg

lens [Luneburg, 1944; Kay, 1959; Bogaert et al., 2007;
Parfitt et al., 2000] involving many unknowns, but at the
same time exhibiting a complex geometry. Such problems
require an MLFMA approach that remains stable and
accurate at low frequencies, but at the same time remains
truly broadband. Indeed, at the considered frequencies, the
size of the MLFMA boxes on some of the lower levels is
small with respect to the wavelength, whereas, at the higher
levels, box sizes are comparable to the wavelength.
[6] In section 2, a very short recapitulation of the

MLFMA for 2‐D is given, indicating that the recently
developed normalized plane‐wave method (NPWM)
[Bogaert et al., 2006] is a robust way to solve the
so‐called low‐frequency breakdown of the classical
MLFMA.
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[7] Section 3 considers the 2‐D Luneburg lens geom-
etry. The permittivity of this lens varies continuously as a
function of its radius and focuses an incident plane wave
into a single point on its surface. For the 2‐D case, the
solution of the problem can be written down analytically.
As our 2‐D MLFMA method can only handle objects
with a constant permittivity and permeability, the Lune-
burg lens is divided into shells with constant material
parameters, approximating the continuous lens. This
results in a geometry where objects are embedded into
other objects. An analytical solution for this discretized
version of the lens is also available. By comparing the
available analytical solutions and the numerical results
from our NPWM‐MLFMA, the validity of our numerical
technique can be put to the test. A very similar approach
to simulate a 3‐D Luneburg lens has been presented by
Carayol and Stève [2010]. Many other approaches to
model complex geometries exist, [e.g., Jordan et al.,
2009]. Finally, section 4 presents some conclusions.

2. A Low‐Frequency Stable MLFMA
[8] In 2‐D problems the MLFMA is based on the

following expansion of the Green’s function [Chew et al.,
2001]:

H 2ð Þ
0 k�ð Þ ’ 1

2�

Z 2�

0
e j~k�~�aT ~�Tð Þe j~k�~�d d� ð1aÞ

T ~�Tð Þ ¼
XQ
n¼�Q

jnH 2ð Þ
n k�Tð Þe jn �T��ð Þ; ð1bÞ

with ~� = ~�a + ~�T + ~�d, k the wave number, ~�a the
aggregation vector, ~�T the translation vector, ~�d the
desaggregation vector and Hn

(2) (z) the Hankel function of
the second kind and the nth order.
[9] For low frequencies the order n in (1b) can become

larger than the argument krT. For these terms the Hankel
function increases rapidly, leading to numerical instabilities.
Bogaert et al. [2006] solved this instability by the intro-
duction of the Normalized Plane Wave Method (NPWM).
In the NPWM the translation operator T(~�T) is split into
two parts: T ±(~�T). Because the integrand is holomorphic
and has a periodicity of 2p, the integration path can be
shifted over a distance � jc. The strong increase of the
Hankel functions is now compensated by a factor e−∣n∣c,
which makes the addition theorem of (1a) and (1b)
numerically stable. A first validation of the NPWM,
hybridized with the MLFMA, is provided by Michiels
et al. [2009]. In three dimensions, the addition theorem

likewise suffers from a low‐frequency breakdown and a
similar stabilization technique, the so‐called Nondirective
Stable Plane Wave MLFMA (NSPWMLFMA), is ana-
lyzed by Bogaert and Olyslager [2009a] and Peeters et al.
[2008]. Other techniques to stabilize the low‐frequency
breakdown also exist, for instance the techniques pre-
sented by Bogaert and Olyslager [2009b] for two dimen-
sions and Bogaert et al. [2008] for three dimensions.
Instead of using the addition theorem of (1a) and (1b),
also fast multipole methods with nondiagonal translation
operators can be employed, as for example done by
Greengard and Rokhlin [1987].
[10] All numerical results presented in the following

are based on the method first described by Bogaert et al.
[2006]. The used basis functions are piecewise linear
for the longitudinal field components Ez and Hz and
piecewise constant for the tangential field components Et

and Ht.

3. The Luneburg Lens
[11] To thoroughly test our boundary integral equation

solver, a Luneburg lens will be simulated. A 2‐D
Luneburg lens is an infinitely long cylinder with circular
cross section and its refractive index depends on the radial
coordinate r, such that

� �ð Þ ¼ �0 2� �2

R2

� �
� < R; ð2Þ

where R is the radius of the lens.
[12] When a plane wave impinges perpendicularly to

the cylinder axis, the incident field is focused in a point
on the surface of the cylinder. The line connecting the
focal point to the center of the cross section is parallel to
the direction of incidence.
[13] As our boundary integral equation solver can only

handle objects with a constant permittivity, the continuous
permittivity profile (2) is approximated by means of
concentric shells with a constant permittivity. Hence,
solving the Luneburg lens requires the correct handling of
dielectric objects embedded in other dielectrics. Also,
when a large number of shells or a very dense discretiza-
tion is used, a broadbandMLMFA is required to solve this
problem efficiently, making the Luneburg lens a rather
challenging problem. However, as a test case it is partic-
ularly suited to validate the solver, since analytical solu-
tions exist for both the continuous and piecewise constant
Luneburg lens. This allows us to split the total error on the
numerical solution into two parts: the error made by
approximating the continuous permittivity profile with a
piecewise constant one, and the error introduced by our
solver. This in turn will allow a thorough validation of our
solver.
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3.1. Analytical Solutions

[14] In this paragraph, the analytical solutions for the
continuous and piecewise constant Luneburg lens will be
briefly derived. Then these two analytical results will be
compared to the results obtained using our boundary
integral equation solver.
[15] The excitation is assumed to be a TM‐polarized

plane wave (Ein = Ez
in uz, i.e., parallel to the cylinder axis).

The analytical solution for the continuous Luneburg lens is
obtained using separation of variables

Ein
z ¼ E0e

�jk0�cos�; ð3aÞ

¼
Xþ∞

n¼0

E0 �jð Þn�nJn k0�ð Þ cos n�ð Þ � > R; ð3bÞ

Esc
z ¼

Xþ∞

n¼0

Esc
n �nH

2ð Þ
n k0�ð Þ cos n�ð Þ � > R; ð3cÞ

Ez ¼
Xþ∞

n¼0

En�n
1

�
WM

� k0R

2
;
n

2
;
k0�2

R

� �
cos n�ð Þ � < R; ð3dÞ

�n ¼ 2� �n0; ð3eÞ

with Jn(z) the Bessel function of the first kind and nth
order. WM(�, n, z) is the Whittaker function, denoted by
Abramowitz and Stegun [1965, pp. 505–507] by M�,n(z).
Furthermore, dn0 equals 1 for n = 0 and zero for all other n,
while k0 is the free space wave number and the superscript
“sc” stands for the scattered field.
[16] The complex coefficients En

sc and En can be found
by enforcing the proper boundary conditions at r = R.
Using Abramowitz and Stegun [1965, formulas 9.1.27
and 13.4.32], the continuity of the tangential electric and
magnetic field leads to

Z11 Z12
Z21 Z22

� �
Esc
n
En

� �
¼ B1

B2

� �
; ð4Þ

with
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2
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2
;
n

2
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2

H 2ð Þ
n�1 k0Rð Þ � H 2ð Þ

nþ1 k0Rð Þ
� �

; ð5eÞ

Z22 ¼ 1
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[17] Figure 1a shows the amplitude of the total electric
field along the direction of incidence for an incident
wave with a wavelength l0 =R/10 in free space and forR =
1 m. In the focal point on the surface of the cylinder the
field is high, which clearly shows that the field is focused
in this point. Figure 1b shows the phase of the total
electric field over the cross section. When the plane wave
impinges on the lens, the flat phase fronts are gradually
bent toward the focal point.
[18] To obtain the analytical solution for the piecewise

constant Luneburg lens, the Luneburg lens is first divided

Figure 1a. Amplitude of the total electric field as a
function of the spatial coordinate along the direction of
incidence. The focal point of the Luneburg lens is E0 =
1Vm, R = 1 m.

MICHIELS ET AL.: LUNEBURG LENS RS2003RS2003

3 of 6



into M shells. Each shell i (i = 1… M) is selected to have
a radius Ri and permittivity �i determined by

Z R1

0
� �ð Þ�d� ¼

Z R2

R1

� �ð Þ�d� ¼ . . . ¼
Z Ri

Ri�1

� �ð Þ�d�

¼ . . . ¼
Z R

RM�1

� �ð Þ�d�; ð6aÞ

Z Ri

Ri�1

� �ð Þ�d� ¼ �i

Z Ri

Ri�1

�d� 8i ¼ 1 . . .M ;

ð6bÞ
with M the number of shells. Of course, other criteria
could be used to discretize the continuous lens.
[19] When the piecewise constant permittivity profile

has been determined, the analytical solution is also
obtained using separation of variables. The analytical
expression for the electric field in each shell and for the
scattered field outside the lens is given by

� > R : Esc
z ¼

Xþ∞

n¼0

�nE
sc
n H

2ð Þ
n k0�ð Þ cos n�ð Þ; ð7aÞ

Ri�1 < � < Ri :

Ez;i ¼
Xþ∞

n¼0

�n E1
i;nJn ki�ð Þ þ E2

i;nYn ki�ð Þ
� �

cos n�ð Þ; ð7bÞ

� < R1 : Ez;1 ¼
Xþ∞

n¼0

�nE
1
1;nJn k1�ð Þ cos n�ð Þ; ð7cÞ

where i varies from 2 to M and Yn(z) is the Bessel
function of the second kind and the nth order. The wave
numbers of the respective shells are denoted by ki.
[20] Imposing the boundary conditions, i.e., continuity

of the tangential electric and magnetic field at each shell
boundary, leads to a set of 2M linear equations with 2M
unknowns, for each n, which allows the amplitudes En

sc,
Ei,n
1 , Ei,n

2 and E1,n
1 to be determined.

3.2. Results

[21] Figures 2a and 2b show the comparison between
the three solutions: the analytical solution for the con-
tinuous Luneburg lens, the analytical solutions for the
lens divided into shells and the numerical solution for the
shell approximation using the broadband MLFMA‐MoM
solver. As the focal point of the Luneburg lens is the
point of interest, the value of the electric field in this
point is used for comparison. The relative error shown in
Figures 2a and 2b is defined as j Ez;piecewise

Ez;continous
� 1j and

j Ez;numerical

Ez;piecewise
� 1j, respectively. The series in the analytical

solutions (3a)–(3e) and (7a)–(7c) were truncated at 100
terms, thus ensuring convergence.
[22] Both the MLFMA precision and the iterative

precision were set to 10−6. The former implies that the
series in (1b) was truncated such that the error when
applying the addition theorem of (1a) and (1b) is below

Figure 2a. Relative error of the analytical solution of
the shells with respect to the analytical solution of the
continuous Luneburg lens as a function of the number
of shells. Comparison between the analytical solution
for the Luneburg lens, the analytical solution for the lens
divided in shells, and the numerical results.

Figure 1b. Phase of the total electric field over the cross
section. The flat phase fronts of the plane wave are grad-
ually bent toward the focal point. The focal point of the
Luneburg lens is E0 = 1Vm, R = 1 m.
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10−6. The latter means that the set of linear equations Z ·
X = B is iteratively solved until ∣∣Z · X − B∣∣ < 10−6∣∣B∣∣.
The used integral equation formulation, the PMCHWT
formulation, is ill conditioned [Ergül and Gürel, 2006],
resulting in a slow convergence of the solution. To
reduce the number of iterations, a block‐diagonal pre-
conditioner [Ergül and Gürel, 2009b] was used.
[23] Two different discretizations were used for the

numerical simulations. For the first set of simulations the
boundaries were discretized into segments of l0/10,
whereas for the second set of simulations the length of
the segments was l0/100. For a piecewise constant
Luneburg lens with M = 20 shells, this leads to 19 506
and 194 882 unknowns, respectively. The entire structure
spans multiple wavelengths, whereas the individual
segments are much smaller than the wavelength, there-
fore this is a challenging broadband problem. On two
quad core AMD Opteron 2350 processors and a total of
32 GB of RAM, the simulations for M = 20 discretized
by l0/10 and l0/100 were solved in 1 min 3 s and 42 min
51 s, respectively.
[24] As expected, Figure 2a shows that the Luneburg

lens is more accurately approximated when the number
of shells increases. Only for M = 16 we notice a very
small increase of the relative error. Figure 2b displays the
relative error between the numerical solution for the
piecewise constant Luneburg lens as compared to its
analytical counterpart. As we can see from Figure 2b, the
relative error of the fine discretization is about a factor

100 better than the error of the rough discretization,
which is in line with the expected convergence rates. For
each discretization, the relative error remains more or
less constant as a function of the number of shells,
because each shell is divided into segments with a length
of l0/10 and l0/100, respectively. The numerical results
clearly show that our technique is capable of correctly
handling broadband problems and objects embedded
inside other objects allowing the simulation of a wide
range of applications.

4. Conclusion
[25] In this paper electromagnetic scattering problems

at a Luneburg lens were numerically solved by using
boundary integral equations, discretized by means of
the method of moments. The classical MLFMA was
hybridized with the NPWM to allow the simulation of
broadband problems. The numerical results for the
Luneburg lens are in very good agreement with the
analytical solutions. For an increasing number of shells in
the discretized lens, the relative error between the ana-
lytical and numerical solution remains almost constant.
This proves that our method is capable of handling such
complex problems.
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