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Abstract. The formation of a steady-state nonlinear potential structure of
a double-layer type near the presheath/sheath edge of a plasma discharge is
theoretically investigated in complex plasmas containing Boltzmann electrons,
cold fluid ions and strongly coupled microparticles. Equilibrium of the particles
is provided by the electrostatic force and an effective ‘dust pressure’ associated
with electrostatic interactions between the highly charged grains. The results are
of importance for complex plasma experiments in microgravity conditions, for
thermophoretically levitated configurations and for processing plasmas loaded
by nanometer-sized microparticles.

Contents

1. Introduction 2
2. Nonlinear formalism 2
3. Double-layer structures 5
4. Conclusions 10
Acknowledgments 11
References 11
4 Author to whom any correspondence should be addressed.

New Journal of Physics 12 (2010) 073038
1367-2630/10/073038+12$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55802285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:viy@mpe.mpg.de
http://www.njp.org/


2

1. Introduction

While all complex plasma experiments reveal well-defined boundaries between different
plasmas, we only know of a few attempts to treat this problem. Different aspects of the
physical processes at the plasma interfaces have been investigated theoretically [1]–[9] and
experimentally [10, 11]. One of these studies predicts an electrostatic double layer (DL) arising
at the boundary between the complex plasma and the electron–ion plasma [6]. This treatment,
however, was not self-consistent, as the issue of the dust equilibrium state was sidestepped.
Several papers then followed to include the particle steady state and formulate conditions
favoring the formation of an electrostatic double layer at the plasma interface in the case of
a dense dust cloud due to ionization of neutral atoms by ‘hot’ electrons [12, 13].

In this paper, we continue the study of plasma discharges in the presence of highly charged
microparticles and find the equilibrium electrostatic potential as an exact solution of the Poisson
equation in the vicinity of the transition from quasineutral to charged plasmas. Such a solution
self-consistently determines the plasma densities. We focus on the case where the gravitational
force on the microparticles is negligibly small, and one can introduce a dust steady state
associated with electrostatic interactions between the strongly coupled particles [14]. Such an
approach reduces the nonlinear problem to a Sagdeev pseudopotential formalism. Nonlinear
structures of the double-layer type are then studied in terms of the existence domain in a
physically meaningful parameter space. In particular, we show that, under certain conditions,
the presence of the highly charged microparticles can lead to a remarkable effect on the plasma
potential near the sheath edge: an electrostatic double layer appears and confines the particles,
and thus provides in a natural way the sharp plasma boundaries, even at low dust number density.

2. Nonlinear formalism

To study the influence of charged microparticles on the electric potential profile near the sheath
edge, we consider a one-dimensional (1D) model of the collisionless discharge [14], assuming
that there is no appreciable electric field in the bulk plasma, where the charge quasineutrality
holds,

ne0 + Zdnd0 − ni0 = 0. (1)

Here, ne0, ni0 and nd0 denote the electron, ion and dust number density in the bulk plasma,
respectively, and Zd refers to the particle charge number. We assume that the transition from a
quasineutral plasma to the charged layer of the sheath mainly occurs near the presheath/sheath
edge, which we put by definition at x = 0. The electric potential ϕ is then zero far away from the
sheath (x → −∞), while, in the immediate vicinity of the sheath edge and inside the charged
layer, ϕ is determined by Poisson’s equation,

d2ϕ

dx2
= 4πe (ne + Zdnd − ni) , (2)

with the respective plasma number densities ne, ni and nd.
The electron density can be described by the usual Boltzmann distribution,

ne = ne0 exp(eϕ/Te), (3)
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with kinetic temperature Te. The positive ions are accelerated by the sheath electric field to
velocities higher than the ion thermal velocity, and their number density can be determined
from the steady-state momentum and continuity equations as [14]

ni =
ni0√

1 − 2eϕ/
(
m iV 2

i0

) , (4)

where Vi0 denotes the ion velocity outside the sheath (x → −∞) and m i refers to the ion mass.
The equilibrium state of the heavy plasma component—the charged particles—results

from the balance of all the forces acting on the microparticles, including the electrostatic,
plasma drag, gravitational and pressure gradient forces. In this paper, however, we address
the situation when the gravitational force acting on the particles is negligible, the particles are
strongly coupled and the dust cloud extends over the discharge plasma occupying the volume
up to a boundary presheath/sheath. These conditions could be relevant for studies of complex
plasmas under microgravity conditions (see, e.g., [15]–[18]), for thermophoretically levitated
systems [19], for experiments on nanoparticle coagulation [20] and for processing plasmas
dealing also with very small (submicron/nanometer-sized) particles [21, 22].

On the periphery of the discharge, the microparticles usually do not show a directed motion
but vibrate near their equilibria. The particle steady state is mainly provided by two forces: the
electrostatic force, F = eZ ddϕ/dx , and the force due to the gradient of the internal ‘electrostatic
pressure’, n−1

d dPd/dx , originating from the repulsion of similarly charged microparticles
[12, 14, 23]. For Yukawa-type interacting strongly coupled grains, Pd can be expressed in terms
of an effective dust ‘temperature’ [14],

Pd ' T (eff)
d nd, (5)

with T (eff)
d given by

T (eff)
d =

Nnn

3
0Td(1 + κ)e−κ . (6)

Here, Td denotes the particle kinetic temperature and Nnn is the number of nearest neighbors in
the crystalline structure (Nnn = 12 for the fcc and hcp lattices and Nnn = 8 for the bcc lattice).
Finally, 0 is the coupling parameter,

0 =
Z 2

de2

Td1
,

with 1 and κ being the mean interparticle distances (the latter is normalized to the plasma
screening length λD: κ = 1/λD).

The quantity T (eff)
d is in general a function of the plasma parameters. To specify this

dependence, we insert the crystal–liquid approximation 0 = 106 exp(κ)/(1 + κ + κ2/2) [24] in
the definition of the effective temperature (6), which yields

T (eff)
d ∝

1 + κ

1 + κ + κ2/2
. (7)

This immediately confirms a weak functional dependence of T (eff)
d on κ . Moreover, κ , in

turn, is characterized by a weak dependence on microparticle density, since κ ∝ (nd)
−1/3.

Both these factors imply a weak dependence T (eff)
d on the dust density and eventually lead
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to T (eff)
d (dnd/dx) � nd(dT (eff)

d /dx). The latter means that the characteristic scales of T (eff)
d

variations are much larger than those of nd. Therefore, in a first approximation, we can neglect
the weak dependence of T (eff)

d on the dust density variations and assume T (eff)
d ' T (eff)

d (κ0), where
κ0 ' n−1/3

d0 corresponds to interparticle separation in the quasineutral plasma.
As a result of a balance between electrostatic and effective ‘pressure’ forces on the charged

microparticles, a Boltzmann-like distribution is then recovered [14],

nd = nd0 exp(eZdϕ/T (eff)
d ) = nd0 exp(−Zdφ/γ ), (8)

with the dimensionless potential given by φ = −eϕ/Te and γ = T (eff)
d /Te. As explained

elsewhere [12], the exponent of the dust distribution Zd/γ is related to the equilibrium dust
density nd0. Indeed, in the crystal–liquid approximation [24], one finds

Zd

γ
=

3
(
1 + κ + κ2/2

)
κ3

Nnn × 106(1 + κ)
τni0λ

3
D p = βp, (9)

where τ = Te/Ti is the electron–ion temperature ratio and p = Zdnd0/ni0 determines the Havnes
parameter in the bulk plasma. The parameter β introduced here is a measure of the effective
dust ‘temperature’ with respect to Te at fixed plasma densities, viz β = (Te/T (eff)

d )(ni0/nd0).
In complex plasma experiments, the characteristic values lie typically in the ranges
τ ' 80 − 150; ni0λ

3
D ' 103

− 104
; and κ ' 1 − 2, so that (9) gives the coefficient β typically

between 102 and 103. This immediately means that, for Havnes parameters p & 0.1, due to the
large exponent Zd/γ = βp in (8), even small variations in the plasma potential would provide a
considerable effect on the dust distribution.

Inserting the plasma densities (3), (4) and (8) in Poisson’s equation (2) for the plasma
potential within the presheath/sheath region, and integrating this in the traditional way, one
obtains

1

2

(
dφ

dX

)2

+ V (φ, M) = 0, (10)

with an analogue of the Sagdeev potential V (φ, M) given by

V (φ, M) =
M2

1 − p

(
1 −

√
2φ

M2
+ 1

)
+
(
1 − e−φ

)
+

1

(1 − p)β
(1 − exp (−βpφ)) . (11)

In equations (10) and (11), we have used a dimensionless coordinate X = x/λDe =

x/
√

Te/(4πe2ne0), and the Mach number M = Vi0/
√

Te/m i = Vi0/Vs characteristic for pristine
electron–ion plasmas.

Expression (11) looks like the pseudopotential for ion acoustic solitary waves in a plasma
with cold ions and a double Boltzmann electron distribution, for which, for appropriate plasma
parameter values, ‘rarefactive’ (negative potential) double layers may be found [25]. One would
thus expect such structures to be supported in this case, too. However, there is an important
difference from the standard two-electron case: in that case, the argument of the exponential in
the last term involves a normalized temperature of the cool electrons, which is an independent
parameter. Here, in equation (11), the factor Zd/γ = βp depends on the Havnes parameter, p.
Thus, the p-dependence of our results is expected to differ from what is obtained for the two-
electron model [25].
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Finally we stress that, unlike the standard Sagdeev approach, which is based on an analysis
in the frame of a solitary wave of constant shape and speed, our study relates to a nonlinear
structure that is stationary in the laboratory frame. However, as shown in equation (4), the ions
drift through the structure (in this case, as indicated above, due to the sheath electric field), much
as stationary ions drift through the structure in the wave frame of the moving double layer [25].
The Sagdeev formalism based on equation (11) can thus be pursued and will be applied to
possible stationary structures below.

3. Double-layer structures

The discussion of possible solutions of (10) is now reminiscent of what happens in classical
mechanics with a classical particle of unit mass moving with velocity dφ/dX in a potential
well V (φ, M) (where M appears as a parameter). From the generic behavior of the Sagdeev
pseudopotential, we know that the presence of a second ‘Boltzmann’ species in (11) can lead
to different nonlinear solutions of (10) [25, 26]. We, however, are interested in physically
meaningful solutions that obey our initial assumptions of vanishing φ at x → −∞ and finite
φ 6= 0 at x & 0. Also, keeping in mind the results of previous studies of the plasma potential
in complex plasma discharges [12, 13], nonlinear solutions of the DL type can satisfy both the
aforementioned requirements and should be examined as most appropriate.

For the existence of DL structures, one needs two successive double roots of the
pseudopotential V (φ, M), so that, in the parlance of classical mechanics, φ can transit from one
value to another without coming back, with a rather sharp and shock-like or kink-like transition
between the two. The Sagdeev potential should therefore satisfy

Vφ=0 = 0,

(
dV

dφ

)
φ=0 = 0, (12)

Vφ=φm = 0,

(
dV

dφ

)
φ=φm = 0. (13)

In addition, there is the requirement that the roots φ = 0 and φ = φm correspond to local maxima
of V (φ, M). Note that the requirement (d2V/dφ2)φ=0 < 0 leads to the Bohm sheath condition
on the ion velocity. In our case, the value of the ion velocity can be crucially reduced due to the
presence of strongly coupled microparticles and the Mach number satisfies [14]

M & Ms =

√
1

1 − p + βp2
. (14)

The Bohm speed Ms is the true acoustic speed in this system and is the minimum speed for the
support of solitons or double layers. The value of M in (14), however, cannot be smaller than
Mmin = τ−1/2

∼ 0.1 for applicability of the cold ion approximation (4).
The DL conditions (12)–(14) impose rather stringent restrictions on the values of complex

plasma parameters, which might be appropriate in the relevant parameter space.
We will start with a weakly nonlinear approach, based on the assumption φ � 1 and an

expansion of the Sagdeev potential (11) in powers of φ, i.e.

1

2

(
dφ

dX

)2

+ Aφ2 + Bφ3 + Cφ4 + Dφ5 + · · · = 0. (15)
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Figure 1. Domain in the {p, M}-parameter space for the appearance of stable
DL structures at the sheath boundary for different β: β = 102 (solid curve) and
β = 103 (dashed curve). For given p, admissible M are found between the upper
and the lower curves. The dotted line represents the acoustic (Bohm) speed (14),
and hence leads to the cut-offs at high and low p.

The expansion up to φ4 can give an analytical DL solution of the type

φ = −
B

2C

{
1 + tanh

√
|A|

2
X

}
, (16)

which satisfies the initial condition (φ → 0 when x → −∞). However, the existence of the
solution (16) implies a few conditions to be fulfilled. One is that A < 0 (a modified Bohm
sheath criterion (14)), and the other requires that the polynomial Aφ2 + Bφ3 + Cφ4

= Cφ2(φ −
√

A/C)2 has a double root, i.e. a compatibility condition B2
= 4AC must be fulfilled. Finally

for consistency, the terms that were left out of the expansion (15) have to be small enough or, in
other words, |BD/2C2

| � 1 must hold. As we have checked numerically, in complex plasmas
with Boltzmann-distributed dust (8) and realistic values of the coefficient β ∼ 102–103, one can
only obtain weak DL solutions (16) if the last condition |BD/2C2

| � 1 is ignored. However, no
such solutions can be found when the calculations are carried out properly.

To examine the possibility of having DLs that are not weak, we analyze the full Sagdeev
potential (11). Figure 1 represents the range of the DL existence in the parameter space {p, M}

for the given exponent β in the dust distribution. The lower curve expresses the DL conditions
for the maximal coefficient β = 103 and the upper one for a minimal value of β = 102. The
two curves of admissible M(p) are limited at low and high values of the Havnes parameter.
These cut-offs result from the modified Bohm condition (14), as shown in figure 1 for β = 102

(dotted curve). With an increase in β, the range of acceptable p according to (14) grows and,
for β ' 103, the curve can be continued to the right up to p ∼ 1, but this part has been omitted
because already at p ∼ 0.8 a value of M is close to the lower limit Mmin = τ−1/2

' 0.1. There
appears to be a strong dependence on p of the value of M at which the DL occurs (Mdl).
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Figure 2. DL amplitude versus p for β = 102 (solid curve) and β = 103 (dashed
curve).

However, in part that reflects the fact that the lower Mach number limit, Ms , depends on p (see
equation (14)).

Both plots in figure 1 demonstrate a similar decrease in admissible Mach numbers with
a growth of microparticle charge density (the Havnes parameter p), showing almost a linear
dependence M ∝ (1 − p). On the other hand, for reasonable β, the plots do not reveal a
significant difference in the DL conditions. Taking, for example, β = 103 and p = 0.21 results
in M = 0.516. For the lower value of β = 102, the DL at the same p = 0.21 occurs at a slightly
higher velocity M = 0.54. It is noteworthy that the DL existence range is weakly dependent
on the specific value of the coefficient β. One can therefore expect that, for quite different
strongly coupled plasmas, the value of the Havnes parameter p ultimately prescribes, through
the admissible M , a spatial position of the DL structure.

Figure 2 illustrates the DL amplitude corresponding to the two limiting values of Zd/γ . It
is seen that in both cases, the DL amplitude grows with the dust density (p). However, the effect
of the different coefficients β for the DL amplitude in figure 2 becomes more pronounced than
that for the admissible M shown in figure 1.

The typical shape of the Sagdeev potential allowing for the DL structures is shown in
figure 3. Calculations have been made at p = 0.14, but using two different sets of other
parameters, namely β = 250, M = 0.61 and β = 750, M = 0.596. These provide the existence
of DL structures with amplitudes φm ' 0.51 and φm ' 0.55, respectively.

As an illustration of the steady-state DL-like structure arising at the sheath boundary, we
present a numerical solution of (10) in figure 4, calculated for p = 0.14, M = 0.61 and the
parameter β = 250. The solid line corresponds to the exact solution of (10), thus representing
the potential φ as a function of X . One immediately finds the typical shock-like behavior for
the plasma potential. Such potential variations result in an abrupt reduction in the dust density,
nd/nd0, developing on length scales of a few electron Debye lengths, typical of an electrostatic
sheath. The potential jump thus separates the complex plasma and the presheath/sheath region,
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Figure 3. Sagdeev potential for the occurrence of DL solutions. Calculations
are made at the same Havnes parameter p = 0.14, but for two different
exponents: β = 250, which requires M = 0.61 (solid curve); and β = 750, for
corresponding M = 0.596 (dashed curve).
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Figure 4. DL-like solution of equation (10) for the normalized plasma potential
φ (solid curve) and the normalized dust density, nd/nd0 (dashed curve), in the
vicinity of the sheath edge. Calculations have been made for p = 0.14, M = 0.61
and Zd/γ = 250p = 35.

as illustrated in figure 4 by the dashed curve. Moreover, it also provides local variations in
the dust density near the sheath boundary: the localized increase in interparticle distances
developing in the direct vicinity of the plasma boundary (figure 5).

To compare our results to experimental observations, one needs to measure the variations
in interparticle distances developing on length scales of a few Debye lengths in the vicinity
of a plasma interface. For 3D configurations, reliable measurements are difficult to obtain
due to the lack of proper 3D imaging techniques. A careful inspection of different dust
particle configurations reveals that for monolayer (2D) plasma crystals the expected effect is
well pronounced and can be reliably measured. Indeed, the monolayer experiments clearly
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Figure 5. Variation of the normalized interparticle separation, (nd/nd0)
−1/3, in

the proximity of the sheath boundary calculated for the parameters of figure 3.

Figure 6. Sharp edge of a 2D plasma crystal. A monolayer of plastic
microspheres was suspended in the plasma sheath above the lower electrode in
a capacitively coupled rf discharge in argon at 0.66 Pa. Monodisperse particles
with a diameter of 9.19 ± 0.14 µm were used; particles near the crystal edge
appear brighter because the illuminating laser sheet matches perfectly their
vertical position. The field of view is 4.27 × 2.92 cm2.

demonstrate that the interparticle distances near the crystal edge are always significantly larger
than in the central part of the structure [27, 28]. Although the 2D crystals normally levitate in the
sheath of the lower electrode in radio frequency (rf) discharges, where the vertical component
of the electric field is large enough to balance gravity, one can think of the application of
our theoretical findings to the observed variations of particle surface density (or interparticle
distances) developing along the horizontal coordinate.

A typical example of a 2D crystal is shown in figure 6. The experiment was done in an rf
discharge in argon at a pressure of 0.66 Pa, with particles of 9.19 µm diameter (the experimental

New Journal of Physics 12 (2010) 073038 (http://www.njp.org/)

http://www.njp.org/


10

0.5

1

1.5

2

-15 -10 -5 0X

Figure 7. Spatial distribution of the normalized interparticle distance (1/10

with 10 being the average particle separation far away from the crystal boundary)
in the proximity of the crystal edge shown in figure 6; X = 0 corresponds to the
crystal boundary.

setup and plasma parameters are the same as described in [27], but without employment of the
additional electrode box). Figure 7 illustrates the variation in normalized particle separations
measured in the close vicinity of the boundary (X = 0) of this monolayer crystal. Comparing
this to the theoretical profiles of figure 5, one can speculate that the horizontal confinement of the
monolayer might result from the formation of a potential drop similar to that shown in figure 4.
Note that the crystal edge was located far away from the chamber wall in this experiment and
therefore we have to exclude the role of the sheath produced by the wall in the initiation of
such a potential drop. The potential structure of the DL type along the horizontal direction
might form as a result of the existence of a significant ambipolar electric field in the discharge
periphery.

4. Conclusions

A theoretical description has been given of the steady-state nonlinear structures of DL type
arising near a point where the plasma quasineutrality breaks down (e.g. the presheath/sheath
boundary of complex plasma discharges), based on a Sagdeev pseudopotential treatment that
was adapted to include the strongly coupled microparticles in microgravity conditions. It has
been assumed that the equilibrium of the highly charged particles is provided by the electrostatic
force and an effective ‘dust pressure’ associated with electrostatic interactions between the
grains. The nonlinear structures have been characterized in terms of existence domains in a
physically meaningful parameter space (figures 1 and 2). First it has been found that weak DL
solutions (ϕ � Te/e) do not arise near the sheath edge within the model considered. On the other
hand, nonlinear solutions with amplitudes up to ϕ ∼ Te/e can easily be self-organized near the
plasma/sheath edge. The potential jump results in an abrupt decrease in the dust density, thus
providing the plasma separation and sharp plasma interfaces. Interestingly, the range of the DL
existence demonstrates a very weak dependence on the specific value of the coefficient β in the
dust distribution (see figure 1), where β measures the effective dust ‘temperature’ ratio at fixed
plasma densities. This means that, for strongly coupled plasmas with different β, the value of
the Havnes parameter ultimately prescribes through the admissible M the spatial position of
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the potential jump and therefore the complex plasma boundary. At the same time, both values
p and β determine the slope of the potential profile and the rate of the dust density decrease
(figure 5). Increases in one of these result in higher potential jumps near the sheath edge and
sharper plasma interfaces.

The results obtained, on the one hand, do not contradict the previous theoretical treatment
of the potential distribution for complex plasma discharges predicting a potential jump of up to
ϕ ' 0.5Te/e at the interface complex plasma/sheath for dense dust clouds due to the ionization
of neutral atoms by ‘hot’ electrons [12, 13]. On the other hand, it seems that our findings
are supported by measurements of the spatial distribution of microparticles in the monolayer
crystals. What is needed now is more precise measurements of the particle coordinates within
a 3D dust configuration in microgravity that would allow us to test this theoretical model more
directly.

Finally, note that the problems of plasma boundaries and plasma–sheath interactions are
quite generic, and the results presented here can also be relevant to other plasma systems
involving highly charged tiny dust particles (e.g. in experiments on particle coagulation and
agglomeration, for technological or processing plasmas).
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