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CHEBYSHEV UPPER ESTIMATES FOR BEURLING’S

GENERALIZED PRIME NUMBERS

JASSON VINDAS

Abstract. Let N be the counting function of a Beurling generalized
number system and let π be the counting function of its primes. We
show that the L1-condition∫ ∞

1

∣∣∣∣N(x)− ax
x

∣∣∣∣ dx

x
<∞

and the asymptotic behavior

N(x) = ax+O

(
x

log x

)
,

for some a > 0, suffice for a Chebyshev upper estimate

π(x) log x

x
≤ B <∞ .

1. Introduction

Let P = {pk}∞k=1 be a set of Beurling generalized primes, namely, a non-
decreasing sequence of real numbers 1 < p1 ≤ p2 ≤ · · · ≤ pk → ∞. The
sequence {nk}∞k=1 denotes its associated set of generalized integers [2, 3].
Consider the counting functions of generalized integers and primes

N(x) = NP (x) =
∑
nk<x

1 and π(x) = πP (x) =
∑
pk<x

1 .

Beurling’s problem consists in finding mild conditions over N that ensure
a certain asymptotic behavior for π. This problem has been extensively
investigated in connection with the prime number theorem (PNT), i.e.,

(1) π(x) ∼ x

log x
, x→∞ ,

and Chebyshev two-sided estimates, that is,

(2) 0 < lim inf
x→∞

π(x) log x

x
and lim sup

x→∞

π(x) log x

x
<∞ .
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2 J. VINDAS

On the other hand, there are no mild hypotheses in the literature for Cheby-
shev upper estimates,

(3) lim sup
x→∞

π(x) log x

x
<∞ .

The purpose of this article is to study asymptotic requirements over N that
imply the Chebyshev upper estimate (3).

Beurling [3] proved that

(4) N(x) = ax+O

(
x

logγ x

)
, x→∞ (a > 0) ,

where γ > 3/2, suffices for the PNT (1) to hold. See [3, 10, 13] for more
general PNT. Beurling’s condition is sharp, because when γ = 3/2 there are
generalized number systems for which the PNT fails [3, 5]. For γ < 1, not
even Chebyshev estimates need to hold, as follows from an example of Hall
[9] (see also [1]). Diamond has shown [6] that (4) with γ > 1 is enough to
obtain Chebyshev two-sided estimates (2). Furthermore, he conjectured [7]
that the weaker hypothesis

(5)

∫ ∞
1

∣∣∣∣N(x)− ax
x

∣∣∣∣ dx

x
<∞ , with a > 0 ,

would be enough for (2). His conjecture was shown to be false by Kahane
[11]. Nevertheless, the author has recently shown [15] that if one adds to
(5) the condition

(6) N(x) = ax+ o

(
x

log x

)
, x→∞ ,

then (2) is fulfilled, extending thus earlier results from [6, 18].
It is natural to replace the little o symbol in (6) by an O growth estimate

and investigate the effect of this new condition on the asymptotic distri-
bution of the generalized primes. It turns out that one gets a Chebyshev
upper estimate in this case. Our main goal is to give a proof of the following
theorem.

Theorem 1. Diamond’s L1-condition (5) and the asymptotic behavior

(7) N(x) = ax+O

(
x

log x

)
, x→∞ ,

suffice for the Chebyshev upper estimate (3).

2. Notation

We will give an analytic proof of Theorem 1. Our technique follows dis-
tributional ideas already used in [13, 15, 16]. It employs the Wiener division
theorem [12, Chap. 2] and the operational calculus for the Laplace transform
of Schwartz distributions [4, 17]. The Schwartz spaces of test functions and
distributions are denoted as D(R), S(R), D′(R) and S ′(R), see [8, 14, 17] for
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their properties. If f ∈ S ′(R) has support in [0,∞), its Laplace transform
is well defined as

L{f ; s} =
〈
f(u), e−su

〉
, <e s > 0 ,

and the Fourier transform f̂ is the distributional boundary value [4] of
L{f ; s} on <e s = 0. We use the notation H for the Heaviside function, it
is simply the characteristic function of (0,∞).

Observe that (3) is equivalent to

(8) lim sup
x→∞

ψ(x)

x
<∞ ,

where ψ is the Chebyshev function

ψ(x) = ψP (x) =
∑
nk<x

Λ(nk) ,

as follows from [2, Lem. 2E].

3. Proof of Theorem 1

Assume (5) and (7). Set T (u) = e−uψ(eu). We must show (8), that is,

(9) lim sup
u→∞

T (u) <∞ .

The crude inequality T (u) ≤ ue−uN(eu) = O(u) implies that T ∈ S ′(R).
The proof of (9) depends upon estimates on convolution averages of T :

Lemma 1. There exists c > 0 such that

(10)

∫ ∞
−∞

T (u)φ̂(u− h)du = O(1) ,

whenever φ ∈ D(−c, c).

Indeed, suppose that Lemma 1 has been already established. Choose
then in (10) a test function φ ∈ D(−c, c) such that φ̂ is non-negative. Since
ψ(eu) is non-decreasing, we have e−uT (h) ≤ T (u+h) whenever u and h are

positive. Setting C =
∫∞
0 e−uφ̂(u)du > 0, we obtain that

T (h) ≤ 1

C

∫ ∞
0

T (u+ h)φ̂(u)du = O(1) ,

and Theorem 1 follows at once. It remains to prove the lemma.

Proof of Lemma 1. Set E1(u) := e−uN(eu) − aH(u) and E2(u) = uE1(u).
The assumptions (5) and (7) take the form E1 ∈ L1(R) and E2 ∈ L∞(R).
Consider

G(s) = ζ(s)− a

s− 1
= sL{E1; s− 1}+ a .

Taking <e s → 1+, in the distributional sense, we obtain G(1 + it) = (1 +

it)Ê1(t)+a. Since E1 ∈ L1(R), Ê1 is continuous; therefore G(s) extends to a
continuous function on <e s = 1. Consequently, (s− 1)ζ(s) is continuous on
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<es = 1 and there exists c > 0 such that itζ(1+ it) 6= 0 for all t ∈ (−3c, 3c).
Next, we study the boundary values, on the line segment 1 + i(−c, c), of

L{T (u); s− 1} = L{ψ(eu); s} = − ζ
′(s)

sζ(s)
.

A quick calculation shows that

(11) − ζ
′(s)

sζ(s)
=
L{E′2; s− 1}
(s− 1)ζ(s)

− (2s− 1)L{E1; s− 1}+ a

s(s− 1)ζ(s)
− 1

s
+

1

s− 1
,

Consider the boundary distributions

g1(t) = lim
σ→1+

L{E′2;σ − 1 + it}
(σ − 1 + it)ζ(σ + it)

in S ′(R) ,

and

g2(t) = − lim
σ→1+

(
(2σ − 1 + 2it)L{E1;σ − 1 + it}+ a

(σ + it)(σ − 1 + it)ζ(σ + it)
+

1

σ + it

)
in S ′(R) .

Taking boundary values in (11), we have T̂ (t) = g1(t) + g2(t) + Ĥ(t), where
H is the Heaviside function. Fix φ ∈ D(−c, c). Notice that g2 is actually a
continuous function on (−3c, 3c), thus,∫ ∞
−∞

T (u)φ̂(u− h)du =
〈
g1(t), e

ihtφ(t)
〉

+

∫ c

−c
eihtg2(t)φ(t)dt+

∫ ∞
−h

φ̂(u)du

=
〈
g1(t), e

ihtφ(t)
〉

+ o(1) +O(1) .

Our task is then to demonstrate that
〈
g1(t), e

ihtφ(t)
〉

= O(1). Let M ∈
S ′(R) be the distribution supported in the interval [0,∞) that satisfies

L{M ; s− 1} = ((s − 1)ζ(s))−1. Notice that g1 = ̂(E′2 ∗M). Fix an even
function η ∈ D(−3c, 3c) such that η(t) = 1 for all t ∈ (−2c, 2c). Then,
η(t)itζ(1 + it) 6= 0 for all t ∈ (−2c, 2c); moreover, it is the Fourier trans-
form of the L1-function χ1 ∗ E1 + χ2, where χ̂1(t) = it(1 + it)η(t) and
χ̂2(t) = a(1 + it)η(t). We can therefore apply the Wiener division theorem
[12, p. 88] to η(t)itζ(1 + it) and φ(t). So we find f ∈ L1(R) such that

f̂(t) =
φ(t)

η(t)itζ(1 + it)
.

Hence,〈
g1(t), e

ihtφ(t)
〉

=
〈

(E′2 ∗M)(u), φ̂(u− h)
〉

= (E2 ∗ (η̂)′ ∗ f)(h) = O(1) ,

because E2 ∈ L∞(R) and (η̂)′ ∗ f ∈ L1(R), whence (10) follows.
�
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[9] R. S. Hall, Beurling generalized prime number systems in which the Chebyshev in-
equalities fail, Proc. Amer. Math. Soc. 40 (1973), 79–82.

[10] J.-P. Kahane, Sur les nombres premiers généralisés de Beurling. Preuve d’une con-
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