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New method for electric field and potential
calculations in Hall plates

J. Raman, P. Rombouts and L. Weyten

Electrostatic field problems occurring in Hall plates are difficult to solve,
mainly because of a non-standard boundary condition defining an oblique
angle of the electric field w.r.t. an isolating boundary. In this letter, a new
approach for solving Hall-related field problems is presented. Compared
to prior approaches, the technique leads more easily to closed-form
expressions for the electric field, and allows to obtain voltage-related Hall
characteristics into numerically well conditioned forms.

Introduction: While the Hall effect has been studied for a long time [1–4],
calculating the field and potential within a Hall plate still proves to be
challenging. The core of the problem is the unusual oblique angle boundary
condition (BC) that applies at isolating boundaries, which is different from
standard Dirichlet, Neumann, and mixed-type conditions [1, 2].
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Fig. 1 Conventional approach to solving the Hall problem: find a conformal
map from the original problem domain (left side) to a geometry for which the
solution — in this case a uniform field — can be seen by inspection (right side).

An important prior method for solving the Hall problems goes back to
the work of [4]. This method relies on the observation that for a particular
shape of the problem domain, the problem has a trivial solution: a uniform
electric field, and hence a linearly varying potential. For the problem of a
rectangular Hall plate with two contacts, the situation is depicted in fig. 1
(right side). The problem then reduces to finding a conformal map between
the artificial solution domain and the original domain (left side). This
task is further decomposed into finding first a map f(z) from a canonical
domain (middle) onto the original domain, and a second one by inverting
a mapping g(z, θH) from the canonical domain to the solution domain. A
complicating factor here is that the shape of the solution domain depends
on the Hall angle θH between E and J. While for polygonal regions
these two sub-mappings are of the Schwarz-Christoffel type, and hence
are fairly easy to write down as complex integrals, finding a closed-form
solution of the integral is even for simple geometries very complicated
[3,4]. Therefore, in practice, numerical integration is required [3,5]. Since
two mappings are involved, one being dependent on θH , the prior solution
method is computationally involved. The new method presented hereafter
focuses on obtaining analytic solutions for the electric field, resorting only
to numeric integration as the last step (to obtain the potential).

Equations and boundary conditions: We consider a thin sample in the xy-
plane, with a 2D electric field E(x, y) and current density J(x, y) within
it. In the presence of a homogeneous magnetic field perpendicular to the
sample (B =B0ez), the constitutive relation becomes:

E(x, y) = ρJ(x, y) + µHB0ρ(J(x, y)× ez) (1)

In this, ρ denotes the conductance, µH the Hall mobility, and ez is
the unit vector in the z-direction. Using Maxwell’s equations, it can be
shown that both E and J can be derived from a potential (E =−∇VE ,
J =−∇VJ ), with VE and VJ solutions of Laplace’s equation. It is well
known that such 2D problems can also be described with complex-valued
analytical functions. These are the complex potentials wE and wJ , which
are requiring to be analytic in the problem domain. The latter implies that

the associated potential VE = Re [wE ] and VJ = Re [wJ ] automatically
solve Laplace’s equation in this domain. The link between wE (resp. wJ )
and the field components Ex and Ey (resp. Jx and Jx) is

dwE

dz
=−Ex + jEy

def
= E(z),

dwJ

dz
=−Jx + jJy

def
= J(z) (2)

where we have introduced the function E(z) (resp. J(z)) as a complex
representation of the electric field (resp. the current density). The vector
relation (1) can now be written in complex notation, and the result can be
integrated using (2) to yield

J(z) =
cos θH

ρ
ejθH · E(z) → wJ =

cos θH

ρ
ejθH · wE (3)

In this, θH = arctan(µHB0) represents the Hall angle, and integration
constants are, without loss of generality, set to zero. The above relations
indicate that electric field and current density are related through a simple
scale factor (which depends on the Hall angle).

The BCs of the Hall problem are as follows: at metallic contacts we have
a prescribed voltage VE , while at isolated parts of the boundary J · n = 0,
with n the normal of the boundary curve. The prescribed voltage hinders
the derivation of solutions for the fields. We deal with this by relaxing this
BC: we require only that contacts have a constant voltage, but we do not
enforce a particular value. The relaxed BC can be expressed as E · t = 0,
with t denoting the tangent vector at the boundary point.

The BCs can be put in an equivalent complex form. For the tangent
vector t = txex + tyex, we define t= tx + jty as the associated complex
representation. Combined with (2), it can be derived that Re [t · E(z)] =

−txEx − tyEy =−E · t, which is zero at contact points. Let θt denote the
angle of t w.r.t. the x-axis, then t= ejθt , and the BC at contacts becomes:

At z ∈ contact boundary: Re
[
ejθt(z) · E(z)

]
= 0 (4)

Through the same procedure, the normal can be represented as n= nx +
jny = ejθn , with θn the angle of the normal w.r.t. the x-axis. At isolated
boundary points, Re

[
ejθn · J(z)

]
= 0, which in view of (3) becomes:

At z ∈ isolated boundary: Re
[
ej(θn(z)+θH ) · E(z)

]
= 0 (5)

Solving for the field: We now look for solutions for the electric field E(z)

with the relaxed BCs of the form:

E(z) =Aj e−jΦ(z) (6)

In this, A represent an arbitrary real constant, and Φ(z) denotes a “phase
function” which is defined as the complex-valued function which is (i)
analytic in the problem domain, and (ii) which complies with the BCs:

Re [Φ(z)] =

{
θt(z) z ∈ contact boundary
θn(z) + θH z ∈ isolated boundary

(7)

It is elementary to show that E(z) according to (6) has the required
analyticity in the problem domain, and that (7) implies that the BCs (4)
and (5) are fulfilled.

The phase function Φ(z) is typically easier to derive compared to the
original problem, because the problem domain is not parameter-dependent,
and because of the Dirichlet-type BCs (7). In fact, for some important
canonical domains (for instance, the upper half plane shown in the middle
of fig. 1), a closed-form solution is known for piecewise constant BCs
[7, p. 77]. Hence, if one knowns the conformal map f between such a
canonical domain and the original problem domain, the phase function
Φ(z) is in this case readily available. In order to illustrate this, we consider
again the two-contact problem shown in fig. 1 (left). In this example,
the orientation of the boundary is such that on contacts θt = 0, while on
isolated parts θn = 0. Then (7) requires Re [Φ] = 0 on contact boundaries,
and Re [Φ] = θH on isolated boundaries. The solution in the canonical
domain (we use tildes for quantities in this domain) is:

Φ̃ =−j
θH

π

[
ln
w + 1

w + 1
k

+ ln
w − 1

k

w − 1

]
(8)

which after some small manipulations gives the electric field (6):

Ẽ(w) =Aj e
− θH

π
ln
[

1+w
1+kw

1−kw
1−w

]
(9)
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The conformal map between the problem domain and the canonical
domain is known to be [6, p. 140]

z = f(w) =

∫w
0

dν
√

1− ν2
√

1− k2ν2
↔ w= f−1(z) = sn(z, k) (10)

where k is parameter which determines the geometry of the plate (K =
K(k) and K′ =K(

√
1− k2) with K representing the complete elliptic

integral), and sn(z, k) is the associated Jacobi elliptic function. Hence,
the electric field in the original problem domain is found in closed-form:
E(z) = Ẽ(sn(z, k)).

Integrating the field: With the above procedure, one has a fair hope
of finding closed-form analytical solutions for the electrical field E(z).
According to (2), the complex potential wE can then be recovered by
integrating E(z) along a path OP within the problem domain. Because
in most cases no analytical expression is known for the integral, numerical
integrations will come into play. There is a high flexibility in addressing the
problem numerically. For instance, one can choose the integration path to
optimize the accuracy, e.g. by keeping away from singularities. Moreover,
by making appropriate substitutions, the integration can be carried out in
other domains. For instance, with the substitution z = f(w), the integration
can also be carried out in the canonical domain:

wE(P )− wE(O) =

∫P
O

E(z) dz =

∫P ′
O′
Ẽ(w)

dz

dw
dw (11)

with O′ = f−1(O) and P ′ = f−1(P ). When the map is of the Schwarz-
Christoffel type, the derivative dz

dw
is actually the integrand of this map.

E.g., for our example problem we have:

wE(P )− wE(O) =Aj

∫P ′
O′

e
− θH

π

[
ln 1+w

1+kw
+ln 1−kw

1−w

]
√

1− w2
√

1− k2w2
dw (12)

Note that the arbitrary real A introduced in (6) also appears as a linear
factor in the expressions for the complex potential, as in (12). Taking now
O on the lower contact, and P on the upper contact, the calculated voltage
difference given by Re [wE(P )− wE(O)] must be equal to the applied
excitation voltage V0. From this, the unique value of A can be derived.

The (numerically calculated) complex potential wE provides through
VE = Re [wE ] information on the potential distribution within the Hall
plate. Also information on currents flowing in the Hall device can be
derived easily. From (3), we see that wE multiplied with a complex-
valued scale factor gives us directly wJ . The current Iab flowing
through an arbitrary segment ab can be shown to be simply Iab = δ ·
Im [wJ (b)− wJ (a)], where δ represents the thickness of the sample. This
can be seen from the integration of J(z) in (2), and transforming the
result in vector notation: wJ (b)− wJ (a) =−

∫b
a
J · ds− j

∫b
a
(ez × J) ·

ds. The second integral, i.e. the imaginary part, represents the flux of J
through the ab segment, which is also Iab/δ.

Example: In the previous section, it has been shown that voltages and
currents of the Hall plate have integral representations. Starting from (8),
and possibly using substitutions such as in (11), there is a fair chance
that also closed-form expression for the integrand can be found. Here,
we illustrate that further manipulations of the integral, e.g. using well
chosen substitutions, can help for easier numeric evaluation. Due to space
restrictions, we will limit ourselves to a representative example here: the
calculation of the mid-length Hall voltage VH of a rectangular plate (fig. 1).
After derivation, the following expression has been obtained:

VH =

 1

sin θH

∫+∞
0

sinh
(
θH
π
τ
)

√
cosh τ−γ dτ∫+∞

0

cosh
(
θH
π
τ
)

√
cosh τ+γ

dτ

VH∞ (13)

In this γ = 1− 8k
(1+k)2

is a geometry-dependent parameter, and VH∞ =
ρµH
δ
I0B0 is the Hall voltage of an infinitely long plate [1]. In deriving this

result, use has been made of a change of variable from w tot t according to

t= ln

[
1 + w

1 + kw

1− kw
1− w

]
(14)

This substitution has been used to transform integrals of the form (12) that
exhibited endpoint singularities to a numerically more attractive alternative
form. The integrals in (13) converge exponentially for |θH |< π

2
, and since

0≤ γ < 1 there are also no singularities within the integration interval.

Numerical evaluation of (13) for various aspect ratios and values of θH
has been found to be in perfect agreement with [1, fig. 4.18]. Hence,
(13) provides an efficient expression for a result which is, to the authors’
knowledge, only found in graphical form in literature.

Conclusion: In this letter, we have developed a new method to solve
electrostatic Hall problems. We have demonstrated that when an analytic
phase function Φ can be found that complies with Dirichlet-type BCs
(7), then (6) provides an expression for the electric field. The (complex)
potential was then derived through integration. It has been demonstrated
that the integral-formulation provides much flexibility to transform the
integrals involved into numerically well-conditioned forms.
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