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Abstract  

The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant for 

the field of nonviral gene delivery. Therefore, we reviewed the literature on intracellular distribution 

of cell organelles (endosomal vesicles, golgi apparatus, endoplasmic reticulum and nucleus), foreign 

macromolecules (dextrans, plasmid DNA) and inorganic nanoparticles (gold, quantum dots, iron 

oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based) indirect proof of 

nuclear entry during mitosis is given. Further, we describe how retroviruses and latent DNA viruses 

take advantage of mitosis to transfer their viral genome and to segregate their episomes into host 

daughter nuclei, respectively. Finally, based on this knowledge we propose strategies to improve 

nonviral gene delivery in dividing cells with the ultimate goal to design nonviral gene delivery 

systems which are as efficient as their viral counterparts, but which are non immunogenic, not 

oncogenic and easy and inexpensive to prepare.   
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EBNA1  Epstein Barr virus nuclear antigen 1 

EBV  Epstein Barr virus 

ER  endoplasmic reticulum 

FV  foamy virus 

H2A-H2B histon 2A – histon 2B pocket 

HHV  human herpesvirus 

HIV  human immunodeficiency virus 

HPV  human papillomavirus 

HVS  herpesvirus saimiri 

INM  inner nuclear membrane 

IONP  iron oxide nanoparticles 

KSHV  Kaposi sarcoma associated herpesvirus 

LANA  latency associated nuclear antigen 

LEDGF/p75 endogenous lens epithelium derived growth factor/p75  

LEM  Lap2, Emerin, Man1 

MuLV  murine leukemia virus 

NE  nuclear envelope 

NEBD  nuclear envelope breakdown 

NLS  nuclear localization signal 

NPC  nuclear pore complex 

ONM  outer nuclear membrane 

PEI  polyethyleneimine 

PIC  pre-integration complex 

QD  quantum dot 

SNV   spleen necrosis virus 

SV40  Simian vacuolating virus 40 

XNER  Xenopus nuclear envelope reassembly 
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1. General introduction 

Gene therapy using plasmid DNA (pDNA) aims at inducing protein production by the administration 

of pDNA that encodes for the desired protein. To date, several hurdles still need to be overcome to 

allow highly efficient delivery of drugs or genes at the desired intracellular location. For gene therapy 

to be successful, nucleic acids should reach the transcription machinery in the nucleus of the target 

cells. Nucleic acids should also remain intact as their sequence ensures their biological activity. In 

recent years the notion that for maximal transfection the pDNA not just needs to reach the nucleus, 

but rather gain access to the right intranuclear compartment has been gaining increasing recognition 

[1-3]. Moreover, transfection efficiency can differ substantially between cell types, and within one 

cell type, between various phases of the cell cycle [4, 5].  

The cell cycle can be divided into 4 phases: growth or G1 phase, DNA synthesis or S phase, gap 2 or G2 

phase and mitosis or M phase. G1/S/G2 phases together are named the interphase, in which the cells 

prepare themselves for mitosis. During each cell cycle, the nuclear genome is doubled in S phase and 

the two identical genomic copies are subsequently separated into both daughter cells during M 

phase. The typical length of the cell cycle can differ substantially between species, but generally 

mitosis is completed within 1 - 1.5 hours and cells spend most of their time in interphase (e.g. 

approximately 8, 6 and 5 hours for G1/S/G2 in human beings). Cells which do not divide are 
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considered to be in a postmitotic rest phase or G0. Mitosis itself is divided into several distinct 

subphases: i) prophase, in which the chromatin condenses into chromosomes and the nuclear 

envelope breaks down (NEBD), ii) metaphase, in which the chromosomes align themselves along the 

metaphase plate iii) anaphase, in which the sister chromatids are separated by moving to the 

opposite poles and iv) telophase/cytokinesis in which the nuclear envelope (NE) is reassembled 

around the segregated chromatids and the cell divides into two daughter cells. The different stages 

of the cell cycle are controlled by subsequent phosphorylation and dephosphorylation reactions 

governed by cyclins and cyclin-dependent kinase (CDK) complexes, which are tightly controlled both 

in space and in time [6, 7]. Also, several checkpoints exist, which verify the completion of the 

processes at each phase of the cell cycle before progression into the next phase is allowed.  

It has been shown that cells which do not go through M phase are difficult to transfect [5, 8]. The 

main reason for this is the nuclear envelope, which consists mainly of two phospholipid bilayers [9-

11]. Occasionally, the outer nuclear membrane (ONM) and the inner nuclear membrane (INM) fuse 

at the nuclear pore complexes (NPCs). In interphase, pDNA can only gain access to the nuclear 

interior through the small central channel of the NPCs, which is a very inefficient process. Although 

some gene delivery systems are cell cycle-independent [12], most of them profit from the process of 

cell division [5, 8, 13-18]. The majority of higher eukaryotes undergo ‘open mitosis’, characterized by 

the complete disassembly of the NE allowing the intermixing of nucleoplasmic and cytoplasmic 

components. At the end of mitosis, the NE reconstitutes and the cytoplasm and nucleoplasm ‘unmix’ 

again. It is likely that certain cytoplasmic components can gain access to the nucleoplasm during 

these mitotic mixing and unmixing events. In this review, we will emphasize the therapeutic potential 

of nonviral gene delivery particles brought to the nucleus during cell division. In that regard, we will 

first focus on the cellular machinery involved in NE breakdown and reassembly during mitosis. 

Secondly, we will review the fate of cell organelles, macromolecules and nonviral nanoparticles 

during mitosis. Further, we will focus on the mechanisms applied by certain viral particles to deliver 

their genome into the cell nucleus or segregate their latent episomes to progeny cells during mitosis 

(Table 1). Based on this knowledge we will propose experimental approaches which could enhance 

the intranuclear delivery of nonviral gene delivery complexes during cell division. This in turn might 

lead to an improvement of the efficacy of therapeutic strategies relying on nonviral carriers.  

 

2. Breakdown and reassembly of the nuclear envelope structure during mitosis  

2.1. Nuclear envelope structure 

In eukaryotic cells, the genetic material is kept inside the nucleus, surrounded by the NE which 

physically separates the nucleoplasm from the cytoplasm. It consists of two phospholipid bilayers 
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composed of the ONM, which is continuous with the endoplasmic reticulum (ER), and the INM which 

interacts with the underlying lamina and chromatin through several integral and associated 

membrane proteins (Fig. 1) [19, 20]. The NE is equipped with NPCs which regulate traffic between 

the cytoplasm and the nucleus. These 125 kDa large multi-protein complexes contain an aqueous 

channel that permits passive transport of molecules up to 10 nm in size. Larger molecules require a 

nuclear localization signal (NLS) that can enlarge the central channel of the NPCs up to 40 nm [21]. 

NPCs are strongly anchored in the NE and are composed of strongly associated nucleoporin 

complexes [22]. NPCs are assumed to play a role in gene regulation since activated genes associate 

with the NPCs. Furthermore, they can maintain a ‘transcriptional memory’: previously transcribed 

genes are retained at the NPCs and show an accelerated gene expression following reactivation. 

Interestingly, this transcriptional memory can be maintained even after cell division [23].    

The 30 – 100 nm thick nuclear lamina is located in-between the chromatin and the INM. It provides 

mechanical strength and transcriptional regulation to the cell nucleus and is composed of type A and 

type B lamins and lamin-associated proteins which are often integral proteins of the INM [24]. Many 

of these INM proteins contain the LEM-domain (Lap2, Emerin, Man1), through which they bind the 

lamins, as well as other components such as the barrier-to-autointegration factor (BAF). BAF on its 

turn can bind dsDNA, chromatin and transcription activators, thereby connecting the nuclear lamina 

to the peripheral chromatin [25, 26]. Due to multiple interactions between the lamina and the 

chromatin, the lamins play an important role in the regulation of transcription in response to a 

chemical or mechanical stimulus [23]. If the nuclear lamina is affected in so-called laminopathies, this 

can drastically alter the expression profile of the cell [27]. The most striking example is probably 

molecular aging in Hutchinson-Gilford progeria syndrome, which is the result of a single mutation in 

lamin A [28].     

In the cell nucleus, DNA is packed with histones into chromatin. In interphase, at least two types of 

chromatin can be distinguished: a lightly packed form of chromatin (euchromatin) that has greater 

potential to be transcribed and highly condensed chromatin (heterochromatin) that is generally 

transcriptionally inactive. When the chromosomes are formed during mitosis, the chromatin is 

arranged into its most compact form. Euchromatin is generally found in the core of the nucleus, 

while heterochromatin is located closer to the lamina, suggesting that the nuclear interior promotes 

gene expression, whereas the nuclear periphery promotes gene silencing, unless in the areas close to 

NPCs [23, 29].  

 
2.2. Nuclear envelope breakdown  
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In the process called ‘open mitosis’, the NE completely disassembles, resulting in the intermixing of 

nucleoplasmic and cytoplasmic components. The stepwise process of NEBD is initialized at late 

prophase by a series of CDK1-dependent phosphorylations of nucleoporins, lamins and integral 

membrane proteins from the INM [30]. The initial step of NEBD is the partial disassembly of the 

NPCs. This increases the passive permeability of the NPCs to molecules up to about 40 nm, thereby 

promoting the nuclear import of larger cytoplasmic molecules such as tubulin, a major component of 

the mitotic spindle [31]. Subsequently, the core nucleoporins are released, resulting in the complete 

disassembly of the NPCs. The complete disassembly of the NPCs is a rapid process, which is 

completed in minutes. Initially it was thought that the NE elements are distributed in the cytoplasm 

in vesicular form. Currently it is becoming more and more accepted that most NE membranes and 

their associated proteins are resorbed in the ER [19]. As the final step in NEBD, the nuclear lamina 

depolymerizes and INM proteins dissociate from the lamins and the chromatin.  

2.3. Nuclear envelope reassembly 

During anaphase, the sister chromatids are moving to opposite poles by shortening of the 

microtubuli [32]. This results in the physical separation of two sets of identical chromosomes, around 

which a new NE is formed. This NE starts to reassemble in late anaphase and NE formation is 

completed at telophase/cytokinesis, when two daughter cells are formed. To prevent nonnuclear 

material to end up in the nucleus, it is important to securely unmix the cytoplasmic and 

nucleoplasmic elements. Also, all chromatin should be included in only one nucleus, avoiding the 

formation of a second so-called ‘micronucleus’ around chromosomes which got separated from the 

rest. To facilitate this process, chromatin is at its most condensed state when the NE has to reform 

[33]. The different phases of the NE reassembly include targeting of proteins to chromosomes, 

assembly of the NPCs, recruitment and fusion of membrane elements and nuclear import of lamins. 

In contrast to NEBD, which is triggered by a series of phosphorylation reactions, a series of 

dephoshorylation events coordinates the NE assembly.  

Two different models exist for the NE assembly. In the ‘insertion model’ NPCs are inserted in the 

already formed NE. In the ‘prepore’ model, first the so-called prepores or pre-NPCs are formed, 

which is followed by the formation of the NE in-between these pores. It was previously thought that 

membrane elements could bind to chromatin in form of membrane vesicles, which would finally fuse 

to form the NE [34-36]. Currently, however, it is thought that the NE reappears from the ER, where it 

was redistributed during NEBD. Very recently, Lu et al. [37] presented evidence that is in favor of the 

insertion model. The authors found that the NE reassembly primarily occurs by coordinated direct 

contact of ER cisternae with the chromosomes and that a functional NPC was only formed when NE 

formation at that site was completed. Both in the insertion and the prepore model, the final step in 
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NE formation is the import of lamins through the rebuilt NPCs and the assembly of the nuclear 

lamina through dephosphorylation of B-type lamins [7, 33]. It is not clear whether the nuclear lamina 

already binds to specific parts of the chromatin when it assembles or that it initially binds at random 

and rearranges according to the gene expression needs by detachment and rebinding afterwards 

[38].        

 

3. Mitotic partitioning of cell organelles  

As described above, the predominant function of cell division is to deliver a complete set of 

chromosomes to the two daughter cells. In addition, it should ensure appropriate distribution of key 

organelles located in the cytosol and prevent nonnuclear material to be included in the daughter 

nuclei. The latter might occur through exclusion from condensed chromatin throughout mitosis and 

completion of NE assembly before nuclear expansion [39]. Vesicular particles such as early or late 

endosomes and lysosomes are distributed in large numbers throughout the cytoplasm. On the other 

hand, the endoplasmic reticulum (ER) and Golgi apparatus exist as single or low-copy organelles. 

Therefore, it is conceivable that their partitioning during mitosis will display significant differences. 

Distinctive pathways of endocytosis serve to assure efficient uptake of macromolecules and (gene 

delivery) particulate formulations by cells. Early or late endosomes and lysosomes are prime players 

in this process. The trans-Golgi network is responsible for sorting and transport of proteins to 

endosomes and lysosomes.  

 

Bergeland et al. [40] studied mitotic partitioning of early and late endosomes and observed that 

none of the endocytic vesicles fragmented or fused during cell division. Even though the numbers of 

both types of endosomes in the two daughter cells were roughly the same, no evidence for a strict 

mechanism guaranteeing their equal distribution was found. This observation was confirmed by 

others [41], leading to a model in which the partitioning of vesicles in the cytoplasm occurs passively 

but equally between the two daughter cells. In this model, it is assumed that the more vesicles are 

present in the cytoplasm, the more accurate the partitioning effect becomes.  

On the other hand, Dunster et al. [41] found that late endosomes and lysosomes were inherited by 

daughter cells in a different manner than early endosomes. In contrast to early endosomes, late 

endosomes and lysosomes hardly associated with the spindle array, from prophase throughout 

anaphase. By telophase, the distribution of late endosomes and lysosomes mirrors that of early 

endosomes [41]. It was shown that clustering of endosomal vehicles occurs in a directed manner, 

which is in favor of the second model, that involves active partitioning of the organelles over the 

daughter cells, most likely dependent on the mitotic spindle and interphase microtubule scaffold [40, 
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41]. This was confirmed by the observation that soon after cytokinesis endosomal vesicles 

accumulate in the area of the microtubule organization center [40].  

In mammalian interphase cells, the Golgi apparatus is typically positioned close to the centrosome, at 

one side of the nucleus [41, 42]. It consists of a stack of disk-shaped membranes (cisternae) 

surrounded on each side by dense tubular-reticular networks called the cis- and trans-Golgi network. 

Interestingly, it was observed already more than 100 years ago that the very characteristic stack-like 

organization of the Golgi apparatus changes remarkably at the onset of mitosis [43]. Electron 

microscopy studies published in the late 1980’s clearly demonstrated that the number of Golgi stacks 

decreases considerably at the onset of cell division [44, 45]. This is accompanied by the appearance 

of large numbers of tubular and vesicular structures, which were proven to derive from the Golgi 

apparatus [45, 46]. The fragmentation of the Golgi apparatus into hundreds of tubular and vesicular 

structures (between 50 and 250 nm in size) is considered to facilitate its uniform distribution 

between the daughter cells [45, 47]. As for the partitioning of endocytic vesicles, the partitioning of 

Golgi fragments is believed to be random and from a statistical point of view its accuracy depends on 

two factors: the number of organelle units and their distribution in the cytosol. The larger the 

number of units and the more evenly they are allocated in the cytosol, the more accurate is their 

partitioning [47]. This random partitioning has been challenged by Shima et al. [48] who 

demonstrated that the Golgi distribution between two daughter cells is too precise for a stochastic 

process. Later reports demonstrated the involvement of the mitotic spindle in the organization of at 

least a part of Golgi-derived structures during cell division, suggesting some sort of active segregation 

mechanism for these cell organelles [41, 49].  

Apart from the passive or active model of segregation of cell organelles, for the Golgi apparatus a 

third possible segregation mechanism has been proposed [50, 51]. This model assumes that the Golgi 

apparatus behaves more like the NE and during cell division temporary disappears and redistributes 

to the ER, from which it reappears when the daughter cells are formed. The ER can thus be 

considered as the storage box for NE and Golgi apparatus elements during mitosis. The formation of 

the NE around the sister chromatids assures the equal partitioning of ER and NE elements between 

the two daughter cells. When apart from the NE elements, also the Golgi apparatus is resorbed into 

the ER, it can reappear from the ER in the daughter cells resulting in its efficient partitioning.   

 

4. Mitotic partitioning of free macromolecules such as dextrans and free plasmid DNA  

4.1. Dextrans 

Dextrans are electroneutral hydrophilic D-glucose polymers. Therefore, they behave as relatively 

inert molecules inside cells: self aggregation or binding to other cellular structures is negligible and 
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they show no toxicity even at high concentrations and over prolonged periods. Furthermore, 

dextrans are commercially available in practically any molecular weight [52]. With increasing 

molecular weight, neither shape nor surface properties of dextrans change. Consequently, dextrans 

are perfectly suited as molecular rulers to measure the permeability of pores and channels [31].  

At first glance, nuclear entry during mitosis would appear to be a passive process, as NEBD would 

allow (exogenous) macromolecules to enter compartments which will be included in the nuclei when 

they reassemble. However, distribution of cellular components between the cytoplasm and the 

nucleoplasm is tightly controlled both during interphase and mitosis. As a result, there is only a small 

effect of cell division on the partitioning of exogenous macromolecules. Swanson & McNeil [39] and 

Benavente et al. [53] shortly after them, were the first to report that it appears that only the 

chromosomes themselves and the macromolecules physically associated with them (e.g. the 

perichromosomal layer [54-56]) are included in newly formed nuclei, while organelles (as described 

in section 3) and other large macromolecules which cannot pass the NPCs are excluded. Swanson & 

McNeil [39] have reported that after scratch-loading of the cells, the fluorescently labeled large 

dextrans (> 25 kDa) did not appear in the nuclei, even when cells went through mitosis. Dextrans 

smaller than 20 kDa, however, were observed in the nuclei of interphase cells regardless of cell 

division as they can enter the nucleus through the NPCs of the intact NE. These observations were 

confirmed by Ludtke et al. [57] (Fig. 2) who found that after cytoplasmic injection, the labeled large 

dextrans remained cytoplasmic regardless of mitosis. After nuclear injection, the labeled large 

dextrans were localized in the nucleus of cells which did not divide and in the cytosol of cells which 

divided. Also Lenart et al. [31] found that labeled large dextrans were excluded from reassembled 

nuclei after mitosis. Thus, cellular compartmentalization at telophase appears to be a two-step 

process. First, the NE tightly encloses the condensed chromosomes, excluding non-selectively all 

macromolecules not associated with the chromosomes. Then, selective NPC-mediated import of 

nuclear proteins from the cytoplasm leads together with the decondensation of the chromosomes to 

nuclear expansion and the interphase nuclear organization [39, 53]. It should be noted that Miyawaki 

et al. [58] identified that the NE barrier is more permeable during a short period directly after 

cytokinesis as a large molecule (210 kDa) diffused across the NE. They saw a subtle but substantial 

decrease in the diameter of the aqueous channels through the NE formation: it was ~10 nm 

immediately after cytokinesis and reduced to ~8 nm in 30 minutes. They do not know whether the 

passive diffusion is due to incompleteness of the NE sealing or altered NPC functions after nuclear 

reassembly. According to their findings, at least a fraction of macromolecules which are normally not 

able to pass the NPCs should be able to reach the cell nucleus shortly after cytokinesis. 
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4.2. Free plasmid DNA 

The use of nonviral vectors for gene therapy is hampered by poor transfection efficiencies, largely 

because of the metabolic instability of pDNA in the cytosol, the inability of pDNA to diffuse freely 

through the dense cytoplasm and to travel through the NPC [10, 59-61]. It has been reported that as 

little as 1 in 104 pDNA molecules is able to translocate from the cytoplasm to the nucleus [62]. 

Several attempts to improve the entry of pDNA into the nucleus have been reported. These include 

the use of electrostatic binding of DNA to cationic nuclear localization signal (NLS)-containing 

proteins or peptides [63], as well as covalent attachments of NLS peptides to DNA [64]. Additionally, 

the effect of inclusion of DNA nuclear targeting sequences (DTSs) like the Simian vacuolating virus 40 

(SV40) enhancer sequence in the pDNA was investigated [65]. Another strategy was to increase the 

permeability of the NPCs with trans-cyclohexane-1,2-diol [66]. All these attempts have met with 

limited success.  

A few studies have focused on the fate of pDNA during cell division. Dowty et al. [67] reported an 

interesting study where electron microscopy was used to determine the precise intracellular 

localization of gold-labeled pDNA which was microinjected into the cytoplasm. The authors observed 

that the distance between the cytoplasmic site of delivery of pDNA and the nucleus is a key 

determinant for nuclear incorporation of DNA. Only when pDNA was injected close to the nucleus, 

nuclear translocation was observed, regardless of the cell cycle status. They have seen that pDNA 

entered postmitotic nuclei of primary rat myotubes and concluded that cell division-dependency for 

pDNA to enter the nucleus is also cell type-dependent. Remaut et al. [68] injected unlabeled pDNA 

directly in the nucleus or the cytoplasm of the cells and found that only upon nuclear injection either 

open circular, supercoiled and linear pDNA were equally able to be expressed, even at low injection 

concentrations. When injected in the cytoplasm, however, cell division and a high concentration of 

supercoiled pDNA were required to reach comparable transfection efficiencies. More detailed 

studies on the intracellular behaviour of pDNA were performed by Ludtke et al. [57] and Gasiorowski 

& Dean [69]. Next to labeled dextrans (as described in section 4.1), Ludtke et al. [57] also 

microinjected naked labeled pDNA into the cyto- or nucleoplasm. Randomly labeled pDNA resembles 

the intracellular localization pattern of large dextrans as described in section 4.1 (Fig. 2). Following 

mitosis, it was always localized in the cytosol, regardless of prior cyto- or nucleoplasmic 

microinjection. Gasiorowski & Dean [69], have shown that naked unlabeled plasmids microinjected 

directly into nuclei and later detected by FISH were found almost exclusively and in equal amounts 

within the nuclei of the daughter cells after mitosis. On the other hand, when plasmids were 

randomly labeled with several commercially available fluorescent DNA labeling kits and afterwards 

injected into HeLa cell nuclei, the randomly modified plasmids were excluded from the daughter 
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nuclei after cell division. Around the same time Shimizu et al. [70] reported similar findings, being 

that randomly labeled pDNA microinjected into the nucleus was found in the cytoplasm after mitosis. 

However, they concluded that unlabeled pDNA microinjected into the nucleus rapidly forms 

intranuclear aggregates and that unlabeled pDNA was like labeled pDNA detected (by FISH) in the 

cytoplasm 24h after nuclear injection. The aggregates left in the cytoplasm resembled micronuclei, 

which suggests its similarity to the nuclei formed by purified DNA and the proteins and membranes 

present in Xenopus egg extracts [71, 72].  

The results of Gasiorowski & Dean [69] suggest that naked, unmodified plasmids are retained in the 

nucleus following cell division and likely continue to be expressed in the daughter cells. The episomal 

pDNA localizes in the region of the cell which will be enclosed by the reforming NE at the end of 

mitosis, even in the absence of viral chromatin associating systems (see 6.2). Alternatively, the 

dividing cell can simply recognize the pDNA as a marker for NE reassembly as previous experiments 

in chromosome-free cellular extracts have shown that functional NEs are formed around 

extrachromosomal DNA [71, 72]. Consequently, unlabeled pDNA can end up in the nuclei or in the 

cytoplasm as micronuclei. A pDNA with randomly attached fluorophores, however, is likely to be 

recognized as a large, foreign molecule and not as a DNA molecule. Therefore, it will be no longer 

highly interactive with a range of cellular DNA-binding proteins, which most likely interferes with the 

enclosure of the modified pDNA within the new nuclei or micronuclei [69, 73].  A solution to this 

problem could be the fluorescent tagging of pDNA only at a specific sequence, leaving the rest of the 

pDNA sequence accessible to cellular proteins. This can be achieved with quantum dots as described 

by Srinivasan et al. [74]. However, the long term follow up of the intracellular fate and nuclear 

uptake of these plasmids was not studied in detail.  

 
5. Mitotic partitioning of inorganic quantum dots, gold and iron oxide nanoparticles  

In the past two decades, rapid developments in the field of nanotechnology have led to a steady 

increase of applications in the area of nanomedicine [75]. Examples of frequently used nanoparticles 

are gold, silver or iron oxide nanoparticles (IONPs), quantum dots (QDs) or carbon nanotubes. Also in 

the area of drug and gene delivery, these particles exhibit several characteristics which make them 

highly interesting as carrier systems for efficient delivery. Specifically, the small size (ranging 

between one and several tens of nms) and solid structure of the nanoparticles cause them to be 

avidly taken up by cultured cells, while their large surface areas enable profound surface chemistry. 

The particles can thus be provided with multiple functionalities and their specific characteristics 

allow its combined application of several different modalities (imaging, therapy and carrier systems 

for delivery) through one nanoparticle type.   
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For drug and gene delivery, IONPs, QDs and gold particles have been used most frequently. IONPs 

can be supplied with a cationic coating which allows DNA binding. Their cellular uptake can be 

strongly enhanced by applying a static magnetic field gradient over the target cells in a procedure 

which is known as ‘magnetofection’ [76]. QDs are fluorescent particles exhibiting high photostability, 

limited photobleaching, high fluorescence emission intensities and narrow fluorescence emission 

spectra, which allows multi-colour analysis of complex localization, even in vivo [77]. Gold 

nanoparticles are considered to be the most biocompatible, allow facile surface chemistry and are 

able to strongly adsorb or scatter incident light at a certain resonance wavelength (often in the near 

Infra-Red region), a phenomenon called localized surface plasmon resonance, enabling microscopy-

based long term tracking of complexes in cells and tissues [78]. 

One of the few studies focusing on the fate of nanoparticles during cell division was performed by 

Feldherr et al. [79]. They microinjected gold particles of different sizes (3-17 nm) in the cytoplasm of 

amoebas and studied the cytoplasmic/nucleoplasmic distribution by electron microscopy. Cells 

injected in interphase contained about 2.6 times more particles in the cytoplasm than in the 

nucleoplasm. Interestingly, mainly small gold particles (<14 nm) were able to reach the nucleus 

through the NPCs. When injections were performed in prophase or shortly after mitosis, about 7.3 

times more particles could be found in the nucleoplasm when compared to the cytoplasm. 

Furthermore, the inclusion of larger gold particles (>14 nm) was also observed. Thus, higher relative 

uptake and incorporation of larger gold nanoparticles were observed in nuclei of dividing cells 

compared to nondividing cells. According to Feldherr et al. [79], the gold particles enter the nuclei 

during and/or shortly after mitosis, what could be related to an increased permeability of the NE 

shortly after it was formed. Later on, Feldherr et al. [80] demonstrated that recently formed NEs with 

newly forming NPCs are more permeable than those of older cells with fully reconstituted mature 

NPCs. These studies indicate that the NEBD on itself is not of special importance with regard to the 

uptake of material into the nucleoplasm, but rather the increased permeability of the NPCs. The 

rates of diffusion across the NE are the highest during the first and fifth hour after the onset of 

anaphase [80]. This corresponds with the similar time pattern and non-uniform rate of NPC 

formation reported in HeLa cells [81]. These findings are consistent with electron microcopy studies 

of dividing cells [82-84] and the study of Swanson & McNeil [39] which have shown that the NE 

reforms at the surface of the chromosomes, excluding cytoplasmic substances from the daughter 

nuclei at the time of reassembly. Therefore, small nanoparticles such as these gold particles are 

probably not included in the nuclei during mitosis, but are imported shortly afterwards through the 

more permeable NPCs.  
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For IONPs or QDs, the focus has been put on the dilution of these particles due to cell division, rather 

than their nucleocytoplasmic distribution. It has been accepted that for these slowly or non 

degrading particles, cell division usually results in an exponential decrease in the intracellular 

concentration of the particles, as in general both daughter cells receive approximately 50% of the 

particles. Recently, several studies questioned the general applicability of this finding [85, 86]. 

Walczak et al. [87] observed clear differences in endosomally located IONP turnover in C17.2 neural 

progenitor cells which were either left to proliferate and showed a uniform dilution of the IONPs or 

underwent differentiation, resulting in a large difference in numbers of particles per cell. The authors 

found that this effect was due to asymmetric cell division, a phenomenon quite common for stem 

cells, which occurs during simultaneously occurring differentiation and renewal of stem cells. This 

results in an abrupt and faster dilution of IONPs than in continuously proliferating cells undergoing 

symmetric cell division (Fig. 3) [87].  

Also for cells dividing symmetrically, however, the dilution of nanoparticles can differ between the 

two daughter cells. The dilution of endocytosed QDs upon cell division leads to an asymmetric 

segregation of endosomes and thus of QDs [88]. Using a statistical model, the same group further 

showed that partitioning of nanoparticles upon cell division is a random and asymmetric event [89]. 

From a biological point of view, it has been suggested that large cell populations can proceed to 

asymmetric cell divisions in order to be able to more effectively counteract the effects of the ‘toxic’ 

nanoparticles [90]. As one cell receives most of the particles, this cell is likely ‘sacrificed’ so that the 

remaining daughter cells with nearly no particles have a better chance to survive. Cellular responses 

to stress induced by nanosized materials can also lead to the induction of autophagy, a self-defense 

mechanism which can occur in all eukaryotic cells which contain lysosomes [91]. Typically, two 

membranes will be formed surrounding the region where the nanoparticles are located, to separate 

this region from the rest of the cytoplasm and then fuse with lysosomes in order to reduce cellular 

stress and degrade the particles [91]. Also gold nanoparticles, which are generally seen as quite 

biocompatible, induce oxidative stress upon cellular internalization which in turn activates autophagy 

[92]. 

It should be noted that in general, the above mentioned nanoparticles are actively endocytosed and 

remain within the endosomal compartment of the cell. This most likely explains why these 

nanoparticles are not frequently reported to be in the nucleus of the cells, although their small size 

could permit access to the nuclear interior through the NPCs. 

 

6. Effect of cell division on nonviral gene delivery particles 
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As naked pDNA molecules are only poorly internalized, they need a complexation partner to help 

them to reach the cytoplasm or the nucleus of the cells. Ideally, this carrier should also provide 

protection of the nucleic acids against enzymatic degradation during the different steps of the 

delivery process. In the field of nonviral gene delivery, liposomal and polymeric delivery systems 

(known as lipoplexes and polyplexes, respectively) have a long history [93]. Compared to viral 

delivery systems, both lipo- and polyplexes are generally easy to prepare, not or weakly 

immunogenic and allow the incorporation of larger DNA chains as there is no intrinsic size limitation 

as with viral particles [13]. Typically, liposomal systems consist of at least two lipid types: a cationic 

lipid, which allows them to electrostatically interact with polyanionic DNA and facilitates cellular 

uptake through endocytosis, and an accompanying matrix lipid with long, unsaturated fatty acid 

chains, which mostly aid in the endosomal escape of these lipoplexes, resulting in the release of free 

pDNA in the cytoplasm of the cells [94, 95]. 

Polyplexes contain a polycationic polymer, such as polyethylenimine (PEI), that binds to the anionic 

DNA. Also in this case a surplus of cationic charges allows for binding to and uptake by the cells. Like 

lipoplexes, polyplexes are taken up by endocytosis and will therefore end up in the endosomal 

compartment from which they must be released to allow nuclear translocation of the DNA. In 

general, polyplexes with high buffering capacity are expected to finally escape out of the endosomes 

into the cell cytoplasm by an osmotic rupture according to the proton sponge hypothesis [96]. 

When compared to viral vectors, the overall expression efficiency of lipo- and polyplexes is rather 

low, commonly resulting in transgene expression in less than 50% of all treated cells [14]. This low 

expression efficiency can be explained by taking into account several hurdles which are intrinsically 

associated with lipo- or polyplex-based gene delivery: 1) cellular uptake of the complexes, 2) the 

translocation of the complexes from the endosomes to the cytoplasm, 3) dissociation of the DNA 

from the lipid or polymer carrier and 4) translocation of the DNA from the cytoplasm to the nuclear 

compartment [11, 97, 98]. Which one of these barriers limits the transfection efficiency in the most 

pronounced way is debatable. Most likely, all barriers contribute to some extent to the lowering of 

the obtained gene expression. For pDNA, however, the transfer of free DNA from the cytoplasm to 

the nucleus has been reported to be a very inefficient process. Capecchi [10] and Escriou et al. [61] 

observed transgene expression in 50-100% of the cells microinjected with naked DNA directly into 

the nucleus but no significant expression upon DNA microinjection in the cytoplasm. Our recent 

results also indicate that the NE is the main obstacle to pDNA delivery as we saw nearly no GFP-

positive HepG2 cells transfected with pDNA/cyclodextrin complexes. In contrast, when the same 

cyclodextrin complexes were used to deliver mRNA, that only needs to reach the cytosol to display 

biological activity, up to 30% of GFP-positive HepG2 cells were detected [99]. An even more 
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pronounced difference was observed for HeLa cells [100]. Furthermore, although both lipo- and 

polyplexes are specifically designed to enable endosomal escape, the majority of the complexes 

remains entrapped within the acidic endosomes [61, 101]. The acidic environment of the endosomes 

and presence of degrading enzymes such as lipases will result in the degradation of most liposomes 

and polymers [102], where the nondegradable polymer backbones or cationic lipids are exocytosed 

or kept within the lysosomes. DNA molecules which do reach the cell cytoplasm are rapidly degraded 

by cytoplasmic nucleases and their cytoplasmic residence time should therefore be kept minimal 

[103].  

The intracellular fate of nonviral gene delivery particles still remains obscure. As long as the lipo- or 

polyplexes have not escaped the endosomal compartment, they are expected to distribute within  

endocytic vesicles among daughter cells upon recurrent cell division. For lipoplexes, it is assumed 

that endosomal escape results in the delivery of naked pDNA into the cytoplasm of the cells. This 

dissociation seems to be necessary since it has been shown that pDNA is not transcriptionally active 

upon injection of the intact lipoplexes in the cytoplasm nor the nucleus [11, 62]. Therefore, upon cell 

division, the naked pDNA in the cytoplasm of the cells will most likely behave as described above (see 

4.2). For polyplexes, however, it is still under debate whether or not pDNA has to dissociate from the 

polyplexes before nuclear translocation can occur. From time to time, PEI polyplexes have been 

observed in the nuclei of transfected cells, suggesting that nuclear uptake of the polyplexes should 

be possible [104]. Also, Pollard et al. [62] showed that PEI polyplexes injected in the nucleus were 

transcriptionally active, questioning the need for cytoplasmic pDNA unloading. In line with these 

speculations, Breuzard et al. [105] found evidence of nuclear polyplexes by FRET imaging. On the 

contrary, Bieber et al. [106] found no evidence of nuclear PEI polyplexes and mainly observed 

colocalization with lysosomes. Also, Itaka et al. [107] observed fast release of pDNA from (linear) PEI 

polyplexes in the cytoplasm, questioning the long-term existence of cytoplasmic PEI polyplexes and 

their subsequent delivery to the nucleus. The nuclear observed PEI polyplexes in the aforementioned 

studies could then result from a recomplexation of pDNA and PEI polymers, after both of them 

reached the nuclear interior independently. Overall, the observation of polyplexes in the nucleus of 

cells seems to be very rare.  

Surprisingly, the long term intracellular fate of lipo- and polyplexes during cell division has never 

been investigated in detail. Consequently, little is known on the nuclear entry of nanoparticles during 

mitosis, although the nuclear inclusion appears a very simple concept to study. To address this 

question, in theory only a detailed real-time analysis of the intracellular distribution of 

cytoplasmically microinjected nanoparticles would be needed. In living cells, however, the lack of 

information can partially be explained by the difficulties to inject particles which are larger than 200 
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nm because of problems of aggregation, needle clogging and long-term survival of the cells after 

injection. Therefore, most information on the nuclear delivery of pDNA to the nucleus upon lipid-

based [5, 8, 13-17] or polymer-based [5, 8, 12] delivery comes from indirect evidence of nuclear 

entry, namely an increased gene expression, which was reported to be two- to several hundredfold 

higher in dividing than in nondividing cells. As mentioned in section 2, the cell cycle can be roughly 

subdivided into five different phases, being: G0, G1, S, G2 and M phase. A common finding is that the 

expression efficiency for both lipo- and polyplexes is considerably higher during S, G2 or M phases 

than during G0 or G1 phases [5, 13, 16, 18]. Generally, it is believed that during M phase and 

associated NEBD, the larger complexes can reach the nuclear DNA [15]. Complexes which were taken 

up by cells in G0 or G1 phase are likely not retained long enough to still be fully functional when 

reaching the M phase [5]. Apart from NEBD, other events such as a cell cycle dependent 

internalization of the complexes may play a significant role as well. Although studies have indicated 

that the cell cycle status has no effect on the cellular uptake of the complexes [108], other studies 

point to a clear link between complex uptake efficiency and cell cycle status [14, 18]. Männisto et al. 

[18] linked their observations to previous studies in which it was shown that the rate of endocytosis, 

in general, increases gradually during the G1, S and G2 phases, but drops drastically at the beginning 

of mitosis. Of further interest is the study by Marenzi et al. [109] who links reporter gene expression 

levels to the compaction state of transfected DNA at different cell cycle phases. For transfection of 

cells in G0 or G1 phase, the plasmid is packaged into a more compact form which inactivates reporter 

gene expression. This compact pDNA is not reactivated when cells are stimulated to cycle. Therefore, 

differences in gene expression are not directly linked to alterations in transfection efficiencies but 

rather to the inability of the pDNA to be transcribed when packaged into a more compact form.  

Cell cycle independent gene transfer by using polyplexes composed of linear PEI has been reported 

as well [12]. Also, compact DNA particles were shown to transfect postmitotic cells, showing that at 

least some nanoparticle types are able to reach the nucleus of nondividing cells [110]. Furthermore, 

Escriou et al. [15] although confirming that mitosis is an important upregulator of expression 

efficiency, also observed expression in cells which had not divided, albeit to a lower extent. In line 

with these findings Dowty et al. [67] found that when pDNA was injected close to the nucleus, 

nuclear translocation was observed, regardless of the cell cycle status.  

Overall, these data indicate a clear effect of cell cycle progression on transgene expression levels, but 

the variety of cell types and carrier systems used make it hard to clearly define the exact mechanism 

underlying this effect. Likely, a combination of factors play a role, where cells in S or G2 phase have 

the highest endocytic capacity, while in M phase facilitated nuclear transport by NEBD occurs and the 
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pDNA is allowed to be packaged into a more open form, thus enabling high reporter gene expression 

levels.  

  

7. Viral particles taking advantage of mitosis  

Viral vectors remain to have the best transfection efficiencies because for millions of years they have 

developed mechanisms to survive in the extracellular environment, stabilize virus-cell interactions, 

increase internalization, hijack intracellular transport systems, deliver their genomes into the 

appropriate subcellular compartment (cytosol or nucleus) of dividing and nondividing cells and 

increase transcription. Most of these mechanisms involve design and incorporation of specific 

proteins into the virus. Many viruses have evolved, gaining the ability to replicate and store their 

genome in the cell nucleus. These viruses aim at maintaining their genome in the infected cells until 

the host organism dies. They usually achieve this by integrating genomic DNA into the host 

chromosomes or segregating episomal DNA into daughter cells [111]. Two groups of viruses which 

take advantage of cell division during their life cycle, will be discussed in this section: certain 

retroviruses which depend on mitosis to integrate their genome and thus infect the host cells and 

some DNA viruses which use mitosis to partition their episomes in the progeny cells of latent infected 

host cells.  

7.1. Retroviruses 

Retroviral virions are enveloped particles of about 80-100 nm in diameter [112]. In retroviruses, the 

viral ssRNA is reverse transcribed in the cytosol via reverse transcriptase into dsDNA. This DNA 

together with viral integrase is organized into the pre-integration complex (PIC) [111, 113]. Also, host 

proteins such as the barrier-to-autointegration factor (BAF) or high mobility group (HMG) proteins 

can associate with the PIC [114]. Generally, viruses deliver their genome through the NE of the 

interphase nucleus. This allows infection of nondividing cells and offers the opportunity to infect 

terminally differentiated cells. Some retroviruses, however, are dependent on mitosis for infection 

and their PIC waits in the cytosol until the cell undergoes mitosis. During the temporary NEBD, the 

PIC can associate with the chromosomes and enter a newly assembling nucleus after which the cDNA 

integrates into the host genome (Fig. 4 A) [113]. Many retroviruses infect cells exclusively, or more 

efficiently, if the host cell divides [115, 116]. These include murine leukemia virus (MuLV) [117, 118], 

human immunodeficiency virus (HIV) [119-121], spleen necrosis virus (SNV) [122], avian sarcoma 

virus (ASV) [122-128] and foamy virus (FV) [129, 130].   
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For example, gene transfer and expression of exogenous genes using retrovirus based vectors, such 

as MuLV, requires cell proliferation which limits their application to dividing cells. Why MuLV cannot 

work its way into nondividing cell nuclei via nuclear pores is unclear. Yamashita et al. [131] indicated 

that the MuLV capsid protein that is closely associated with MuLV PICs, prevents PICs from migrating 

into the nucleus of nondividing cells. MuLV PICs perhaps lack NLSs or fail to display NLSs due to MuLV 

capsid, preventing their NPC import. Alternatively, the MuLV capsid may sterically hinder NPC import 

[132]. For that reason, MuLV PICs bind the host chromosomes during mitosis and are subsequently 

enclosed together with them in the daughter nuclei. A particular factor with tethering activity to 

mitotic chromosomes has not yet been described for MuLV. However, phosphoprotein p12, a part of 

the MuLV PIC, bears a similar N-terminus as the histone H5 protein [133] and shows a close 

association with the chromatin. These together tempt to assume that p12 also functions in tethering 

the MuLV PIC to the chromatin [134]. It should be stressed here that the limited knowledge of PICs in 

general is caused by the difficulty of obtaining large amounts of material [135].  

Contrary to MuLVs, lentiviruses such as HIV-1 infect dividing as well as nondividing cells, like 

terminally differentiated macrophages [136, 137]. HIV-1 capsid is not strongly associated with HIV-1 

PICs as opposed to MuLV capsid [131]. How HIV-1 PICs move through NPCs despite their large size 

~56 nm [138] exceeding the limit for active NPC transport also remains unclear. For a review about 

this controversial matter, the reader is referred to ref. [139]. Overall, transport of the HIV-1 PICs into 

the nucleus may require the combined action of three constituent proteins, namely matrix (MA), viral 

protein R (Vpr) and integrase (IN), in addition to specific DNA sequences. During transport, several 

factors such as virus uncoating, NLS signals and disruptions in NE integrity may play a significant role 

[111, 113]. The integration efficiency of HIV-1 is up to threefold higher in dividing cells than in 

nondividing cells as a result of the balance of two opposite effects. While NEBD facilitates docking of 

the viral genome to the host chromatin, chromosome condensation directly antagonizes and 

therefore delays integration [140]. Also for lentiviruses, evidence of existence of a specific 

chromosome binding factor is lacking but the endogenous lens epithelium derived growth factor/p75 

(LEDGF/p75) is an attractive candidate chromatin tethering factor. LEDGF/p75 is a nuclear protein 

that binds integrase via its C-terminus and binds chromatin via its N-terminus, thereby tethering 

integrase and thus the PIC to the chromatin [141]. However, Katz et al. [142] have reported that 

nuclear import of HIV-1 PICs might be mitosis-independent in dividing cells. This would indicate that 

LEDGF/p75 as a chromatin tethering factor is not necessary for nuclear entry of HIV-1 PICs, but that it 

is required for viral cDNA integration in the host genome. 

Aside from lentiviruses, also other retroviruses such as ASV and FV enter the nuclei of nondividing 

cells, albeit less efficiently than that of dividing cells [129, 132]. Recently, the FV group-specific 
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antigen (Gag) was found to be the essential linker between the viral DNA in the PICs via its C-

terminus and host chromosomes during mitosis through interaction with H2A/H2B histones via its N-

terminus [143, 144]. The substitution of this chromatin binding site with the chromatin binding site 

of LANA (see 6.2) allows binding of the incoming PICs onto host chromosomes but it does not restore 

full infectivity [143]. For ASV, the factors which translocate their PICs into the nucleus of 

(non)dividing cells are speculated or unknown e.g. an NLS in the ASV integrase protein may underlie 

PIC import [132]. In contrast to MuLV, lentiviruses and FV vectors showed a long-term persistence of 

a stable transduction intermediate in quiescent cells, so that they efficiently transduced G0 

fibroblasts which were later stimulated to divide [129]. A mechanism envisioned for how retroviruses 

might deal with the potentially restrictive environment of nondividing cells, is that the retroviruses 

themselves may induce cell cycle progression to create a more favorable environment [145, 146]. 

Studies have indicated that binding of some retroviruses to Toll-like receptors on the cell surface can 

stimulate the cell to enter into the cell cycle [145]. However, such stimulatory activities are unlikely 

to be universal [142]. 

 

7.2. Latent DNA viruses 

Besides the retroviruses which make use of mitosis to integrate their genome into the host DNA, 

some latent dsDNA viruses associate their genome with the host mitotic chromosomes for 

persistence of viral episomes in infected cells and their progeny (Fig. 4 B). This is achieved by 

attaching the viral circular dsDNA as an extrachromosomal element to the host genome. DNA viruses 

which use this strategy include certain herpesviruses such as Epstein Barr virus (EBV), Kaposi 

sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS) as well as latent 

papillomaviruses such as bovine papillomavirus (BPV-1) and human papillomavirus (HPV). The virions 

of herpesviruses are enveloped and rather big (180-200 nm) while papillomaviruses (53-57 nm) and 

polyomaviruses (40-47 nm) are very small and do not have an envelope [112]. 

 

Herpesviruses 

EBV or human herpesvirus 4 (HHV-4) that is best known as the cause of infectious mononucleosis, 

can infect a number of cell types, including epithelial and B cells. During latency, EBV is stably 

maintained as a circular plasmid that is replicated once per cell cycle and partitioned at mitosis. The 

AT hook activity of a single viral protein named EBV nuclear antigen 1 (EBNA1) is required for both 

processes. AT hooks are DNA binding motifs found in a family of proteins which bind the minor 

groove of AT rich scaffold-associated regions on metaphase chromosomes [147, 148]. The stable 

circular episome carries only two EBV components: the cis acting origin of replication (oriP) and the 
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latently expressed EBNA1 in trans. EBNA1 binds directly to viral DNA via its C-terminal domain and 

tethers the EBV genome to chromatin through its N-terminal domain, initially by direct interactions 

via its AT hooks, or afterwards through association with the nucleolar EBNA1 binding protein 2 

(EBP2). The latter is a part of the perichromosomal layer and the binding with EBNA1 may be 

required to stabilize the EBNA1-chromosome interaction [149].  

Additionally, HVS which transforms T cells was seen to be closely related to EBV and has similarly a 

cis acting oriP that permits stable replication and the efficient persistence of episomes in HVS-

infected cells [150]. 

KSHV, also known as human herpesvirus 8 (HHV-8), commonly occurs in AIDS patients and persists as 

a multi-copy episome in latently-infected tumor cells. KSHV latency associated nuclear antigen 

(LANA) is required for episome persistence in host cells during latent infection. LANA mediates viral 

genome attachment to mitotic chromosomes [151].  Previous studies have shown that LANA directly 

binds the viral episome via its C-terminal domain, nucleosomes via its N-terminal domain through the 

folded region of histones H2A-H2B [151, 152] and the mitotic chromosomes via its C-terminal domain 

through the double bromodomain protein 4 (Brd4) [152]. Brd4 is identified as the first mitotic 

chromosome receptor for DNA viruses [153]. Recently, however, Xiao et al. [154] have reported that 

the molecular mechanism underlying the bridge between the virus, LANA and the host chromosome 

is likely complex, involving numerous proteins, such as the kinetochore protein budding uninhibited 

by benzimidazole 1 (Bub1), with which association throughout mitosis is maintained, making the 

LANA-Bub1 interaction likely critical for segregation to daughter nuclei [154]. 

Papillomaviruses 

Besides the herpesviruses discussed above, also certain papillomaviruses use mitosis to persist in 

latently infected host cells. For example, HPV-16, together with type 18, causes most of the HPV-

associated cancers (e.g. cervical cancer). By the same token, BPV-1 infects paragenital areas in cattle 

and provides an excellent model for studying papillomavirus molecular biology. A common strategy 

for papillomaviruses, is that the viral E2 proteins tether episomes to mitotic chromosomes so that 

the episomes are segregated and enclosed in the daughter nuclei. For example, HPV-8 E2, interacts 

via its flexible linker hinge region between the N- and C-terminus, with regions of ribosomal DNA 

repeats located on the short arm of human acrocentric chromosomes [155] and via its C-terminus 

with the episome [156]. Long term genome maintenance and stable copy number require multiple E2 

binding sites in the episome, which are used to tether the episomes to mitotic chromosomes [157]. 

Brd4 was previously identified as the mitotic chromosome anchor for BPV-1 and HPV-16 via the N-

terminus of E2 [153]. Recently, Silla et al. [158] have reported that the formation of the BPV-1 E2 
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segregation complex is Brd4 independent, which is also the case for all HPVs [159]. Silla et al. [158] 

additionally concluded that the formation of segregation-competent complexes depends on a certain 

protein level threshold and that multiple E2 molecules are present in a single segregation complex 

together with cellular proteins, including certain components of the transcription machinery. 

Therefore, it seems that the chromosome binding action and the transcriptional regulation mediated 

by the E2 protein are not operating independently. The E2 proteins have been observed to be 

associated with condensed chromatin at all stages of mitosis, even at times when many other 

transcription factors have been displaced from mitotic chromatin [160]. E2 proteins are 

multifunctional, as they are also involved in initiating viral DNA replication and regulating viral 

transcription, in addition to maintaining the genome as an extrachromosomal replicating element 

[155]. Also interesting to add is that it has been shown that the consensus sequence RXXS in the 

hinge region is important for chromosome binding by the HPV-8 E2 protein. The serine residue in this 

region is phosphorylated by cell cycle-dependent kinases, which most likely regulates the 

chromosome binding. Furthermore, the RXXS motif can be found in the N-terminal domain of LANA 

and in the AT hooks of EBNA1, suggesting that cell cycle-dependent phosphorylation could be a 

common strategy to regulate chromosome tethering during cell division [155].  

Polyomavirus Simian vacuolating virus 40 

An additional example of a latent DNA virus which is neither herpesvirus nor papillomavirus, is the 

polyomavirus Simian vacuolating virus 40 (SV40). SV40 is found both in monkeys and humans and has 

the potential to cause cancers but most often persists as a latent infection. The circular SV40 genome 

has been shown to be maintained in certain intracranial tumors, but Krieg et al. [161] suggest that 

SV40 is not the cause of these human tumors. It remains unknown which protein forms the physical 

connection between the SV40 episome and host chromosomes [162]. 

 

8. Reflections on therapeutic strategies for the improvement of nuclear inclusion of exogenous 

nucleic acids or other macromolecules  

We and many others are interested in cationic carrier-mediated delivery of pDNA to the nuclei of 

target cells. During interphase, pDNA has to access the nuclear interior via the NPCs. pDNA is 

however a large hydrophilic molecule which does not easily pass the hydrophobic central channel of 

the NPCs. Efforts to increase the nuclear import of pDNA through NPCs by the use of NLSs have met 

with limited success, although this strategy initially seemed very promising [163, 164]. The use of 

NLSs to bring pDNA into the nucleus is not within the scope of this review and has been reviewed 

elsewhere [1, 21]. As described above, when cells undergo mitosis the NE is temporary disassembled, 

to reappear at the end of mitosis, when a new NE forms around the segregated sister chromatids. It 



22 
 

has been shown that cell division greatly enhances the transfection efficiency of pDNA, presumably 

because of the intermixing of cytoplasmic and nucleoplasmic components during mitosis, followed by 

accidental retention of pDNA in the newly formed daughter nuclei [5, 8, 13, 14, 68]. We hypothesize 

that it should be possible to increase the nuclear inclusion of DNA during cell division by different 

strategies, which will be discussed here. 

8.1. Chromatin targeting 

First of all, one could think of targeting pDNA to chromatin, so that it is included in the nuclear 

interior as the NE is formed around it. Both the pDNA itself and the nonviral gene delivery particles 

containing the pDNA could be equipped with chromatin binding factors. These factors should be able 

to bind the chromatin directly, or by the recruitment of endogenous proteins which mediate the 

binding to chromatin. Also, as evidenced by viral examples, the pDNA should contain multiple 

chromatin binding sites, to assure a strong anchoring of the chromatin during cell division. It should 

be noted that during mitosis, the chromatin is surrounded by the so-called perichromosomal layer 

[54-56]. The function of this protein layer is not completely understood, but it is assumed to play a 

possible role in chromosome organization and/or compartmentalization of cells in prophase to 

telophase, serve as a binding site for chromosomal passenger proteins or just as a protective barrier 

around chromosomes. It is very likely that the presence of the perichromosomal layer prevents the 

attachment of exogenous pDNA to the chromatin unless correct targeting proteins are used. It 

should also be noted that the space between the chromatin and the newly forming NE is very 

narrow, raising the question whether at all it will be possible to attach large pDNA molecules or 

nanoparticles to the chromatin, without disturbing the formation of a smooth NE. However, as 

described above both retroviruses (7.1) and latent DNA viruses (7.2) frequently use the chromatin 

targeting strategy to bind their genome to the chromatin and assure its partitioning to the daughter 

cells (Fig. 4). Also, it was shown that large macromolecules such as free dextrans or pDNA which do 

not interact with the chromatin, are not retained into the nuclei upon cell division [57, 69]. 

Therefore, we believe the chromatin targeting strategy has great potential in improving both the 

amount of pDNA that reaches the cell nucleus during cell division, and the chance the nuclear pDNA 

gets inherited by daughter cells during subsequent cell divisions.  

Nonviral chromatin tethering factors 

All known chromosomal or DNA binding proteins contain one or more AT hooks,  suggesting that it 

may act as a universal chromosome tethering factor. Therefore, coupling the AT hook region of 

proteins (consensus motif PRGRP), instead of the full length protein to pDNA or pDNA containing 

nanoparticles could be sufficient to mediate chromosome binding. Recently, we showed with the 
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Xenopus nuclear envelope reassembly (XNER) assay that the nuclear inclusion of polystyrene beads 

and pDNA/PEI nanoparticles could be improved about threefold upon chromatin targeting with AT 

hooks derived from the endogenous Mel-28 (ELYS in mammalian cells) and HMGA2β [165]. This 

clearly shows that chromatin targeting indeed improves the nuclear inclusion of nanoparticles which 

are bound to the chromatin. In living cells, however, microinjected nanoparticles seemed to be 

‘trapped’ in the endosomal compartment, causing their equal distribution to daughter cells upon cell 

division, without any apparent nuclear inclusion of the complexes [165].  It should be noted that in 

this study the chromatin binding peptides were bound to the nanoparticles which contained the 

pDNA and not to the pDNA itself. Consequently, as soon as the pDNA is released from the 

nanoparticles, the chromatin targeting properties are lost. In future it could be interesting to attach 

the chromatin binding peptides directly to pDNA and observe if this results in an increased nuclear 

retention upon cell division.  

Endogenous proteins such as members of the high mobility group proteins (HMG) and histones have 

also been used as pDNA delivery systems as such [166, 167] or in combination with conventional 

lipids and polymers [168] to increase transfection efficiency [169]. These proteins were able to 

enhance pDNA nuclear translocation and transfection efficiency to some extent, most likely due to 

their innate DNA binding and condensing properties, as well as their intrinsic NLSs. As the chromatin 

binding domain (N-terminus) of EBNA1 can be replaced by those of either HMG-I or histone H1, with 

successful maintenance of daughter cell episomes after cell division, these motifs also have potential 

for mediating pDNA attachment to chromatin and pDNA segregation [170]. 

Additionally, already more than 10 years ago, a new episomal system has been described (pEPI-1) 

which possesses replication and episomal retention features through the function of a 

scaffold/matrix attachment region (S/MAR) isolated from the human β-interferon gene. S/MARs are 

associated with most of the characterized mammalian origins of replication [172, 173]. The 30 nm 

fiber of DNA, histones and chromatin proteins appears to be organized into loops by interaction of 

S/MARs with the nuclear matrix [174]. S/MARs have besides their structural function, also an 

important role in temporal and spatial organization of gene expression [175]. Recently, Lufino et al. 

[176] showed full functional recovery of low density lipoprotein receptor (LDLR) activity in a deficient 

cell line. LDLR transgene expression retained physiological regulation and was repressed by high 

sterol levels. They showed also a high mitotic stability of the vector by demonstrating long-term 

episomal retention in the absence of selection. The mitotic stability is provided by the specific 

interaction of the vector with the chromosome scaffold via scaffold attachment factor A (SAF-A) from 

the nuclear matrix. This enables co-segregation with the chromosomes during cell division [177]. 

Moreover, Tessadori et al. [178] concluded that the regulatory mechanisms that act on episomal 
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genes seem to be similar to those that control host genes. The episomal chromatin undergoes the 

same modifications as the host chromatin e.g. histone modifications and DNA methylation. The 

generation of artificial chromosomes with an optimal size with respect to stability as well as 

transfection efficiencies, can be promising for the future of nonviral gene therapy as it may form the 

perfect alternative for viral episomal gene vectors (see next paragraph). This is even more interesting 

in the context of possible  immunogenic or oncogenic properties of viral vectors [171]. Additionally, 

the transgenes bear strong constitutive promoters, which result in nonphysiological overexpression. 

To achieve physiological conditions of expression, correct alternative splicing and promoter usage, an 

efficient vector should be based on sequences derived from the human genome, which include the 

native promoter and all regulatory sequences of a gene [172, 173].  

Viral chromatin tethering factors 

AT hooks often also occur in the chromosome binding region of viral segregation proteins which 

mediate viral genome retention into the nuclei of the host cells. The most interesting features to this 

point are the chromosome tethering factors of the latent DNA viruses, as the information of 

responsible chromosome binding factors in the different retrovirus PICs is still limited. Proteins which 

are identified to have chromosome binding properties are EBNA1, LANA and E2. In addition to 

sharing the common function of genome tethering, these proteins also play an important role in viral 

genome replication and transcriptional regulation [152]. Structurally, all three proteins form, or are 

predicted to form, a similar dimeric β-barrel C-terminal DNA binding structure, regardless of a lack of 

sequence homology [174]. However, Sekhar et al. [155] have shown that the HPV-8 E2 chromosome 

binding sequence has similarities with chromosome binding regions in EBNA1 and LANA tethering 

proteins. Although these proteins may have different chromosomal targets, a common mechanism of 

regulation of chromosome binding function could be the phosphorylation by certain cell cycle-

dependent kinases [155]. The recent discovery of the RXXS motif, that is a recognition target of 

several cell cycle-dependent kinases, in all three proteins is in favor of this hypothesis. As it has been 

shown that the segregation complex in papillomaviruses contains multiple E2 proteins and also the 

viral genome should contain at least 5 E2 protein recognition sites [158], it can be expected that a 

strong chromosomal binding is needed to assure efficient partitioning during cell division. Also, the 

local organization of chromatin is expected to greatly influence the ability of binding nanoparticles 

during mitosis. For the EBNA1 protein, for example, a possible chromosome binding place has been 

identified in chromosome 11, although only in 23 out of the 771 possible binding places genome-

wide EBNA1-mediated binding was also actually observed [175].     
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In relation to gene therapy, most progress has been made with EBV plasmid vectors, which can be 

combined with cationic polymers. These EBV plasmid vectors contain oriP and the EBNA1 gene. It has 

been shown that EBNA1 maintains and equally partitions a plasmid that contains the viral oriP region 

in cis by tethering it to endogenous chromatin [147] (reviewed by He & Zhang [176]) (Fig. 4 B). The 

mechanisms underlying the efficient transfection/expression are not yet fully understood, because 

EBNA1 exerts a variety of functions through sequence-specific binding to oriP. However, Kishida et al. 

[177] have shown that the efficient delivery and expression is predominantly due to the promotion 

of cytoplasm-to-nuclear recruitment as well as enhancement of transcription, while the episomal 

replication is not essentially involved. A major drawback of EBV vectors is the possibility of tumor 

development in human. Therefore, the possible oncogenicity of all viral vectors in vivo has to be 

thoroughly investigated [178]. For retroviruses for example, the insertion of the MuLV genome in the 

host gene promoter and its proviral enhancer activity underscores the potential dangers of MuLV as 

gene therapy vector [135]. Its weak bias for integration in genes might render ASV a preferable 

alternative vector  [179]. As soon as the retroviral and cellular determinants of integration site 

selection are elucidated, safer and more effective gene therapy vectors may be developed [135]. 

Additionally, all the (new) knowledge about viral vectors, will give us in the end the opportunity to 

make equivalent but safer nonviral vectors. 

As an alternative to the use of the whole viral vector or the viral plasmid with oriP and the EBNA1 

gene, another option is to use only the chromatin binding motifs of the EBNA1, LANA or E2 proteins 

(7.2). Both the direct binding motifs of these proteins, which bind the mitotic chromosomes 

themselves and the indirect binding motifs, which bind Brd4 or other cellular factors on mitotic 

chromosomes could be useful as chromosome anchor peptides on pDNA or artificial nonviral pDNA 

containing particles. Once inside the cytosol, these nonviral particles could target and attach to the 

chromosomes during mitosis and subsequently be enclosed in the newly formed daughter nuclei. 

Interestingly, the chromatin binding part of IL-33 was shown to have striking sequence similarities 

with the H2A-H2B binding motif of LANA, leading to the identification of the hexapeptide MXLRSG 

that was determined to be crucial for docking into the H2A-H2B acidic pocket [180]. Since IL-33 is an 

architectural chromatin binding nuclear factor, it has been suggested that KSHV copied the 

chromatin binding motif of IL-33 to establish latent infection in human cells [180]. This suggests that 

incorporating the minimal chromatin binding motif MXLRSG could serve to target pDNA to 

chromosomes during cell division.  

Additionally, not the use of a viral protein, but rather that of the host cell protein Brd4, can be a 

strategy to target gene therapy particles to the host mitotic chromosomes too, as we learn from 

KSHV and papillomaviruses [152, 153]. Brd4 is a member of the BET family. Their characteristic 
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feature is the retention on chromosomes during mitosis which allows them to play a possible role in 

the transmission of epigenetic memory across the entire process of cell division [181]. Also, the 

possible consequences related to epigenetics of using proteins of this family, is therefore worthwhile 

studying intensively.  

 

8.2. Targeting non-chromatin nuclear elements 

Another strategy one could think of is targeting pDNA or pDNA nanoparticles to the mitotic spindle, 

the NPCs, the INM or the underlying nuclear lamina. Bausinger et al. [182] demonstrated that 

pDNA/PEI complexes are transported along the microtubules of the spindle apparatus and suggest 

that the concentration of polyplexes at the location of the emerging daughter nuclei strongly 

contributes to the transfection process. This indicates that targeting the mitotic spindle could indeed 

be interesting to increase transfection efficiency, e.g. by the use of Nucleolar and Spindle Associated 

Protein (NuSAP) [183]. INM proteins which could be used for targeting to the nuclear interior are 

abundant. Most of them, such as Lap2β, emerin and Man1 share a common protein domain, the so-

called LEM-domain [24]. Coupling this ~40 residue motif to pDNA could ensure that pDNA or pDNA 

containing nanoparticles bind the INM or nuclear lamina, ensuring their presence in the interior of 

the forming nucleus. When the pDNA is targeted to the nuclear lamina, however, we must take into 

account that the nuclear lamins are only imported in the forming nuclei after the NE has been 

formed. Therefore, the pDNA should be able to pass the NPCs together with the lamins, which may 

be impossible to achieve. On the other hand, several studies confirmed that the permeability barrier 

of the NPCs is not so strict directly after NE formation [31, 58, 80, 184], which could be in favor of 

pDNA nuclear import shortly after mitosis. In yeast, tethering to NPCs was shown to promote 

extrachromosomal DNA partitioning during (asymmetric) cell division [185]. Whether targeting NPCs 

in mammalian cells could also help to increase the nuclear inclusion during or shortly after cell 

division is unclear. Another possible concern with the above mentioned strategies, however, is the 

presence of a large pool of endogenous proteins, which could compete for binding to the chromatin, 

the INM, the NPCs and the mitotic spindle. Also, it is not sure if the proteins will retain their 

chromatin-, INM-, NPC- or mitotic spindle targeting properties after coupling to pDNA or pDNA 

containing nanoparticles.  

 

8.3. Cell-division responsive nanoparticles 

Apart from chromatin- and/or INM-targeting, cell-division responsive pDNA containing nanoparticles 

might present an interesting option to increase gene expression efficiency. We may expect that free 

pDNA in the cytoplasm acts as a substrate for several intracellular nucleases. On the other hand, at 
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the moment of cell division, a fraction of free pDNA seems to be able to reach the nuclei of the 

daughter cells. Therefore, we hypothesize that when the amount of pDNA is the highest at the onset 

of cell division, this should improve gene delivery efficiency by improving the at random inclusion of 

pDNA in the nuclei of the daughter cells. This could be achieved by cell division-responsive pDNA 

nanoparticles which release their pDNA only at the onset of mitosis. In this way the time between 

release of the pDNA and cell division is as short as possible, which presumably avoids excessive 

degradation of the pDNA in the cytoplasm before nuclear enclosure can occur. The different phases 

of cell division are characterized by subsequent phosphorylation reactions by CDKs. By incorporating 

the recognition sequence of CDK1 (S/TPXK/R) [186, 187] in pDNA containing nanoparticles, one could 

obtain DNA nanoparticles which are specifically phosphorylated during cell division. The introduction 

of negatively charged phosphate groups is expected to decrease the DNA binding capacity of the 

nanoparticles, resulting in an enhanced release of the pDNA upon phosphorylation. This strategy has 

been used by Wilke et al. [8] who developed a pDNA carrier based on synthetic peptides. One of 

these peptides was derived from DNA binding proteins and contained the repeated SPKR motif, 

which is a substrate for CDKs. They found that a mitotic event indeed greatly improved expression 

efficiency with this peptide based pDNA carrier and asssumed that phosphorylation in the early 

phases of mitosis strongly diminished the carriers affinity towards pDNA and thus resulted in pDNA 

release at the time it has the best chances to enter the daughter nuclei [188]. An additional 

advantage is that the pDNA is well protected against nucleases in the cytosol until it has the 

possibility to be enclosed in the daughter nuclei [8]. 

Comparable strategies have been used to develop delivery systems which are responsive to protein 

kinase A and to cyclic AMP-dependent protein kinase [189-192]. Also here it was demonstrated that 

by incorporation of the appropriate kinase recognition site, specific phosphorylation could be 

obtained which resulted in release and an enhanced transfection efficiency of the complexed pDNA. 

It should be noted that the amount of free pDNA in the cytoplasm probably should not rise above a 

certain threshold, since it has been demonstrated that in cell-free systems pDNA competes with 

chromatin for binding of NE membrane fragments, thereby disturbing the formation of a smooth NE 

[193]. Whether this can also occur in living cells, and in this way contribute to the cytotoxicity of 

pDNA containing nanoparticles remains to be seen.   

 

8.4. Xenopus nuclear envelope reassembly assay to study nuclear envelope dynamics 

Insight in the different steps of the nuclear envelope assembly has substantially gained since the use 

of cell-free systems to study the reassembly of the NE in vitro [194, 195]. The in vitro assembled 

nuclei have a NE consisting out of two phospholipid bilayers with embedded NPCs and a peripheral 
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nuclear lamina, just like normal eukaryotic nuclei. Furthermore, they have a functional nuclear 

import and export machinery and can even go through mitosis. The XNER assay, serves as a good 

model to study the chromatin binding and resulting inclusion in the artificial nuclei, without the 

interference of other extra- and intracellular barriers. In the XNER assay, membrane fraction and 

cytoplasmic extract are isolated from Xenopus eggs, mostly in interphase [30, 196]. It is also possible 

to isolate mitotic extracts, by preventing the destruction of cyclin during the extraction and 

maintaining its phosphorylation state. When DNA is added to a mixture of these isolated cytoplasmic 

extract and membrane fragments, the assembly of a NE occurs spontaneously as long as an energy 

source is provided (Fig. 5). In the XNER assay, mostly membrane-devoid sperm chromatin is used as a 

DNA template. Is has been shown, however, that the NE can even form around protein-free DNA, 

after initial assembly of the DNA into nucleosomes and further organization into condensed spheres 

[197]. The ability of Xenopus eggs to form an intact, functional NE around added DNA most likely 

results from the large amounts of nuclear components which are stored in the eggs for subsequent 

cell divisions during embryo development. An additional advantage of these cell-free systems, is that 

certain protein components can be depleted from or added to the XNER assay, to assess their 

function in the NE assembly and disassembly processes. Furthermore, the nuclear inclusion of pDNA 

or pDNA containing nanoparticles can be studied by simply adding these particles to the XNER assay. 

The nuclear inclusion can then easily be followed using microscopy techniques such as phase 

contrast or fluorescence microscopy. It should be noted that although cell-free systems are very 

useful to isolate processes from the full complexity of the cellular environment, the results obtained 

with them should always be confirmed in living cells. Also, the XNER assay cannot be used to study 

targeting to H2A-H2B pockets, as the Xenopus sperm chromatin is devoid of them [151].   

 

9. General conclusions 

In nondiving cells, all cargo that goes into and out of the cell nucleus has to pass the NPCs. In dividing 

cells, however, the nuclear permeability barrier temporary disappears, leading to extra opportunities 

for macromolecules and nanoparticles to reach the nuclear interior during or shortly after mitosis. 

Viral particles already explored this mitotic window of opportunity, by taking advantage of mitosis to 

strongly anchor their genome to the chromosomes of the cells. The viral genomes than integrate 

(retroviruses) into the host genome, or are kept as an extrachromosomal episome (latent DNA 

viruses) that replicates and partitions together with the host genome. However, viruses display 

several properties which limit their clinical utility, such as limited DNA carrying capacity, 

immunogenicity and for some viral vectors, insertional mutagenesis. Therefore, the ultimate 

challenge is to design an artificial viral carrier which equals viral transfection efficiencies, but which is 
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safe to use, non immunogenic, non oncogenic and relatively inexpensive and easy to produce. 

Unfortunately, this is difficult to achieve as it requires the integration of many different and often 

counteracting features in a single particle [198]. In this review, we focused on features which could 

enable nuclear enclosure of pDNA containing particles during mitosis.    

The partitioning of cell organelles has been reported to be a random process. The equal distribution 

of key organelles located in the cytosol to the daughter cells appears to be passive or active, 

involving transport along microtubules. For exogenous macromolecules such as pDNA and dextrans, 

which cannot pass the NPCs, it has been demonstrated that NEBD is not sufficient to ensure efficient 

uptake into the daughter nuclei. Rather, it seems that only chromosomes and macromolecules 

associated with them are included in newly formed nuclei. This most likely results from the fact that 

a closed NE is formed around tightly compacted chromatin before nuclear expansion occurs, leaving 

no space for neighboring molecules, cell organelles and nanoparticles to be enclosed. Shortly after 

mitosis, however, the NPCs in the newly formed NE are reported to be more permeable, thereby 

temporary shifting the size exclusion criteria to larger molecular weights.  

The intracellular fate of small inorganic nanoparticles such as gold, iron oxide nanoparticles and 

quantum dots has been reported. In general, these nanoparticles are endocytosed and remain within 

the endosomal compartments of the cell. They are not frequently reported to be in the nucleus of 

the cells, although their small size (10-20 nm) most likely permits access to the nuclear interior 

through the NPCs. Upon cell division, in many cases a nice and uniform dilution of the endocytosed 

particles has been described, but this is not a general rule. Asymmetric division of stem cells, 

asymmetric segregation of particles in endosomes and the possible induction of autophagy are 

several examples of nature’s way to overcome nanoparticle-induced cellular stress and which may 

result in a large heterogeneity of nanoparticle numbers upon continued cell proliferation.  

Studies focusing on the partitioning during cell division of larger nonviral gene delivery nanoparticles 

(100 – 200 nm) are very rare, although insight in the cytoplasmic versus nucleoplasmic distribution of 

nanoparticles during subsequent cell divisions is highly relevant. It has been assumed that NEBD aids 

the nanoparticles or pDNA to reach the nuclear interior, as most authors observed increased 

transfection efficiencies following mitosis. A direct prove of this hypothesis is up to date, however, 

not given. Also we share the opinion that NEBD helps nanoparticles to deliver their pDNA to the 

nucleus of the cells. Furthermore, we believe that targeting of pDNA or pDNA containing 

nanoparticles to chromatin could be an interesting feature to further increase transfection efficiency 

in dividing cells. Based upon the viral examples given, chromatin binding as such is not a guarantee 

for nuclear inclusion. Instead, a strong anchoring to chromatin is needed, involving multiple 

chromatin-binding protein recognition sites in the pDNA and the presence of multiple chromatin 
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tethering factors and endogenous cellular proteins in one segregation complex. To date, the 

chromatin binding properties of the viral proteins EBNA1, E2 and LANA provide the most interesting 

features to explore chromatin targeting. Ideally, we can incorporate some interesting viral features 

for chromosome binding, without the introduction of the immunogenicity, oncogenicity or 

insertional mutagenesis that is often associated with viral carriers. Also, development of cell 

responsive particles that disintegrate at the onset of mitosis seems to be a promising concept to 

study. It is however not realistic to believe that the various options as presented by us in the 

foregoing will easily lead to the ultimate goal of improving intra-nuclear delivery of exogenous genes. 

Only careful and systematic studies of the individual steps involved in the process, without ignoring 

the transfection process as a whole, can lead to success. The ideally designed nonviral particles will 

have to overcome many extra- and intracellular barriers to accomplish highly efficient pDNA 

expression, replication and segregation of the pDNA to the progeny cells.  
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Figure 1. Structure of the nuclear envelope (NE). The NE consists of an outer nuclear membrane 

(ONM) continuous with the rough endoplasmic reticulum (RER), and the inner nuclear membrane 

(INM), which fuse at the so-called nuclear pore complexes (NPCs). Barrier-to-autointegration factor 

(BAF) is a chromatin-associated protein that also binds to the nuclear lamina and several nuclear 

envelope proteins.  

 

Figure 2.  Subcellular distribution of dextrans. Cells were injected with rhodamine-labeled small 

dextran (11 kDa) and fluorescein-labeled large dextran (485 kDa). (A and B) After nuclear injection in 

an undivided cell. (C and D) After cytoplasmic injection in an undivided cell. (E and F) After nuclear 

injection in a divided cell. (G and H) After cytoplasmic injection in a divided cell. (A), (B), (E), and (F) 

are epifluorescent images. (C), (D), (G), and (H) are single optical sections of confocal images. Scale 

bars, 15 µm. (Reprinted by permission from Macmillan Publishers Ltd: [Molecular Therapy] [57], 

copyright (2002), DOI: 10.1006/mthe.2002.0581, 

http://www.nature.com/mt/journal/v5/n5/full/mt200282a.html) 
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Figure 3. Schematic presentation of symmetrical vs. asymmetrical cell division and dilution of Feridex 

particles. In symmetrically dividing cells the contrast agent is distributed equally among daughter 

cells (a). Asymmetric cell division, as commonly encountered in stem cells, leads to a unequal/uneven 

distribution of Feridex particles. This in turn can lead to a sharp decline in cell detectability (b). 

(Reprinted by permission from John Wiley and Sons: [Magnetic Resonance in Medicine] [87], 

copyright (2007), DOI: 10.1002/mrm.21280, 

http://onlinelibrary.wiley.com/doi/10.1002/mrm.21280/abstract;jsessionid=D765ABF7E11FB972401

48DDDE79FFA9E.d01t03) 
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Figure 4. Schematic presentation of how retroviruses (A) and latent DNA viruses (B) take advantage 

of mitosis. A) Infection of retroviruses. After reverse transcription packages of viral DNA are 

assembled (pre-integration complexes: PICs). The PICs tether host chromosomes during methapase 

(M) and are following cytokinesis (C) enclosed into the daughter nuclei, where integration (I) can take 

place. B) Latent DNA virus episome or EBNA1/oriP plasmid maintenance and segregation. 

Episomes/oriP plasmids are bound to the host chromatin. Replication of host chromosomes and 

episomes/oriP plasmids and partitioning of episomes/oriP plasmids to sister chromatids take place 

during DNA synthesis (S) phase. Nuclear segregation of episomes/oriP plasmids to the daughter 

nuclei is achieved following mitosis (M+C).  
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Figure 5. Different stages of the formation of an artificial nucleus around chromatin in the XNER 

assay. (Reproduced with permission from Journal of Cell Science  [199], copyright (1997), 

http://jcs.biologists.org/content/110/13/1489.long)   

 

Table 1. Intracellular partitioning and nuclear enclosure/exclusion of cell organelles, free 

macromolecules, inorganic nanoparticles, nonviral gene delivery particles and viruses upon mitosis.  

  References  

Cell organelles   

Endosomal vesicles passive or active (through interaction 

with the mitotic spindle or the 

chromosomes) partitioning; 

nuclear exclusion 

[40, 41] 

Golgi apparatus [41, 45, 47-49] 

Endoplasmic reticulum /  

Nuclear envelope 

[19, 37, 38, 50, 

51] 

Free macromolecules   

Labeled dextrans < 25 kDa: through NPCs 

> 25 kDa: nuclear exclusion 

[31, 39, 57, 58] 

plasmid DNA labeled: nuclear exclusion 

unlabeled: nuclear enclosure 

[57, 68-70] 

Inorganic nanoparticles   

Gold particles < 10 nm: through NPCs [88, 89] 
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10-20 nm: nuclear enclosure 

> 20 nm: nuclear exclusion 

Quantum dots Symmetric or asymmetric segregation 

within endosomes; nuclear exclusion 

[79, 80] 

Iron oxide nanoparticles [87] 

Nonviral gene delivery particles   

Lipid carriers 
unknown 

[5, 8, 13-17] 

Polymer carriers [5, 8, 12] 

Viruses  chromatin tethering factor  

Murine leukemia virus (MuLV) (p12) [133, 134] 

Human immunodeficiency virus (HIV) (LEDGF/p75) [141] 

Avian sarcoma virus (ASV) (IN) [132] 

Foamy virus (FV) (Gag) [143, 144] 

Epstein Barr virus (EBV) EBNA1 [147-149] 

Kaposi sarcoma-associated herpesvirus 

(KSHV) 

LANA [151, 152, 154] 

Bovine (BPV) and human papillomavirus 

(HPV) 

E2 [155-158] 

Simian vacuolating virus 40 (SV40) unknown [161, 162] 
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