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Abstract 7 

 8 

Non-parametric approaches such as the k-Nearest Neighbor (k-NN) approach are 9 

nowadays considered as attractive tools for pedotransfer modeling in hydrology. 10 

However, non-parametric approaches have not been applied so far to predict water 11 

retention of highly weathered soils in the humid tropics. Therefore, the objectives of this 12 

study are: to apply the k-Nearest Neighbor (k-NN) approach to predict soil water 13 

retention in a humid tropical region; to test its ability to predict soil water content at eight 14 

different matric potentials; to test the benefit of using more input attributes than most 15 

previous studies did and their combinations; to discuss the importance of particular input 16 

attributes in the prediction of soil water retention at low, intermediate and high matric 17 

potentials and to compare this approach to two published tropical pedotransfer functions 18 

(PTFs) based on multiple linear regression (MLR). The overall estimation error ranges 19 

generated by the k-NN approach were statistically different but comparable to the two 20 

examined MLR PTFs. When the best combination of input variables (i.e. 21 

sand+silt+clay+bulk density+cation exchange capacity) is used, the overall error is 22 

remarkably low: 0.0360 to 0.0390 m3 m-3 at the dry and the very wet ranges, and 0.0490 23 
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to 0.0510 m3 m-3 at the intermediate range (i.e. -3 to -50 kPa) of the soil water retention 24 

curve. This k-NN variant can be considered as a competitive alternative to more classical 25 

equation-based PTFs due to the accuracy of the water retention estimation and, as added 26 

benefit, its flexibility to incorporate new data without the need to redevelop new 27 

equations. This is highly beneficial in developing countries where soil databases for 28 

agricultural planning are at present sparse, though slowly developing. 29 

 30 
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1. Introduction 31 

The unsaturated soil hydraulic functions are important parameters in many pedological, 32 

hydrological, ecological and agricultural studies (Rajkai et al., 2004). However, direct 33 

measurements of such parameters are still expensive and time-consuming especially for 34 

studies at a regional scale (Vereecken, 1995; Pachepsky et al., 2006; Guber et al. 2006). 35 

Medina et al. (2002) stated that in developing countries, there are additional problems 36 

associated with this task, ranging from personnel training to acquisition of the necessary 37 

equipment. Therefore, an attractive alternative to the direct and often cumbersome 38 

measurements of soil hydraulic properties is their estimation by so-called pedotransfer 39 

functions (PTFs). Bouma (1989) described the term pedotransfer function (PTF) as 40 

“translating data we have into what we need”. PTFs thus relate more easily measurable 41 

soil data and/or other data routinely measured or registered in soil surveys with hydraulic 42 

parameters in a statistical sense (Bouma and van Lanen, 1987; Bouma, 1989; van den 43 

Berg et al., 1997). 44 

 45 

Another alternative to obtain estimates or approximates of hydraulic properties is inverse 46 

modeling. Inverse procedures have the potential to yield information about soil hydraulic 47 

conductivity and water retention over a wide range of matric potentials from a single 48 

infiltration experiment (Schwartz and Evett, 2002). Briefly, the multistep outflow method 49 

applies inverse modeling technique for indirect estimation of both water retention and 50 

hydraulic conductivity curves in a single transient drainage experiment (van Dam et al., 51 

1994). The soil hydraulic parameters of an analytical function for the soil water retention 52 

curve (SWRC) (e.g. van Genuchten, 1980) or for hydraulic conductivity (e.g. Mualem, 53 
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1976) are determined by matching experimental observations of transient water flow with 54 

numerical modeling results. In simple words, the estimated parameters are the solutions 55 

of an inverse problem. The latter results in determining causes that are unknown a priori, 56 

based on observations of their effects. Hopmans et al. (2002) presented a comprehensive 57 

review of inverse modeling for estimation of soil hydraulic properties, including one-step 58 

and multistep methods. While this technique can yield rather accurate set of effective soil 59 

hydraulic properties, its feasibility is limited for large scale applications and/or when 60 

intended to be used in areas or countries with scarce resources. 61 

 62 

When applying pedotransfer modeling or inverse modeling to obtain estimates or 63 

approximates of hydraulic properties, we should bear in mind that soils from tropical 64 

regions are vastly different from soils from temperate regions (e.g. van den Berg et al., 65 

1997; Hodnett and Tomasella, 2002; Minasny and Hartemink, 2011; Botula et al., 2012). 66 

Botula et al. (2012) evaluated the ability of some selected PTFs to predict θ-33kPa and θ-67 

1500kPa of a limited dataset of soils from the Lower Congo, the south-western part of the 68 

Democratic Republic of Congo (D.R. Congo) located in the humid tropics. They found 69 

that the temperate-climate PTFs of Gupta and Larson (1979) and Rawls and Brakensiek 70 

(1982) largely overestimated water retention of soils in the Lower Congo. These PTFs 71 

were derived based on temperate-climate soils from across the USA. On the other hand, 72 

they demonstrated that the tropical-climate PTFs of Hodnett and Tomasella (2002) 73 

performed well compared to aforementioned temperate-climate PTFs. Hodnett and 74 

Tomasella (2002) used a part of the IGBP-DIS soil database obtained from ISRIC-World 75 

Soil Information in Wageningen (the Netherlands) to derive PTFs for predicting the four 76 
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parameters of the van Genuchten (1980) equation. The authors referred to this 77 

development dataset as the IGBP/T dataset which exclusively contained soils from 78 

tropical climates. Botula et al. (2012) attributed the poor predictive performance of the 79 

“temperate” PTFs to the differences in soil properties and mineralogy between the test 80 

dataset and the dataset used to develop these PTFs. They recommended that more efforts 81 

should be done to develop specific PTFs to predict water retention of soils in the tropics. 82 

Schaap (2005) wrote that “with the exception of a few studies, hydraulic data and 83 

corresponding indirect methods about tropical soils are a virtual terra incognita”. This 84 

situation has not changed much by today. Also Minasny and Hartemink (2011) noted that 85 

limited efforts are devoted to the prediction of properties of soils in the tropics where the 86 

need for accurate and up-to-date soil property information is even more urgent than 87 

elsewhere. They identified various soil properties used to predict the soil water retention 88 

curve (SWRC) in the tropics such as sand, silt, clay, bulk density (BD), organic 89 

carbon/matter (OC/OM), pH, cation exchange capacity (CEC), dithionite-citrate-90 

bicarbonate, extractable iron (DCB-Fe) and aluminum (DCB-Al), but finally selected soil 91 

texture, BD and OC to develop PTFs to predict water content at -10, -33 and -1500 kPa. 92 

The development dataset and the validation dataset exclusively contained soils from the 93 

tropics. These soil datasets are also part of the international IGBP-DIS soil database 94 

obtained from ISRIC. 95 

 96 

Despite the limited efforts in data collection and harmonization for soils from the humid 97 

tropics (where most of the developing countries are located) compared to temperate areas, 98 

large tropical soil databases will steadily grow. With the emergence of such large 99 
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databases, classical statistical methods such as multiple linear regressions (MLR) may 100 

show limitations as important trends may not be detected, whereas others may falsely be 101 

given much emphasis. Therefore, there is a need to promote data-mining or pattern-102 

recognition techniques which are flexible enough to handle huge amounts of data and 103 

detect important trends which may be hidden to classical statistical methods such as 104 

MLR. 105 

 106 

Even though classic PTFs based on the MLR approach have been widely used to predict 107 

water retention in the past, PTFs based on pattern-recognition approaches have gained 108 

popularity. This is particularly because they present the advantage of including new soil 109 

information without the constraint of redeveloping new equations to fit the new soil 110 

dataset. This flexibility in incorporating new soil data is highly beneficial in tropical 111 

regions particularly for developing countries, where continuously developing soil 112 

databases are highly demanded for pedological, agricultural and ecological studies. 113 

Pattern-recognition techniques belong to the group of data-driven, data-mining or 114 

machine-learning techniques, in contrast with MLR which is based on predefined 115 

mathematical functions. Recently, three pattern-recognition techniques have been used 116 

with success in studies related to unsaturated soil hydrology: Artificial Neural Networks 117 

(ANN), Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) technique. 118 

Mucherino et al. (2009) provided an elaborated review of these data-mining techniques 119 

and on their application in various agriculture- and environment-related fields. For further 120 

information on the ANN and SVM techniques, we refer the reader to Hecht-Nielsen 121 

(1990), Haykin (1994), Vapnik (1995, 1998) and Noble (2006). 122 
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 123 

In this study, we use the k-NN technique which is considered as one of the most attractive 124 

pattern-recognition algorithms by several authors (e.g. Buishand and Brandsma, 2001; 125 

Bannayan and Hoogenboom, 2009). It is referred to as a “lazy learning algorithm” 126 

because it passively stores the data until the time of application. All calculations are 127 

performed “real-time” i.e. only when estimations need to be generated. Application of the 128 

k-NN technique means identifying and retrieving the most similar instances to the target 129 

object from the multi-dimensional feature (input variable) space of the set of stored 130 

instances, and classifying the target object based on similarities in their input attributes 131 

and using a pre-defined weighting scheme. More theoretical details on this similarity-132 

based approach are given in Dasarathy (1991). 133 

 134 

Nemes et al. (1999) used a k-NN variant – which they termed the “similarity technique” 135 

to estimate missing soil particle size distribution (PSD) points from other existing PSD 136 

points in order to harmonize data of the European HYPRES database (Wösten et al. 137 

1999). Jagtap et al. (2004) used a k-NN technique to estimate the drained upper limit and 138 

lower limit of plant water availability from soil water retention data measured in-situ. 139 

Nemes et al. (2006a) provided several examples of applications of the k-NN techniques 140 

in hydrologic simulation and developed another variant of the k-NN technique to estimate 141 

soil water retention at two matric potentials. They also performed a detailed sensitivity 142 

analysis of this technique (Nemes et al., 2006b). The newly developed k-NN algorithm 143 

proved its robustness in different scenarios. Based on the satisfactory results yielded by 144 

their k-NN algorithm, Nemes et al. (2008) developed a user-friendly software called “k-145 
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Nearest” to estimate θ-33kPa and θ-1500kPa with the option of estimating the uncertainty of 146 

the prediction using data re-sampling. Elshorbagy et al. (2010a,b) conducted a detailed 147 

study of the predictive capabilities of data-driven modeling techniques in hydrology, and 148 

identified the k-NN technique as an attractive modeling technique for hydrological 149 

applications because of its high level of flexibility, due to reasons mentioned above. 150 

Nemes et al. (2006a) specifically refer to the k-NN method working with patterns of 151 

similarities instead of fitting equations to data, and its real-time application giving users 152 

the flexibility to alter the underlying data or the calculation scheme. Gharahi Ghehi et al. 153 

(2012) recently applied the k-NN approach for predicting bulk density of Rwandese soils 154 

in the humid tropics. 155 

 156 

When predicting hydraulic properties on the basis of existing databases for training by 157 

data-driven models, Perkins and Nimmo (2009) stressed the necessity of high quality 158 

databases. They indicated that an obvious problem occurs when the available database 159 

has few or no data for samples that are closely related to the region of interest. This is 160 

classically the case when a dataset of soils from temperate areas is used as a training 161 

dataset to predict hydraulic properties of soils from tropical regions. In their sensitivity 162 

analysis, Nemes et al. (2006b) used separate datasets from the USA, Europe and Brazil 163 

and found that when using a dataset of “temperate soils” as a training dataset to predict 164 

water retention of “tropical” soils from Brazil, estimations were significantly worse than 165 

for other examined dataset pairs, with bias errors amounting to an undesirable 0.10 m3 m-166 

3. As point of future research, Nemes et al. (2006a) recommended testing the ability of 167 

the k-NN approach to predict soil water retention based on datasets from different regions 168 
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of the world, but an application that uses an international collection of soils from the 169 

humid tropics is still lacking. 170 

 171 

Point estimation PTFs are usually limited to estimating only a few points on the water 172 

retention curve, most frequently two or three points. Among such applications are 173 

estimations using k-NN. In their application, Nemes et al. (2006a) predicted water 174 

content by their k-NN variant at -33 kPa and -1500 kPa matric potentials, using a small 175 

number of input attributes: texture (Sand+Silt+Clay, designated here as SSC), OM and 176 

BD. Recently, Patil et al. (2012) used the k-NN software developed by Nemes et al. 177 

(2008) to estimate θ-33kPa and θ-1500kPa of 157 swelling-shrinking soils in India in order to 178 

derive their available water capacity. These matric potentials were also used by numerous 179 

other studies (e.g. Givi et al., 2004; Reichert et al., 2009; Minasny and Hartemink, 2011; 180 

Botula et al., 2012). The rationale is that these two points are meant to be used as 181 

approximates to water retention at field capacity (FC) (θ-33kPa) and permanent wilting 182 

point (PWP) (θ-1500kPa), in order to calculate available water holding capacity or to 183 

parameterize bucket-type agronomic or water balance models. This raises two 184 

considerations that were of significance when initiating this study. 185 

 186 

First, it is still debated what, if any, matric potential is a good representation of conditions 187 

at/near field capacity. It appears to be generally affected by a number of factors, among 188 

them soil texture. Apart from field experiments (Ottoni Filho and Ottoni, 2010), and data 189 

mining studies (Nemes et al. 2011), Twarakavi et al. (2009) also demonstrated this 190 

dilemma using inverse modeling. However for tropical soils, several authors (e.g. Sharma 191 
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and Uehara, 1968; Pidgeon, 1972; Babalola, 1979; Lal, 1978; Reichardt, 1988) suggested 192 

that water content at -10 kPa represents FC better than water content at -33 kPa which is 193 

more frequently adopted by authors working with soils of temperate climate. The soil-194 

water relation of well-aggregated kaolinitic soils under tropical climate can be markedly 195 

different from that in soils with permanent charge minerals in temperate regions. Heavy-196 

textured soils dominated by kaolinite and sesquioxides have SWRCs which in some 197 

respects resemble those of sandy soils (Sharma and Uehara, 1968), although they show 198 

higher porosity. In aggregated highly weathered soils (e.g. Ferralsols), water can reside in 199 

large inter-aggregate pores and fine intra-aggregate pores. Under gravitational forces, 200 

water in the large pores move rapidly and FC is attained at high matric potentials, 201 

generally between -10 kPa and -15 kPa. Field capacity is attained at this high matric 202 

potential because the hydraulic conductivity at this potential is very low, much like that 203 

of a sandy soil. It may therefore be advisable to have information on water content at 204 

higher matric potentials than -33 kPa, when it comes to supporting studies in the humid 205 

tropics that concern the unsaturated zone. At the same time, according to the studies cited 206 

above, water content at -1500 kPa can still be considered as an approximation of the 207 

permanent (PWP). 208 

 209 

The second consideration is that when two or three points are estimated on the SWRC, it 210 

allows no or only limited (constrained) use of popular water retention models like the 211 

models of van Genuchten (1980) or Brooks and Corey (1964). Pedotransfer functions that 212 

estimate parameters of such models offer a solution to this dilemma; however, it was 213 

found by Tomasella et al. (2003) that estimating SWRC points followed by curve fitting 214 
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yielded more accurate results than estimating curve parameters and reading water content 215 

values at particular matric potentials off the fitted curve. Hence, we have chosen to 216 

estimate a number of water retention points that will facilitate the subsequent use of both 217 

point and parameterized SWRC. Overall, to be able to fit a complete SWRC, six to eight 218 

measured or estimated water retention points are recommended as the SWRC models 219 

more commonly used (e.g. Brooks and Corey, 1964; van Genuchten, 1980) have four or 220 

more fitting parameters (Tomasella et al., 2000; Cornelis et al., 2005). Until now, no 221 

study has been published that estimates water content at more than two matric potentials 222 

using the k-NN method. It was facilitated by the databases available for this study that we 223 

estimate up to eight SWRC points. 224 

 225 

Therefore, the objectives of this paper are: (1) to apply a non-parametric approach to 226 

obtain estimations of water content of soils for a tropical region, based on an international 227 

database of soils from the humid tropics and using an adaptation of the k-NN algorithm 228 

developed by Nemes et al. (2006a), (2) to test the ability of the k-NN algorithm to predict 229 

several points of the SWRC (i.e. water content at eight different matric potentials) from 230 

the wet to the dry range simultaneously, (3) to use a range of input attributes and 231 

determine the influence of several combinations of input attributes on the ability of the k-232 

NN approach to predict water content at those matric potentials, (4) to discuss the 233 

importance of particular input attributes in the estimation of soil water content at low, 234 

intermediate and high matric potentials and (5) to compare the prediction performance of 235 

the proposed k-NN variant and two aforementioned MLR PTFs which were developed 236 

using datasets from the tropics, similarly extracted from the international IGBP database. 237 

 238 
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2. Materials and Methods 239 

2.1. Soil datasets 240 

In this study, a dataset of 534 soils from tropical regions was used as the 241 

reference/training dataset for the k-NN estimations. These soil samples are part of the 242 

IGBP-DIS international database from ISRIC (Tempel et al., 1996). By tropical regions, 243 

we mean the regions situated between 25°N and 25°S and mainly under the (sub)-humid 244 

climates. Soils within the tropics but in temperate climates due to altitude or in dry areas 245 

are not included in the selected dataset. This “tropical” dataset is referred to here as the 246 

IGBP-Trop dataset. It contains highly weathered soils such as Ferralsols (20.4%), 247 

Acrisols (11.6%) and Nitisols (4.7%), and other soils like Cambisols (14.2%), Andosols 248 

(6.4%), Luvisols (6%), Gleysols (4.7%), Phaeozems (4.3%), Fluvisols (2.8%), Vertisols 249 

(2.6%), Arenosols (2.4%) among others (IUSS Working Group WRB, 2006). 250 

Undisturbed and disturbed soil samples were collected under different land uses and 251 

under various depths. 252 

 253 

The associated digital database contains, among other attributes, water content data at 254 

eight different matric potentials (0, -1, -3, -10, -20, -50, -250 and -1500 kPa). Tempel et 255 

al. (1996) provided the necessary references concerning the different analytical methods 256 

used to derive the soil physical and chemical properties recorded in the database. 257 

 258 

A dataset of 139 soils from the Lower Congo, the south-western part of the D.R. Congo 259 

was used as an independent dataset to test the predictive ability of the k-NN approach. 260 

These soils are mainly highly weathered soils under the humid tropics classified as 261 
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Ferralsols, Acrisols and Nitisols (IUSS Working Group WRB, 2006) but other Soil 262 

Groups such as Umbrisols and Arenosols (IUSS Working Group WRB, 2006) were also 263 

represented. The 139 selected soil samples were not part of the IGBP-DIS database. 264 

Undisturbed soil samples were collected in 100 cm3 Kopecky rings under different land 265 

uses (savannah, forest, agricultural fields and old quarries) and under various depths in 266 

the soil profile. For the undisturbed samples, the SWRC data pairs were determined from 267 

the wet to the dry range at eight different matric potentials: -1, -3, -6, -10, -20, -33, -100 268 

and -1500 kPa. The hanging water-column method was used for matric potentials 269 

between -1 and -10 kPa using the sand box apparatus (Eijkelkamp Agrisearch Equipment, 270 

Giesbeek, the Netherlands), whereas for matric potentials between -20 and -1500 kPa, 271 

pressure chambers (Soil Moisture Equipment, Santa Barbara, CA) were used, following 272 

the procedures described in Cornelis et al. (2005). The coupled matric potential-water 273 

content pairs represent single measurements on single samples. Matric potentials at 0, -50 274 

and -250 kPa used in the IGBP-Trop database were missing in the Lower Congo 275 

database. Therefore, they were derived by curve fitting as follows: (1) a continuous curve 276 

was fitted through the discrete set of measured (available) water retention points using the 277 

van Genuchten (1980) function, and (2) fitted values of water contents at the missing 278 

matric potentials (0, -50 and -250 kPa) were calculated from the resulting continuous 279 

equation. The physico-chemical characteristics of all soil samples (fine earth) were 280 

determined using standard methods described in detail by Van Ranst et al. (1999). During 281 

these analyses, PSD (by the pipette method of Köhn, 1929), OC, pH, and CEC were 282 

determined on the same soil samples that were previously used for SWRC measurements. 283 

 284 
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Soil properties selected for use in this study were the following: sand (50–2000 µm), silt 285 

(2–50 µm), and clay content (< 2 µm) according to the USDA classification system 286 

(USDA, 1951), BD, OC, pH, CEC and retained (volumetric) water content (θ) at eight 287 

different matric potentials: 0, -1, -3, -10, -20, -50, -250 and -1500 kPa. Any entries that 288 

showed obvious inconsistency in physical and/or hydraulic data (e.g. sand + silt + clay ≠ 289 

1; {[1 - BD/2.65] – θ0kPa} < 0; θxkPa < θykPa when x kPa > y kPa) were excluded from the 290 

reference/training dataset and the test dataset. Figure 1 shows the textural distribution of 291 

the IGBP-Trop and the Lower Congo datasets. 292 

 293 

2.2. k-Nearest Neighbor technique 294 

The k-NN algorithm used in this study has been adapted from the variant developed by 295 

Nemes et al. (2006a). The same algorithm was used in this study but has been expanded 296 

to use more input and output attributes and the design parameters of the algorithm had 297 

been reevaluated for the current application. The implementation was done in the 298 

MATLAB R2010a environment (The MathWorks, Inc., Hill Drive Natick, MA). 299 

 300 

2.2.1. Rationale 301 

The k-NN technique does not use any predefined mathematical function to estimate a 302 

certain response attribute like classic MLR PTFs do. It does not appear to rely on any 303 

stringent assumptions about the underlying data, and can adapt to any situation (Hastie et 304 

al., 2009). The k-NN approach consists of finding the k number of nearest neighbors from 305 

a reference dataset to each soil in the test dataset in terms of their selected input 306 

attributes. The similarity distance to the target soil is measured in terms of Euclidean 307 
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distance after normalization and rescaling of the soil attributes data in the reference 308 

dataset following a specific procedure. This is done to assure that different input 309 

attributes will receive equal weight. In ascending order of their (normalized) similarity 310 

distance to the target soil, soils will be sorted in the reference dataset. The number of 311 

selected nearest soil instances (k) needs also to be optimized following a specific 312 

procedure. Once the nearest neighbors are identified and sorted, distance-dependant 313 

weights are assigned to them and the response attribute is formulated and outputted as the 314 

weighted average of the response attributes of the selected nearest neighbors. More 315 

methodological and calculation details on the whole procedure are given below. 316 

 317 

2.2.2. Selection of the nearest neighbors to the target soil 318 

An external training (reference) dataset containing information on a wide variety of soils 319 

is searched for soils (instances) that are most similar to the target soil, based on the 320 

selected input attributes or features. Similarity between the target soils and the known 321 

instances is measured in terms of a metric considered here as the Euclidean distance: 322 

 323 

∑
=

∆=
x

j
iji ad

1

2                                                                                                                     [1] 324 

where di is the “distance” of the ith soil from the target soil, and ∆aij is the difference of 325 

the ith soil from the target soil in the jth soil attribute. 326 

 327 

In ascending order of their distance to the target soil, soils of the reference dataset will be 328 

sorted. 329 

2.2.3. Normalization of soil data 330 
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Soils present some properties (attributes) which differ in their order of magnitude and/or 331 

range. For instance, a non-organic soil can have 100% of sand but should not have more 332 

than 18% of OC (Soil Survey Staff, 1975). Therefore, a unit difference in OC is expected 333 

to be more significant than the same unit difference in sand content. Therefore, a 334 

normalization procedure was applied on the soil properties data before they were used to 335 

calculate the Euclidean distance given in Eq. [1]. Normalizing the soil attributes has the 336 

benefit of lowering bias toward one soil attribute or the other. All input attributes were 337 

first transformed to temporary variables aij(temp) with a distribution having zero mean and 338 

standard deviation of 1 by the following classic formula: 339 

 340 

( )( ) ( )jjijtempij aaaa σ/)( −=                                                                                                 [2] 341 

where aij is the value of the jth attribute of the ith soil, and āj and σ(aj) are the mean and 342 

standard deviation of the observed values of the jth attribute in the reference dataset. 343 

 344 

Secondly, the difference between the minimum and maximum of the aforementioned 345 

temporary variables was then examined in order to identify the soil attribute that shows 346 

the widest range of transformed (temporary) values. This allows a scaling of the 347 

temporary variables to obtain zero mean and the same minimum-maximum range in the 348 

data of all attributes: 349 

[ ] [ ]{ }( ) [ ])()()(1)()( /,..., tempjtempxjtempjtempijtransij arangearangearangeMaxaa ===                       [3] 350 

where aj(temp) is the data of the jth soil attribute normalized using Eq. [2], and aij(trans) is the 351 

final transformed value of the jth attribute of the ith soil. Eventually, aij(trans) values derived 352 

from Eq. [3] were used as input in our k-NN algorithm. 353 
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 354 

2.2.4. Application of a distance-dependent weighing system 355 

A weighing procedure that accounts for the distribution of the distances of the selected k 356 

neighbors from the target soil was applied. Weights of each selected neighbor were 357 

computed as: 358 

 359 

∑
=

=
k

i
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1
)()( /                                                                                                            [4] 360 

 361 

where k is the number of neighbors selected, wi is the weight associated to the ith nearest 362 

neighbor, and di(rel) is the relative distance of the ith selected neighbor calculated as: 363 

 364 
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 366 

where di is the distance of the ith selected neighbor computed using Eq. [1], and p is a 367 

power term to account for different possible weight/distance relationships. 368 

Therefore, the predicted water retention at a given matric potential corresponds to the 369 

(distance-dependent) weighted sum of observed water retention values of the selected 370 

nearest neighbors. 371 

 372 

2.3. Design parameters k and p for the k-NN algorithm 373 

There are two design-parameters of the k-NN algorithm that were used, namely the k and 374 

the p terms. The k term refers to the number of similar soils to be selected from the 375 
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reference dataset to estimate the output attributes for each target soil, while the p term 376 

determines the weight-distance relationship that determines the contribution of each of 377 

the k reference samples to the estimation of the output attribute, depending on their 378 

degree of similarity to the target soil. 379 

 380 

Nemes et al. (2006a) indicated that the best combination of k and p values i.e. the one 381 

leading to the lowest overall prediction error (expressed by the root mean square 382 

difference, RMSD detailed in Eq. [9]) should be selected and that such a choice may 383 

depend on the size of the reference dataset. They tested this assumption on different 384 

dataset sizes, i.e. Nr=100, 200, 400 and 800 and derived two different functions for k and 385 

p which are dependent of the size Nr of the reference dataset: 386 

 387 

493.0655.0 rNk =                                                                                                                [6] 388 

 389 

049.0767.0 rNp =                                                                                                                [7] 390 

However, they warned that the relationship between Nr, k and p in Eq. [6] and Eq. [7] 391 

were set empirically and may not be optimal for other datasets. They recommended 392 

testing the settings of the k and p parameters for particular applications. 393 

 394 

In this study, we re-optimized the two parameters using an approach similar to the one 395 

used by Nemes et al. (2006a). We determined what influence, if any, different k and p 396 

values have on the prediction performance of the k-NN algorithm in a tropical context i.e. 397 

when soils from the Lower Congo are used as test dataset and the international IGBP-398 
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Trop dataset as training dataset. To avoid possible bias towards one or another set of 399 

inputs, all pre-determined input variables (i.e. SSC+BD+OC+pH+CEC) to estimate all 400 

the eight water retention points as outputs were considered. Then, all the corresponding 401 

RMSDs were computed and plotted for a visual examination and the best combination of 402 

k and p values was selected for this particular application. As the difference in RMSDs 403 

between two subsequent p values is rather small, we decided to consider a change of p 404 

from 0.5 to 2.5, with increments of 0.5, whereas the values of k were changed from 0 to 405 

50, with increments of 1. The optimized combination of k and p was then used in further 406 

calculations. 407 

 408 

2.4. Ensemble of k-NN estimations 409 

We experimented with the influence of the reference dataset size, similarly to Nemes et 410 

al. (2006a), and so samples were drawn to be included in the development/reference 411 

datasets of 100, 200, 300, 400 and 534 samples (i.e. all samples with available data). All 412 

random data selections were repeated 100 times to allow the development of an ensemble 413 

of water retention estimations. For each dataset size, the development/reference dataset 414 

was randomly sampled 100 times at 80% resampling rate i.e. a different subsample 415 

representing 80% of the development/reference dataset was used in each of the 100 416 

replicates. 417 

 418 

An ensemble of estimations has numerous advantages: the impact of any single replicate 419 

(i.e., any particular dataset division) on the final estimation results can be minimized 420 

when a sufficiently large number of replicates are used. Moreover, generation of an 421 
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ensemble of estimations allows the quantification of the uncertainty of estimates which 422 

can be used in statistical analyses and/or be inputted in simulation models. Quantification 423 

of uncertainty in estimates of soil hydraulic properties by PTFs and its effects in various 424 

simulation models has been studied by several authors (Finke et al., 1996; Nemes et al., 425 

2003; Deng et al., 2009; Loosvelt et al., 2011; Moeys et al., 2012) who indicated that the 426 

uncertainty associated with hydraulic PTFs should be taken into account when evaluating 427 

simulation results yielded by a given model. 428 

 429 

In this study, we found empirically that 100 replicates are sufficient to make the effect of 430 

any single replicate on the estimations negligible. Therefore, in this study we used 100 431 

replicates in the algorithm and any statistical measures were computed based on those 432 

100 replicates. However, we also examined the minimum (optimized) number of 433 

replicates for each of the different dataset sizes (Nr = 100, 200, 300, 400 and 534). 434 

 435 

2.5. Input and output attributes used 436 

In this paper, we have selected a wide range of soil attributes as potential predictors. 437 

These soil properties are not only used by several authors for the determination of 438 

“tropical” PTFs but are also important to characterize soils in the (sub)-humid tropics: 439 

sand, silt, clay, BD, OC, pH, CEC. Fourteen different combinations of these input 440 

attributes were considered to generate estimations in a hierarchical structure, in order to 441 

evaluate which, if any, of the variable combinations will yield systematically better 442 

estimates. The output attributes are water content at eight different matric potentials, 443 

namely at 0, -1, -3, -10, -20, -50, -250 and -1500 kPa. This means that we estimate more 444 
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water retention points simultaneously, in the wet, the intermediate and the dry range of 445 

the SWRC. 446 

 447 

2.6. Evaluation criteria 448 

Three statistical measures were selected to assess the predictive ability of the k-NN 449 

algorithm at a given matric potential: the mean difference (MD), the root mean square 450 

difference (RMSD) and the coefficient of determination (R2): 451 
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where θpi is the predicted volumetric water content for soil sample i (m3 m-3), θmi is the 458 

measured volumetric water content for soil sample i (m3 m-3), and Nt is the number of 459 

samples in the test dataset. 460 

 461 

2.7. Comparison with two published “tropical” PTFs 462 

The prediction performance of the proposed k-NN approach was compared with the 463 

prediction performance of the MLR PTFs of Hodnett and Tomasella (2002) and Minasny 464 
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and Hartemink (2011) based on their RMSD values. As mentioned above, the PTFs of 465 

Hodnett and Tomasella (2002) predict the parameters of the van Genuchten (1980) 466 

equation based on basic soil properties (texture, BD, OC, pH and CEC). Therefore, they 467 

allow the calculation of water content at any given matric potential. On the other hand, 468 

the PTFs of Minasny and Hartemink (2011) predict water content from texture, BD and 469 

OC at three matric potentials: -10, -33 and -1500 kPa. In the present study, only results 470 

for -10 and -1500 kPa will be considered in the comparison with the k-NN approach as 471 

water content at -33 kPa is lacking in the IGBP-Trop dataset. 472 

 473 

 474 
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3. Results and Discussion 475 

Box-plots of the selected soil attributes, for the reference/training dataset (IGBP-Trop) 476 

and for the test dataset (Lower Congo) are given in Fig. 2. Based on these soil attributes, 477 

it can be seen that both the reference and the test datasets contain data of a wide range of 478 

soils. 479 

3.1. Ensembles of k-NN estimations 480 

To find a minimum number of ensembles to obtain a stable RMSD based on the IGBP-481 

Trop dataset, we plotted the running (cumulative) RMSD values against the total number 482 

of ensemble members after each replication dataset had been applied to make estimations.  483 

The magnitude and the evolution of the RMSD values with the number of ensembles M 484 

differ from one matric potential to the other but the difference seems to be marginal in 485 

practice (Fig. 3). It can be seen from Fig. 3 that using 30 ensemble members gives stable 486 

and satisfactory results using various proportions of the IGBP-Trop dataset as reference 487 

data. Using more than 30 replicates, we found practically no change for dataset size 488 

Nr=100, 200, 300, 400 and 534. The same observation was made in the wet, the 489 

intermediate as well as in the dry range of the SWRC. 490 

 491 
Nemes et al. (2006b) determined that the sufficient minimum number of ensembles for 492 

the U.S. NRCS-SCS and the HYPRES datasets were 30 and 50 respectively. They found 493 

that using more than 30 or 50 ensembles respectively, the effect of adding more ensemble 494 

members did not yield any significant changes to the outcome of the estimations, 495 

regardless of the reference dataset size. Using the ANN technique, Parasuraman et al. 496 

(2006) found also that 30 ensemble members was the optimal number to predict saturated 497 

hydraulic conductivity at field scale. 498 

 499 
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Parasuraman et al. (2007) indicated that adoption of the ensemble technique in the 500 

formulation of PTFs helps in addressing one of the pertinent issues in any machine 501 

learning algorithm, namely generalization of the estimation results. In this study, 100 502 

replicates were used to generate an ensemble of k-NN estimations. Using this number of 503 

replicates can be considered a safe choice in order to negate the impact of any single 504 

replicate on the final estimation results and obtain a high level of generalization of our 505 

results. 506 

 507 

3.2. Optimizing the k and p terms 508 

A next important preliminary step in establishing the k-NN PTF is the optimization of the 509 

two design parameters k and p. A gradual change of both parameters simultaneously will 510 

enable us to find an optimal combination of the k and p terms for the given task. 511 

 512 

Figure 4 shows interdependence of the k and p terms and Nr, the number of samples in 513 

the reference dataset. Estimations developed from smaller data subsets (e.g. here Nr = 100 514 

or 200) are more sensitive to changes in k and p. Including more samples from the 515 

reference dataset in each individual estimation (i.e. increasing k) beyond a threshold will 516 

generally yield worse estimations. This is because with small Nr, an increasing k will 517 

mean that a relatively large proportion of the dataset is included in the estimation, rather 518 

than a small, but more specific set of samples with very similar characteristics to the 519 

target sample. Hence, the estimates will tend to come closer and closer to the reference 520 

dataset mean, yielding less accurate ‘local’ estimates. This effect can be further enhanced 521 

by the choice of the p (weight) term, as best seen in Fig. 4a. The closer p is to zero, the 522 

more equal the weights are distributed among the chosen k number of samples. When k is 523 

relatively large, and p is kept small, even less similar samples will have a relatively large 524 

weight in the formulation of the final water retention estimate. On the contrary, the effect 525 
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of a relatively large p value is that even if more samples are used in the individual 526 

estimation (i.e. k is increased), the nearest samples (in their properties) would receive a 527 

very high proportion of the weights, while formulating the final estimate. In essence, a 528 

large p value can counteract the potentially negative effect of choosing a k value that is 529 

too large. This effect is best seen when k can be disproportionally high compared to Nr, as 530 

e.g. in Fig. 4a. 531 

 532 

The above combined effect is less and less expressed with the increase of the size of the 533 

reference data set (Nr), at least within the examined range of k and p values. It is likely 534 

that following the above logic, with the further increase of k, we would see more impact 535 

of the choice of p on the estimation quality when larger Nr’s are examined. Nevertheless, 536 

p should not be set too high either, since it carries the risk of giving too much weight to 537 

one or two individual samples, which may not best represent the characteristics of all 538 

similar samples. The simultaneous optimization of the k and p terms requires attentive 539 

consideration and good understanding of the underlying effects and consequences. 540 

 541 

Based on Fig. 4, we tried to determine the k number which corresponds to the lowest 542 

RMSD (averaged through the eight matric potentials) for p values equal to 0.5, 1.0, 1.5, 543 

2.0 and 2.5 for dataset sizes Nr equal to 100, 200, 300, 400, and 534 respectively. An 544 

average of all the optimal k numbers determined for p values equal to 0.5, 1.0, 1.5, 2.0, 545 

and 2.5 was calculated for each reference dataset size (Table 1). Since k can only be an 546 

integer, the calculated and rounded average k values found in Table 1 are plotted in Fig. 5 547 

against the dataset size. An increasing trend with increasing dataset size was found and 548 

the best fitting equation relating the k number to the reference dataset size Nr was derived 549 

based on a power function: 550 
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 551 

k = 0.724 Nr
0.468                                                                                                        [11] 552 

 553 

Nemes et al. (2006a) found also a power function for the U.S. NRCS-SCS dataset (see 554 

Eq. [6]). The derived equation yielded values of k very similar to the ones found by 555 

Nemes et al. (2006a) for their dataset. Table 2 compares the k values derived from the 556 

equation of Nemes et al. (2006a) and the ones derived from the equation found in this 557 

paper. As noted above, values of k in their study and the present study are rounded to the 558 

nearest integer, so the actual difference between k values may be even smaller. 559 

 560 

To find the best combination between the k and p values, we compared the RMSDs 561 

provided by each combination of k and p values for each reference dataset size using 562 

contour plots (not shown here). The best p value was derived from the intersection 563 

between the average k value given in Table 1 and the lowest RMSD (3 decimals 564 

considered). We did not find a common trend for p value with the reference dataset size. 565 

However for Nr = 100, Nr = 400 and Nr = 534, we found values around 1. Nemes et al. 566 

(2006a) found that the p value ranged from 0.95 to 1.10. For Nr = 200 and Nr = 300, the 567 

best p values were surprisingly close to 3.0 and 2.2 respectively which are quite large 568 

values. However, even if a value of p around 1 were chosen for Nr = 200 and Nr = 300, 569 

the RMSD increased by only 0.001 m3 m-3, therefore, p = 1 seems to be a safe choice. 570 

This is in line with the findings and recommendations by Nemes et al. (2006a) regarding 571 

the relative insensitivity of the method to a range of p values. Because the difference and 572 

its influence appears to be negligible, we decided to use the function previously used by 573 

Nemes et al. (2006a) which relates the p value to the reference dataset size (see Eq. [7]). 574 

Hence, a p value of 1.04 will correspond to the full dataset of 534 soil samples of the 575 
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IGBP-Trop dataset. This value is close to 1, which, following Nemes et al. (2006a), 576 

represents a simple inverse relationship between the weight and the distance of the 577 

selected sample. The generic settings of the k and p terms that were worked out for 578 

temperate-climate soils from the USA match closely with the optimal settings found for 579 

the IGBP-Trop dataset. In their study, Patil et al. (2012) also used the functions for k and 580 

p provided by Nemes et al. (2006a) and the reference dataset provided with the k-Nearest 581 

software (Nemes et al., 2008) and obtained good results for swelling-shrinking soils 582 

(RMSD < 0.05 m3 m-3). 583 

 584 
3.3. Prediction of water retention from an international “tropical” database 585 

In the present study, 14 combinations of input soil attributes were used to predict the 586 

eight water retention outputs. Table 3 gives a summary of the results in terms of MD, 587 

RMSD and R2 at all the eight matric potentials, with the optimized settings and the 588 

various combinations of input parameters. The prediction performance of this k-NN 589 

algorithm is satisfactory in most cases. When considering individual MD, RMSD and R2 590 

values, we found: -0.009 m3 m-3 < MD < 0.055 m3 m-3, 0.032 m3 m-3 < RMSD < 0.087 591 

m3 m-3 and 0.280 < R2 < 0.921. The average MD, RMSD and R2 of eight matric 592 

potentials for each input variables combination was: 0.0066 m3 m-3 < AvgMD < 0.0305 593 

m3 m-3, 0.0439 m3 m-3 < AvgRMSD < 0.0619 m3 m-3 and 0.7010 < AvgR2 < 0.8029. The 594 

RMSD values were situated between 0.051 and 0.063 m3 m-3 for prediction of θ-10kPa and 595 

between 0.032 and 0.038 m3 m-3 for prediction of θ-1500kPa. These are encouraging results 596 

for these two points of the SWRC which are generally considered as good 597 

approximations of FC and PWP, respectively for soils in the humid tropics. 598 

 599 

When focusing on the most basic predictor variables texture (SSC), BD and OC, 600 

generally used in hydraulic PTFs because of their availability in various soil survey 601 
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reports, it can be seen that the variation in RMSD values is particularly different when 602 

BD is included or not as a predictor (Table 3). A marked decreasing trend of RMSD 603 

values (from 0.076 m3 m-3 to 0.033 m3 m-3) from the wet to the dry range of the SWRC 604 

can be observed when BD was not considered. On the contrary, when BD was included 605 

as predictor, RMSD values were low in the wet range (< 0.050 m3 m-3) followed by a 606 

slight increase in the intermediate range between matric potentials of -3 kPa and -50 kPa 607 

and again a decrease in the dry range (< 0.040 m3 m-3). In the intermediate range, the 608 

RMSD yielded by different combinations of inputs variables varies slightly with values 609 

between 0.050 m3 m-3 and 0.060 m3 m-3. However, the contribution of BD as predictor to 610 

the slight decrease of the overall error in prediction at the intermediate range can still be 611 

observed. Vereecken et al. (2010) made similar observations regarding the evolution of 612 

RMSD values when a combination of SSC, BD and OM was used as predictors in the 613 

published PTFs considered in their review paper. The derived matric potentials by curve 614 

fitting (0, -50 and -250 kPa) did not show any out-of-pattern quality in the estimation of 615 

water retention. The results found in this study indicate that the performance of the k-NN 616 

algorithm is dependent on the matric potential at which water retention is predicted. 617 

Recently, Haghverdi et al. (2012) developed pseudo-continuous ANN PTFs for water 618 

retention. Notwithstanding the effect of different combinations of the aforementioned 619 

input variables, they also observed relatively large variations in RMSD values as a 620 

function of matric potential. For example, the RMSD values were 0.050 m3 m-3 at -33 621 

kPa and 0.035 m3 m-3 at -1500 kPa. From Table 6 and from previous observations made 622 

by several authors such as Schaap et al. (2001), Vereecken et al. (2010) and Haghverdi et 623 

al. (2012), there seems to be an effect of the combinations of different input variables on 624 

the quality of prediction of water contents at various matric potentials. In the present 625 

study, the difference in prediction performance amongst models with the 14 input 626 
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variable combinations is more pronounced in the very wet range of the SWRC (at 0 627 

and -1 kPa) with RMSD values between 0.038 and 0.087 m3 m-3 and almost negligible at 628 

the very dry range of the SWRC (at -250 and -1500 kPa) with RMSD values between 629 

0.034 and 0.040 m3 m-3. In the intermediate range of the SWRC (from -3 to -50 kPa), the 630 

RMSD values yielded by the 14 input combinations were approximately between 0.049 631 

and 0.067 m3 m-3 (Table 3). This can be explained by the major role played by soil 632 

structure in the wet and in the intermediate ranges of the SWRC. Given that the best 633 

proxy for soil structure in this study is BD, there will be a notable difference in prediction 634 

performance between combinations including BD and combinations excluding BD as 635 

input variable. 636 

 637 

Table 3 further shows that the predictive ability of the k-NN algorithm in terms of bias 638 

(MD), overall error (RMSD) and goodness-of-fit (R2) closely depends on the 639 

combination of the “predictors”, i.e. the input attributes. Estimation quality may differ 640 

significantly when one set of input attributes is used instead of another set. For example, 641 

use of OC and pH were found to considerably reduce the quality of the prediction of 642 

water retention in the wet range of the SWRC. When OC and pH are present in the input 643 

attributes combination, they seem to favor soils in the training dataset which are quite 644 

different from the target soil in their hydraulic behavior at the wet range of the SWRC. 645 

On the other hand, they appeared to have a positive effect on the quality of the prediction 646 

in the dry range of the SWRC. Likewise, BD contributes largely to the improvement of 647 

the prediction of water retention in the wet range of the SWRC, while it is not the case in 648 

the dry range. Besides soil texture which plays a major role in the whole range of the 649 

SWRC, BD contributes largely to explaining water retention in the wet range of the 650 

SWRC whereas OC is more influential in the dry range. The k-NN approach is thus able 651 
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to reflect this physical phenomenon. It was found that using the complete set of input 652 

attributes i.e. SSC+BD+OC+pH+CEC was not the best option. As shown in Table 3, the 653 

best combination appeared to be SSC+BD+CEC with the smallest bias error (AvgMD = 654 

0.0066 m3 m-3), the smallest overall error (AvgRMSD = 0.0439 m3 m-3) and one of the 655 

largest goodness-of-fit values (AvgR2
 = 0.8018), closely followed by the combination 656 

SSC+BD (AvgMD = 0.0094 m3 m-3, AvgRMSD = 0.0444 m3 m-3, AvgR2
 = 0.8029). On 657 

the other hand, the worst combination was found to be SSC+pH with the largest bias 658 

error (AvgMD = 0.0305 m3 m-3), the largest overall error (AvgRMSD = 0.0619 m3 m-3) 659 

and the smallest goodness-of-fit value (AvgR2
 = 0.7010). One of the reasons of this result 660 

could be the lack of a meaningful relationship between pH and water retention at all the 661 

matric potentials in the test dataset with Pearson correlation coefficients r < 0.203. 662 

Another reason could be the difference in distribution of pH values in the reference and 663 

the test datasets (Fig. 2). In the reference dataset, the distribution of pH values is 664 

somewhat skewed whereas in the test dataset, the pH values are normally distributed. 665 

This suggests that pH will not be able to provide information necessary to identify the 666 

most similar instances to a given target soil in relation with water retention. The variable 667 

pH has thus a limited relationship with water retention and could worsen the prediction of 668 

water retention particularly at high matric potentials, i.e. in the wet range of the SWRC, 669 

at least using these particular datasets. Hodnett and Tomasella (2002) found that pH 670 

contributed to the estimation of all four parameters of the van Genuchten (1980) equation 671 

as it may be a crude indicator of the degree of weathering of soils in the tropics. 672 

 673 

In their study on Vertisols, Patil et al. (2012) found that the inclusion of BD as predictor 674 

in the k-NN technique led to a slight increase of the RMSD. They indicated that the BD 675 

of Vertisols is known to change with soil water content (swelling-shrinking soils). This 676 
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particular behavior was observed and studied by various authors (e.g. Braudeau et al., 677 

2004; Cornelis et al., 2006). 678 

 679 

Bulk density and CEC are good indirect indicators of the structure of the soil. Bulk 680 

density gives an indication of total soil porosity, whereas CEC gives indications about the 681 

clay mineralogy of the soil which is also responsible for the structural development and 682 

porous behavior of the soil, besides retention of water by adsorption. Pachepsky and 683 

Rawls (2003) indicated that BD is a measurable continuous variable which is indirectly 684 

related to soil structure. In the same vein, Tranter et al. (2007) proposed a conceptual 685 

model which considers BD as the result of particle packing and soil structure. Bronick 686 

and Lal (2005) wrote that clay minerals influence properties that affect aggregation: 687 

surface area, CEC, charge density, dispersivity and expandability. Based on CEC values, 688 

a distinction can be made between soils with high activity clays (HAC) and soils with low 689 

activity clays (LAC). Low activity clays such as kaolinite and halloysite generally occur 690 

in highly weathered soils (e.g. Acrisols and Ferralsols), whereas HAC such as 691 

montmorillonite are present in swelling-shrinking soils (e.g. Vertisols). As it is well 692 

known, structure has a non-negligible influence on water retention at high matric 693 

potentials. High CEC values are indications of soils with high water retention capacity 694 

and poor internal drainage, whereas the opposite is true for soils with low CEC values. 695 

Hodnett and Tomasella (2002) found that CEC can be a predictor of the van Genuchten 696 

(1980) parameters as it may indicate the effect of mineralogy on water retention capacity 697 

of soils in the tropics. 698 

 699 

In the present study, the addition of OC seems not to improve significantly the prediction 700 

compared to accounting for texture only. Similarly, Puckett et al. (1985) did not use 701 
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OM/OC as a predictor to derive water retention PTFs due to its low content in the soil 702 

samples from the Lower Coastal Plain in the USA. In their study on physical properties 703 

and moisture retention characteristics of some tropical soils in Nigeria, Lal (1978) did not 704 

find any effect of OM/OC on water retention. Zacharias and Wessolek (2007) suggested 705 

the exclusion of OM/OC as predictor in classic PTFs and proposed a new PTF that uses 706 

only physical properties such as soil texture and BD. On the contrary, Vereecken et al. 707 

(2010) observed that including OM/OC as predictor in “temperate” PTFs of e.g. 708 

Vereecken et al. (1989), Nemes et al. (2003) and Weynants et al. (2009) led to improved 709 

predictions, with the lowest RMSD values in the wet range and in the very dry range of 710 

the SWRC. This can be explained by the variability of OM/OC present in temperate and 711 

in tropical soils, with soils from temperate areas often having a substantial amount, and 712 

wider range of OM. This means that OM/OC can be a suitable predictor of water 713 

retention of soils in temperate regions. In contrast, OM/OC content is very low in the 714 

humid tropics due to a high rate of decomposition under high temperatures and abundant 715 

rainfall. Therefore, OM/OC may not have the variability to be an important variable in 716 

estimating the water retention for soils in the humid tropics. 717 

 718 

Furthermore in Table 3, it is shown that the bias error (MD) can contribute, to various 719 

extents, to the overall error (RMSD). There is a clear trend to overestimate water 720 

retention in the wet and the middle range of the SWRC whereas there is a small but 721 

almost negligible trend to underestimate water retention at the dry range. The training 722 

dataset contains 80% of low activity clay (LAC) soils (i.e. with CEC < 20 cmol (+) kg-1 723 

soil) and 20% of mixed activity clay (MIX) soils (i.e. with CEC between 20 and 62 cmol 724 

(+) kg-1 soil) whereas the test dataset contains more than 95% of LAC soils. While LAC 725 

soils are dominated by kaolinite and sesquioxides, MIX soils contain other clay minerals 726 
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such as montmorillonite which present a relatively higher water retention capacity than 727 

kaolinite. Williams et al. (1983) observed that the presence of montmorillonite even in 728 

quite small amounts in the soil samples was shown to be a discriminating property in 729 

relation with water retention. In their evaluation study based on a limited test dataset of 730 

soils from Lower Congo, Botula et al. (2012) found that the “temperate” PTFs of Gupta 731 

and Larson (1979) largely overestimated the water retention of soils in the Lower Congo. 732 

Botula et al. (2012) attributed this result to the differences in soil properties and in the 733 

mineralogy between the test dataset and the dataset used to develop the PTFs. One 734 

possible explanation of the large positive bias could be the difference in the distribution 735 

of texture classes with a strong presence of silty soils in temperate (development) soil 736 

datasets whereas clayey soils dominate in tropical (test) soil datasets. Another reason may 737 

be the presence of montmorillonitic soils in the development dataset used by Gupta and 738 

Larson (1979) and the large dominance of kaolinitic soils in the independent test dataset 739 

used by Botula et al. (2012). In their study of the performance of various PTFs when 740 

applied for Ferralsols from Cuba, Medina et al. (2002) indicated that clay type plays a 741 

vital role in the retention and transmission properties of a given soil. It is the reason why 742 

soils in the humid tropics can have much more clay than soils in the temperate regions 743 

but a much lower water retention capacity.  744 

 745 

3.4. Prediction performance of the k-NN approach and the MLR approach 746 

The MLR PTFs of Hodnett and Tomasella (2002) use texture, BD, pH, OC and CEC as 747 

predictors to estimate the van Genuchten parameters, whereas the point PTFs of Minasny 748 

and Hartemink (2011) use texture, BD and OC as inputs. The RMSDs of these PTFs were 749 

compared with the k-NN algorithm using different combinations of predictors: SSC+OC, 750 
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SSC+BD, SSC+BD+CEC as well as the full set of available predictors 751 

(SSC+BD+OC+pH+CEC) (Table 4). 752 

 753 

An independent one-sample t-test was run, evaluated at the 0.05 significance level, which 754 

indicated that the RMSD values generated by the MLR PTFs and the k-NN models were 755 

statistically different at each matric potential. The RMSDs of k-NN models varied by 756 

matric potential and which set of predictors were used, but the PTFs of Hodnett and 757 

Tomasella (2002) yielded comparable RMSD values to those of the k-NN algorithm with 758 

certain combinations of inputs, primarily the SSC+BD and SSC+BD+CEC models. The 759 

differences were rather small in most cases, but they were significant in all cases, given 760 

the very small standard deviation of ensemble RMSDs. At near-saturation, the k-NN 761 

estimates were more accurate, but in the intermediate matric potential range (from -10 to 762 

-50 kPa) the Hodnett and Tomasella (2002) PTFs yielded smaller RMSD values than the 763 

k-NN algorithm. The Hodnett and Tomasella (2002) PTFs and k-NN showed particularly 764 

comparable performance in the dry range. We note that one of the points in the 765 

intermediate range (i.e. -50 kPa) was derived by curve fitting for the Lower Congo data 766 

set, which may have introduced some degree of extra uncertainty into the estimations. 767 

The point PTFs of Minasny and Hartemink (2011) gave significantly greater RMSD 768 

values than the PTFs of Hodnett and Tomasella (2002) and any of the examined k-NN 769 

algorithms at the two available matric potentials (Table 4). 770 

 771 

Any direct comparison of the performance of PTFs that do not use the same inputs is 772 

influenced by the cost and benefit of any extra variable(s), so conclusions have to be 773 

drawn carefully. The k-NN algorithm that uses SSC+BD+OC+pH+CEC requires the 774 

same input attributes as the PTF of Hodnett and Tomasella (2002) that predicts the van 775 
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Genuchten (1980) parameters. On the other hand, the k-NN algorithm using SSC+BD 776 

uses the same inputs as the -10 kPa PTF of Minasny and Hartemink (2011), while the k-777 

NN algorithm using SSC+OC uses the same inputs as the -1500 kPa PTF of Minasny and 778 

Hartemink (2011). In our comparison with the two MLR models, it can be concluded that 779 

the presented k-NN models that use the same inputs, show better performance measures 780 

than the Minasny and Hartemink (2011) PTFs. On the other hand, when e.g. the SSC+BD 781 

k-NN model is compared to the Hodnett and Tomasella (2002) PTFs, a somewhat weaker 782 

performance is achieved, but with significantly smaller number of inputs – i.e. k-NN did 783 

not use OC, pH and CEC as inputs. It is of particular value in data- and resource-poor 784 

environments if the need for input is minimized in a quest to obtain estimates of 785 

expensive but important soil hydraulic properties. The Hodnett and Tomasella (2002) 786 

PTFs require the user to have all five of the above listed properties available in order to 787 

estimate water retention of a tropical soil, which can be a serious limitation in their 788 

applicability. The presented k-NN approach can be used in a hierarchical way, adjusting 789 

the used inputs to their availability, and acceptably good and stable estimation results can 790 

already be achieved by using only texture and bulk density as predictors. Among the 791 

examined PTFs, the presented k-NN based PTFs introduced in this paper appear to show 792 

the best value, when statistical performance is combined with the PTFs’ need for input. 793 

Given that the source of the development data was the same for the two MLR and the k-794 

NN PTFs, it is likely that the PTF development methodology and the data they have been 795 

tested on are the combined reason for that finding. Given its capability and flexibility in 796 

utilizing limited or a wider range of predictors hierarchically, based on their availability, 797 

the k-NN technique presents far greater number of choices and flexibility to the user than 798 

published MLR PTFs do. Additionally, given that all calculations are made real-time in 799 

k-NN, as growth and development of tropical soil databases is expected, those new data 800 
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can be taken into account by the k-NN technique without the need to redevelop any 801 

equations, which would be necessary with MLR PTFs like the ones of Hodnett and 802 

Tomasella (2002) and Minasny and Hartemink (2011). 803 

 804 

In preparation for future needs and increased computing capabilities, the k-NN technique 805 

can also readily provide an estimate of the uncertainty when ensembles of estimations are 806 

generated. Such advances can be well taken into account while parameterizing 807 

simulation-based environmental risk-assessment and scenario studies. The presented k-808 

NN application also demonstrated how any number of points can be estimated 809 

simultaneously on the SWRC curve, given that those points exist in the source database. 810 

Therefore, besides its capability to provide SWRC estimates of competitive quality, the 811 

proposed k-NN approach gives a number of additional benefits to the user, compared to 812 

existing MLR approaches. When provided with an enhanced user interface, similar in 813 

nature to the k-Nearest software of Nemes et al. (2008), the k-NN variant developed in 814 

this paper can be easily implemented by potential users interested in soils of the humid 815 

tropics. 816 
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4. Conclusions 817 

 818 

A variant of the k-NN algorithm developed by Nemes et al. (2006a) has been applied and 819 

tested to predict water retention of soils from the Lower Congo in Central Africa based 820 

on an international dataset (IGBP-Trop) of soils of the (sub)humid tropics. Two design-821 

parameters k and p that are user-defined and determined before and independent of 822 

applying the non-parametric k-NN algorithm were optimized to better take advantage of 823 

the k-NN variant introduced in this study. The optimized k and p values were found to be 824 

similar to those of previous studies. The results showed that this k-NN variant was able to 825 

estimate water retention at eight different matric potentials (0, -1, -3, -10, -20, -50, -250 826 

and -1500 kPa), i.e. from the wet to the dry range of the SWRC with an average RMSD < 827 

0.046 m3 m-3 when SSC+BD or SSC+BD+CEC were selected as input variables. The 828 

overall prediction performance of the proposed non-parametric approach was compared 829 

with two tropical equation-based PTFs of Hodnett and Tomasella (2002) and Minasny 830 

and Hartemink (2011) based on the MLR approach. The results suggest that the k-NN 831 

approach shows comparable prediction performance to the examined MLR PTFs, which 832 

makes it a competitive alternative to those equations-based PTFs that are currently 833 

available to predict water retention of soils in the humid tropics. While performing 834 

similarly, the presented k-NN variant provides a great degree of flexibility and extra 835 

options to the user. The user can, for example, (1) incorporate additional data by 836 

appending to or replacing the reference database without the need or burden of 837 

redeveloping new equations, (2) develop the estimations real-time, decide real-time what 838 

inputs to use and vary them from sample to sample if desired, (3) estimate any number 839 

and combination of SWRC points simultaneously, driven by their availability in the 840 

reference/development dataset, and (4) generate an uncertainty measure to the estimates. 841 
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These advantages can be particularly beneficial in the context of developing countries 842 

where there is growing demand – as well as potential – to continuously develop soil 843 

databases - and subsequent simulation-based studies - for pedological, agricultural and 844 

environmental studies. For future research, we recommend testing the ability of this 845 

technique to predict water retention of other soils found in the tropics, for example 846 

volcanic soils that present some specific properties. These soils present a completely 847 

different mineralogy than highly weathered soils or swelling-shrinking soils and may 848 

need a completely different reference/training dataset than the IGBP-Trop dataset to 849 

provide acceptable estimations of their hydraulic characteristics. 850 

 851 

 852 
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Fig. 1. Variation of clay, silt and sand in the IGBP-Trop (circles) and the Lower Congo 
soil datasets (crosses). 
 
Fig. 2. Box-plots of some physical and chemical properties of the soils of (1) IGBP-Trop 
(reference dataset) and (2) the Lower Congo (test dataset). BD is bulk density (Mg m-3), 
OC is organic carbon content (%) and CEC is cation exchange capacity (cmol kg-1 soil). 
 
Fig. 3. Running root mean squared differences (RMSDs) for the Lower Congo test 
dataset for up to 100 ensembles using sand, silt, clay, bulk density organic carbon, pH 
and cation exchange capacity as input attributes and water retention at (a) -1 kPa, (b) -20 
kPa and (c) -1500 kPa as output attributes. 
 
Fig. 4.Variations of the root mean squared differences (RMSDs) with the number of 
nearest neighbors k in function of p values and reference dataset sizes Nr. 
 
Fig. 5. Effect of dataset size on the optimal choice of the number of selected neighbors. 
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Fig. 1. Variation of clay, silt and sand in the IGBP-Trop (circles) and the Lower Congo 
soil datasets (crosses). 
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Fig. 3. Running root mean squared differences (RMSDs) for the Lower Congo test 
dataset for up to 100 ensembles using sand, silt, clay, bulk density, organic carbon, pH 
and cation exchange capacity as input attributes and water retention at (a) -1 kPa, (b) -20 
kPa and (c) -1500 kPa as output attributes. 
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Fig. 4. Variations of the root mean squared differences (RMSDs) with the number of 
nearest neighbors k in function of p values and reference dataset sizes Nr. 
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TABLES 
 
Table 1. Number of nearest neighbors (k) corresponding to the lowest RMSD for 
different values of p and different dataset sizes Nr. 
 

 Nr=100 Nr=200 Nr=300 Nr=400 Nr=534 
p k 

0.5   1† 7 9 11 11 
1.0   2† 7 10 11 12 
1.5 4 7 10 11 13 
2.0 7 10 10 13 13 

2.5 7 15 14 13 14 
Average‡ 6 9 11 12 13 

† These values were not taken into account in the calculation of the average k because 
they did not correspond to a global or a local minimum for RMSD. 
‡ Average values are rounded to the nearest integer. 

 



 2

 
Table 2. Comparison of the k number generated by the power function of Nemes et al. 
(2006a) and the power function derived for this study. 
 

Nr 
k calculated from 

Nemes et al. (2006a) function
k calculated from 

the present function 
100 6 6 
200 9 9 
300 11 10 
400 13 12 
534 14 14 
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