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1. Introduction

In this note, the similarity between two implicit, partitioned solution techniques for fluid-
structure interaction (FSI) problems is analyzed using finite volume discretization of the flow
equations. Fluid-structure interaction refers to the mutual interaction between a fluid flow and
a flexible structure. Partitioned solution techniques solve the flow equations and the structural
equations separately. These techniques are classified as implicit (or strongly coupled) if they
satisfy the interaction conditions on the fluid-structure interface in each time step and as explicit
(or loosely coupled) if they do not.

Both techniques analyzed in this note use block Gauss-Seidel (GS) iterations, meaning that
the flow equations and the structural equations are solved consecutively within a time step until
some convergence tolerance is reached. As the flow and structural equations are solved sepa-
rately, the interaction conditions on the fluid-structure interface have to be converted into bound-
ary conditions on the common boundary of the fluid and structure subdomains. Several types
of boundary conditions can be applied, resulting in different decompositions. In the case of
Dirichlet-Neumann (DN) decomposition, the flow equations are solved with a Dirichlet bound-
ary condition (given velocity) on the fluid-structure interface, while the structural equations are
solved with a Neumann boundary condition (given stress) on the interface. Conversely, Robin-
Neumann (RN) decomposition, introduced in [1], denotes a Robin boundary condition on the
fluid side of the interface and a Neumann boundary condition on the structure side.

The first technique in this comparison is block Gauss-Seideliterations applied to the mono-
lithic system previously multiplied by a suitable permutation matrix, leading to a Robin-Neumann
decomposition (GS-RN). This first technique includes a simplified version of the structural model
in the flow equations by means of a Robin boundary condition toaccelerate the convergence of
the GS iterations [1, 2]. The second technique is block Gauss-Seidel iterations with Dirichlet-
Neumann decomposition and Interface Artificial Compressibility (GS-DN-IAC). This second
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technique includes a local, linearized version of the structural model in the flow equations by
means of pressure-dependent source terms in the fluid cells adjacent to the fluid-structure inter-
face. Source terms were added to both the continuity equation and the momentum equations in
[3], whereas only the continuity equation was modified in [4–6]. It is important to mention that
the density is constant in the IAC method, despite the name ofthis method which was given due
to the similarity with artificial compressibility schemes to solve flow problems [7]. In [8], Arti-
ficial Compressibility was applied to the entire fluid domainand not only in the cells adjacent to
the fluid-structure interface.

2. Governing equations

The fluid (f ) and structure (s) subdomains are indicated asΩ f andΩs and their boundaries
asΓ f andΓs. The fluid-structure interfaceΓ f s = Γ f ∩ Γs is the common boundary of these
subdomains, as indicated in Figure 1. The governing equations are immediately given in time-
discrete form, using backward Euler discretization for simplicity. The notationδt is defined as

δtz
n+1
=

zn+1
− zn

∆t
(1)

for any time-dependent variablez, with the superscriptn denoting the time step and∆t the time
step size.

The flow equations for the incompressible fluid with densityρ f in Ωn+1
f are given by

∇ · vn+1
= 0 (2a)

δtvn+1
+ ∇ · vn+1

(

vn+1
− wn+1

)

−
1
ρ f
∇ · Tn+1

f = 0 (2b)

in arbitrary Lagrangian-Eulerian (ALE) formulation, withv the fluid velocity andw the grid
velocity. The interface position is treated implicitly. Body forces are omitted for simplicity. For
a Newtonian fluid with dynamic viscosityµ, the Cauchy stress tensorT f is defined as

T f = −pI + 2µG, (3)

with p the pressure and

G =
1
2

(

∇v + (∇v)T
)

(4)

the strain rate tensor. The structure inΩn+1
s is governed by

ρsδttun+1
− ∇ · Tn+1

s = 0, (5)

in Lagrangian formulation, withu the displacement. The relation between the Cauchy stress
tensorTs and the strain tensor is given by the constitutive law of the material. On the interface
Γ

n+1
f s , the kinematic equilibrium

vn+1
= δtun+1 (6a)

and the dynamic equilibrium
Tn+1

f · nn+1
= Tn+1

s · nn+1 (6b)
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need to be satisfied, withnn+1 the normal pointing outwards ofΩn+1
f . Moreover, the normal

velocity of the fluid grid has to match the normal structural velocity onΓn+1
f s .

wn+1
· nn+1

= δtun+1
· nn+1 (6c)

For simplicity, interpolation on the fluid-structure interface is disregarded in the above equations.

3. Comparison of GS-RN and GS-DN-IAC

The GS technique performs coupling iterations between the flow solver and the structural
solver within each time step, as can be seen in Algorithm 1. The difference between GS-RN
and GS-DN lies in the boundary conditions that are applied during the solution of the flow equa-
tions (line 3). In the following comparison, it is assumed that coupling iterations are performed
until the convergence criteria for the equilibrium conditions on the fluid-structure interface are
satisfied.

Algorithm 1 The block Gauss-Seidel (GS) technique. The indexn denotes the time step whilek
refers to the coupling iteration within each time step.

1: for n from 0 tonmax do
2: for k from 0 tokmax do
3: solve flow equations
4: solve structural equations
5: if equilibrium satisfied up to tolerancethen
6: break
7: end if
8: end for
9: end for

3.1. Block Gauss-Seidel iterations with Robin-Neumann decomposition (GS-RN)

When solving the flow equations, GS-RN uses a Robin boundary condition onΓk+1
f s for the

fluid, given by
vk+1
+ αTk+1

f · n
k
= δtuk

+ αTk
s · n

k. (7a)

with α a suitable function of the fluid-structure interface. The superscriptk + 1 indicates the
current coupling iteration in the current time step (n+ 1). It will be explained in Section 4 how
the coefficientα can be determined. For the grid velocity, a Dirichlet boundary condition

wk
· nk
= δtuk

· nk (7b)

is applied. Consequently, the fluid domain deforms in each coupling iteration. In Eq. (7a) and
Eq. (7b), the values ofu, Ts and n are determined by the structural calculation at the end of
coupling iterationk.

While solving the structural equations, the most recent flowvalues are used in the Neumann
boundary condition

Tk+1
s · nk+1

= Tk+1
f · n

k+1. (7c)
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To analyze the similarities between GS-RN and GS-DN-IAC, the finite volume discretization
of Eqs. (2) will be assumed, giving for celli

Vk
i − Vn

i

∆t
+

∑

j

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j = 0 (8a)

vk+1
i Vk

i − vn
i Vn

i

∆t
+

∑

j

vk+1
i, j

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j − Stress= 0 (8b)

with Vi the cell volume,Si, j the area of facej andni, j the normal pointing outwards of facej.
The vectorsvi, j andwi, j denote respectively the fluid velocity and the grid velocityon face j of
cell i. Again, the geometrical values (includingVi , Si, j andni, j) correspond with the structural
calculation in the previous coupling iteration. The discretization of the last term in Eq. (2b) is
not relevant for the remainder of the comparison so this is not specified.

Considering the Robin condition Eq. (7a), the factor
(

vk+1
i, j − wk

i, j

)

· nk
i, j for face j = monΓk+1

f s
becomes

(

vk+1
i,m − wk

i,m

)

· nk
i,m =

(

δtuk
i,m+ αi,m

(

Tk
s,i,m− Tk+1

f ,i,m

)

· nk
i,m− wk

i,m

)

· nk
i,m. (9a)

Substitution of Eq. (7b) and Eq. (7c) leads to
(

vk+1
i,m − wk

i,m

)

· nk
i,m = αi,mnk

i,m ·
(

Tk
f ,i,m− Tk+1

f ,i,m

)

· nk
i,m. (9b)

The summations in Eqs. (8) are subsequently split into a termcorresponding with facej = m on
Γ

k+1
f s and the terms corresponding with the other facesj , m not onΓk+1

f s , giving

Vk
i − Vn

i

∆t
+

∑

j,m

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j

= −αi,mnk
i,m ·
(

Tk
f ,i,m− Tk+1

f ,i,m

)

· nk
i,mSk

i,m (10a)

vk+1
i Vk

i − vn
i Vn

i

∆t
+

∑

j,m

vk+1
i, j

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j − Stress

= −αi,mvk+1
i,m nk

i,m ·
(

Tk
f ,i,m− Tk+1

f ,i,m

)

· nk
i,mSk

i,m. (10b)

3.2. Block Gauss-Seidel iterations with Dirichlet-Neumann decomposition and Interface Artifi-
cial Compressibility (GS-DN-IAC)

When solving the flow equations, GS-DN uses a Dirichlet boundary condition onΓk+1
f s , given

by
vk+1
= δtuk (11)

The boundary conditions for the grid velocity and for the structural equations are identical to
those in Section 3.1. The IAC then adds the source terms

−

pk+1
i,m − pk

i,m

∆t

d
(

ui,m · ni,m
)

dpi,m
Sk

i,m (12a)

−vk+1
i

pk+1
i,m − pk

i,m

∆t

d
(

ui,m · ni,m
)

dpi,m
Sk

i,m (12b)
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to the right-hand sides of Eqs. (8), respectively, but only in cells adjacent to the fluid-structure
interface. The coefficient d

(

ui,m · ni,m
)

/dpi,m is similar toα. Its value is determined a priori and
calculated as explained in Section 4. Together with the firstterms of Eqs. (8), these source terms
become a linear approximation for (Vk+1

i − Vn
i )/∆t and (vk+1

i Vk+1
i − vn

i Vn
i )/∆t [6].

Combination of interface conditions for the fluid velocity (Eq. (7b)) and the grid velocity
(Eq. (11)) yields

wk
· nk
= δtuk

· nk
= vk+1

· nk. (13)

As a result, the second term in the continuity equation vanishes on the face that lies on the fluid-
structure interface, giving

Vk
i − Vn

i

∆t
+

∑

j,m

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j

= −

pk+1
i,m − pk

i,m

∆t

d
(

ui,m · ni,m
)

dpi,m
Sk

i,m (14a)

vk+1
i Vk

i − vn
i Vn

i

∆t
+

∑

j,m

vk+1
i, j

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j − Stress

= −vk+1
i

pk+1
i,m − pk

i,m

∆t

d
(

ui,m · ni,m
)

dpi,m
Sk

i,m. (14b)

3.3. Discussion
On the fluid-structure interface, the pressure is usually much larger than the viscous stresses.

If T f is simplified to−pI, Eqs. (10) become

Vk
i − Vn

i

∆t
+

∑

j,m

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j

= −αi,m

(

pk+1
i,m − pk

i,m

)

Sk
i,m (15a)

vk+1
i Vk

i − vn
i Vn

i

∆t
+

∑

j,m

vk+1
i, j

(

vk+1
i, j − wk

i, j

)

· nk
i, jS

k
i, j − Stress

= −αi,mvk+1
i,m

(

pk+1
i,m − pk

i,m

)

Sk
i,m. (15b)

Hence, under the assumption of small viscous stresses on theinterface, Eq. (14a) and Eq. (15a)
are equal if

αi,m =
1
∆t

d
(

ui,m · ni,m
)

dpi,m
. (16)

With that value ofαi,m, the difference between Eq. (14b) and Eq. (15b) is that the right-hand side
of the former contains the cell velocityvk+1

i while the right-hand side of the latter contains the
face velocityvk+1

i,m . This difference, however, vanishes as the grid size tends to zero.
As could already be seen from Eq. (7a), the coefficientαi,m relates a change in velocity of the

interface to a change in stress on the interface. If the parameterαi,m (resp. d
(

ui,m · ni,m
)

/dpi,m)
is set so that it approximates the actual velocity/stress (resp. displacement/pressure) relation of
the structural model, then an approximation for the structural model is included into the flow
calculation. This implies that both GS-RN and GS-DN-IAC take the fluid-structure interaction
into account while solving the flow equations, as opposed to GS-DN.
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4. Remarks

For the flow in a straight flexible tube, Fourier stability analysis has demonstrated that only
the source term in the continuity equation is required for fast convergence of the GS-DN-IAC
iterations as long as the fluid velocity is lower than the wavespeed [3]. Hence, only the source
term of Eq. (12a) is added to the continuity equation in [4–6].

In [1], an analytical expression for the coefficientα is obtained by considering a membrane
so that the structural equations can be written in the same form as the Robin boundary condi-
tion. Moreover, an optimal value forα derived from a Fourier analysis has been proposed in [9].
Conversely, the structural equations are solved twice in [6], each time with a different pressure
on the interface, followed by a finite difference approximation of d

(

ui,m · ni,m
)

/dpi,m. Both ap-
proaches are valuable. The choice of the technique to calculate the coefficients is independent of
the choice between GS-RN and GS-DN-IAC.

Both GS-RN and GS-DN-IAC use a relation between the displacement of a point on the
interface and the pressure in that same point. This is not a good approximation if the pressure at
that point causes a displacement of the entire structure. Therefore, both techniques are suitable
for a tube where the radius of a tube segment is mainly determined by the pressure in that segment
and less suitable for a cantilever beam where a pressure difference between the top and the bottom
near the free end bends the entire beam.

5. Conclusions

GS-RN and GS-DN-IAC are two different implementations of the same concept, namely
including a local, linear approximation for the structuralbehaviour into the flow equations. To
include this linearized structural model, GS-DN-IAC violates the mass conservation in the fluid
cells adjacent to the fluid-structure interface during the coupling iterations (but not in the result)
while GS-RN uses a boundary condition. Additionally, GS-DN-IAC neglects the viscous stresses
on the fluid-structure interface in this linearized structural model (but not in the result).
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