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1. Introduction

In this note, the similarity between two implicit, partitied solution techniques for fluid-
structure interaction (FSI) problems is analyzed usingdimblume discretization of the flow
equations. Fluid-structure interaction refers to the ralinteraction between a fluid flow and
a flexible structure. Partitioned solution techniques edhe flow equations and the structural
equations separately. These techniques are classifiedpdisiirfor strongly coupled) if they
satisfy the interaction conditions on the fluid-structurteiface in each time step and as explicit
(or loosely coupled) if they do not.

Both techniques analyzed in this note use block Gauss-SE&) iterations, meaning that
the flow equations and the structural equations are solveseomitively within a time step until
some convergence tolerance is reached. As the flow andwstaleguations are solved sepa-
rately, the interaction conditions on the fluid-structureerface have to be converted into bound-
ary conditions on the common boundary of the fluid and strectubdomains. Several types
of boundary conditions can be applied, resulting in différédecompositions. In the case of
Dirichlet-Neumann (DN) decomposition, the flow equatiors solved with a Dirichlet bound-
ary condition (given velocity) on the fluid-structure irfeare, while the structural equations are
solved with a Neumann boundary condition (given stressherirtiterface. Conversely, Robin-
Neumann (RN) decomposition, introduced in [1], denotes hiflRboundary condition on the
fluid side of the interface and a Neumann boundary conditiothe structure side.

The first technique in this comparison is block Gauss-Sédierdtions applied to the mono-
lithic system previously multiplied by a suitable permigatmatrix, leading to a Robin-Neumann
decomposition (GS-RN). This first technique includes a $ifred version of the structural model
in the flow equations by means of a Robin boundary conditicactelerate the convergence of
the GS iterations [1, 2]. The second technique is block G&esdel iterations with Dirichlet-
Neumann decomposition and Interface Artificial Comprakib/GS-DN-IAC). This second
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technique includes a local, linearized version of the $tmat model in the flow equations by
means of pressure-dependent source terms in the fluid didisemnt to the fluid-structure inter-
face. Source terms were added to both the continuity equatid the momentum equations in
[3], whereas only the continuity equation was modified ingj- is important to mention that
the density is constant in the IAC method, despite the nantlei®method which was given due
to the similarity with artificial compressibility schemeasdolve flow problems [7]. In [8], Arti-
ficial Compressibility was applied to the entire fluid domaird not only in the cells adjacent to
the fluid-structure interface.

2. Governing equations

The fluid (f) and structures) subdomains are indicated 85 andQs and their boundaries
asT's andI's. The fluid-structure interfacEss = I't N I's is the common boundary of these
subdomains, as indicated in Figure 1. The governing equawe immediately given in time-
discrete form, using backward Euler discretization for@inity. The notatiory; is defined as

o
At

szt = 1)
for any time-dependent varialbtewith the superscript denoting the time step amt the time
step size.

The flow equations for the incompressible fluid with dengityn Q’;‘fl are given by

v-vl=0 (2a)
S+ Y (VgL piv Trl_g (2b)
f

in arbitrary Lagrangian-Eulerian (ALE) formulation, withthe fluid velocity andw the grid
velocity. The interface position is treated implicitly. 8pforces are omitted for simplicity. For
a Newtonian fluid with dynamic viscosify, the Cauchy stress tensby is defined as

Tt =-pl +2uG, 3)

with p the pressure and

G= % (Vv + (VV)T) 4)

the strain rate tensor. The structurefii! is governed by
psOpu™t — V. THL = 0, (5)

in Lagrangian formulation, witlu the displacement. The relation between the Cauchy stress
tensorTs and the strain tensor is given by the constitutive law of tteemal. On the interface

', the kinematic equilibrium

Vr‘l+l — 6tun+l (6&)

and the dynamic equilibrium
T?+1 . nn+1 — Tg+l . nn+1 (Gb)
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need to be satisfied, with™?! the normal pointing outwards cffz'f”l. Moreover, the normal

velocity of the fluid grid has to match the normal structurgbeity onF’f“gl.

V\/H'l A nn+1 — 6tun+l . nn+1 (6C)

For simplicity, interpolation on the fluid-structure intece is disregarded in the above equations.

3. Comparison of GS-RN and GS-DN-IAC

The GS technique performs coupling iterations between tve $blver and the structural
solver within each time step, as can be seen in Algorithm le difference between GS-RN
and GS-DN lies in the boundary conditions that are appligthduhe solution of the flow equa-
tions (line 3). In the following comparison, it is assumedttboupling iterations are performed
until the convergence criteria for the equilibrium conalits on the fluid-structure interface are
satisfied.

Algorithm 1 The block Gauss-Seidel (GS) technique. The inddenotes the time step whike
refers to the coupling iteration within each time step.

1: for nfrom O tonpyaxdo

2: for k from O tokmnax do

3 solve flow equations

4 solve structural equations

5 if equilibrium satisfied up to tolerantken
6: break

7 end if

8 end for

9: end for

3.1. Block Gauss-Seidel iterations with Robin-Neumanwoagosition (GS-RN)

When solving the flow equations, GS-RN uses a Robin boundanrgition onl“'f;l for the
fluid, given by
VL TR k= sk + o TX - k. (7a)

with @ a suitable function of the fluid-structure interface. Theengcriptk + 1 indicates the
current coupling iteration in the current time stepH1). It will be explained in Section 4 how
the coefficientr can be determined. For the grid velocity, a Dirichlet bougd#@ndition

Wk = sk nk (7b)

is applied. Consequently, the fluid domain deforms in eaclpliog iteration. In Eg. (7a) and
Eqg. (7b), the values aofi, Ts and n are determined by the structural calculation at the end of
coupling iteratiork.
While solving the structural equations, the most recent flalues are used in the Neumann
boundary condition
TI;+1 . nk+1 — TI§+1 . r]k+1. (7C)
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To analyze the similarities between GS-RN and GS-DN-IAE fihite volume discretization
of Egs. (2) will be assumed, giving for cell

n

Z (Mt —wk))-nk;sk =0 (8a)

Vk+le VnVn
Zv‘“l (VT = wk;) - n¥ Sk, - Stress= 0 (8b)

with V; the cell volumeS; j the area of facg andn; ; the normal pointing outwards of fage
The vectorsy; ; andw; ; denote respectively the fluid velocity and the grid velodityfacej of
celli. Again, the geometrical values (includivg, S;; andn; ;) correspond with the structural
calculation in the previous coupling iteration. The disization of the last term in Eq. (2b) is
not relevant for the remainder of the comparison so this ispecified.

Considering the Robin condition Eq. (7a), the fac(lsérfl - vv}‘J) -n; for facej = monT¥:!

becomes
(V:(Jr;”ll - W:(m) n:(m (5tu| mt Qim (Tgi m Tlﬁlm) n:(,m - V\)l(m) : n:(,m' (9a)
Substitution of Eq. (7b) and Eg. (7c) leads to
(Vi = W) - 1 = @i (T = T R) - e (9b)

The summations in Eqgs. (8) are subsequently split into a temmesponding with facg = mon
1"';;1 and the terms corresponding with the other facegsm not onl"';;l, giving

Z vk+1 n Sk

j#m
=—cximn!< (T'?lm T‘ﬁlm) MK Stim (10a)
Vk+lvk
Zv“*l vk+l ) nk;SK; — Stress
j#m
= —ai mv:(:—nl :<m ( f,im Tl?l':lr-n) n:fmsik,m' (1Ob)

3.2. Block Gauss-Seidel iterations with Dirichlet-Neumalecomposition and Interface Artifi-
cial Compressibility (GS-DN-IAC)
When solving the flow equations, GS-DN uses a Dirichlet bampdondition orl"';;l, given
by
VL = Uk (11)
The boundary conditions for the grid velocity and for theaustaral equations are identical to
those in Section 3.1. The IAC then adds the source terms

p:@r;"ll - pl m d(Uim - Nim)

A dorm Sk (12a)
K+l _ K o
—V:(+l p|,m - p|,m d (Uang)i r:|,m) S:(,m (12b)
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to the right-hand sides of Egs. (8), respectively, but onlgells adjacent to the fluid-structure
interface. The coefficient@i; - Ni.m) /dpim is similar tow. Its value is determined a priori and
calculated as explained in Section 4. Together with thetérsns of Egs. (8), these source terms
become a linear approximation for/("* — V") /At and @<+1VEL — vV /At [6].
Combination of interface conditions for the fluid velocityd. (7b)) and the grid velocity
(Eq. (11)) yields
Wk = sk n = ek (13)

As a result, the second term in the continuity equation Veeson the face that lies on the fluid-
structure interface, giving

Z Vk+1 n Sk

j=m
Bl = P d (Ui Mim)
= ' oS! 14
At dpi,m SI,I‘T] ( a)
vk+1vk AVA
+ V(MG - ) -k SE - Stress
j=m
k+1

=—V:(+lp|;1 _p|md(U|m nlm)Sk,m. (14b)

At dpim

3.3. Discussion
On the fluid-structure interface, the pressure is usuallghmarger than the viscous stresses.
If T¢ is simplified to—pl, Eqs. (10) become

Z vk+1 n Sk

j#m
= —Qim (p:(:‘nl -p m) S:(,m (15a)
VARAVARRVAVA
% + Z\,ﬁl (V:ijrl _ W.k,) Sk, - Stress
j#m
—Q;, ka+l (p:(:—nl - B m) (15b)

Hence, under the assumption of small viscous stresses omténface, Eq. (14a) and Eq. (15a)
are equal if
1 d(uim-ni m)

Aim=

At dpim

With that value ofy; m, the difference between Eq. (14b) and Eq. (15b) is that titefiand side
of the former contains the cell velocitdf‘f1 while the right-hand side of the latter contains the
face velocit ’,;11 This difference, however, vanishes as the grid size temdsrb.

As could aIready be seen from Eq. (7a), the coefficigptrelates a change in velocity of the
interface to a change in stress on the interface. If the petena; ,, (resp. dUim - Nim) /dpim)
is set so that it approximates the actual velocity/stressp(r displacement/pressure) relation of
the structural model, then an approximation for the stmattnodel is included into the flow
calculation. This implies that both GS-RN and GS-DN-IACddke fluid-structure interaction
into account while solving the flow equations, as opposed3elBl.

5
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4., Remarks

For the flow in a straight flexible tube, Fourier stability fsés has demonstrated that only
the source term in the continuity equation is required fet faonvergence of the GS-DN-IAC
iterations as long as the fluid velocity is lower than the wspeed [3]. Hence, only the source
term of Eq. (12a) is added to the continuity equation in [4—6]

In [1], an analytical expression for the coefficients obtained by considering a membrane
so that the structural equations can be written in the samme &s the Robin boundary condi-
tion. Moreover, an optimal value far derived from a Fourier analysis has been proposed in [9].
Conversely, the structural equations are solved twiceJingféch time with a different pressure
on the interface, followed by a finite difference approxiimatof d(um - Nim) /dpim. Both ap-
proaches are valuable. The choice of the technique to edéctiie coefficients is independent of
the choice between GS-RN and GS-DN-IAC.

Both GS-RN and GS-DN-IAC use a relation between the disptecd of a point on the
interface and the pressure in that same point. This is nobd gpproximation if the pressure at
that point causes a displacement of the entire structurereftre, both techniques are suitable
for atube where the radius of a tube segment is mainly detexariy the pressure in that segment
and less suitable for a cantilever beam where a pressuesetiffe between the top and the bottom
near the free end bends the entire beam.

5. Conclusions

GS-RN and GS-DN-IAC are two different implementations of ame concept, namely
including a local, linear approximation for the structupahaviour into the flow equations. To
include this linearized structural model, GS-DN-IAC vita the mass conservation in the fluid
cells adjacent to the fluid-structure interface during theping iterations (but not in the result)
while GS-RN uses a boundary condition. Additionally, GS-DRC neglects the viscous stresses
on the fluid-structure interface in this linearized struatunodel (but not in the result).
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