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Abstract. Constructive Analysis and Nonstandard Analysis are often char-
acterized as completely antipodal approaches to analysis. We discuss the pos-

sibility of capturing the central notion of Constructive Analysis (i.e. algorithm,

finite procedure or explicit construction) by a simple concept inside Nonstan-
dard Analysis. To this end, we introduce Ω-invariance and argue that it

partially satisfies our goal. Our results provide a dual approach to Erik Palm-

gren’s development of Nonstandard Analysis inside constructive mathematics.

1. Introduction: Two questions

When comparing Nonstandard Analysis and Constructive Analysis, it is hard
not to get blinded by the differences between the two. Indeed, the usual construc-
tion of the hyperreal field ∗R involves an ultrafilter on N, the existence of which
is justified by appealing to the full axiom of choice (Kanovei and Reeken, 2004).
The latter1 is well-known to imply the principle of excluded middle (Diaconescu,
1975), the original sin of classical logic according to constructivist (and intuintion-
ist) canon. Thus, the very basis of Nonstandard Analysis is seemingly rejected by
the constructivist.

Furthermore, Nonstandard Analysis also seems problematic at a more conceptual
level, from the constructivist point of view. Indeed, Errett Bishop, the founder of
Constructive Analysis (Bishop, 1967), famously derided Nonstandard Analysis for
its lack of ‘computational content’.

A more recent attempt at mathematics by formal finesse is non-
standard analysis. I gather that it has met with some degree of
success, whether at the expense of giving significantly less mean-
ingful proofs I do not know. My interest in non-standard analysis is
that attempts are being made to introduce it into calculus courses.
It is difficult to believe that debasement of meaning could be carried
so far. (Bishop, 1975, p. 513)

Ironically, Bishop was asked to review Keisler’s introduction to Nonstandard Anal-
ysis (Keisler, 1976). The final sentence of Bishop’s review sums up his views on
Nonstandard Analysis quite well.

Now we have a calculus text that can be used to confirm their
experience of mathematics as an esoteric and meaningless exercise
in technique. (Bishop, 1977, p. 208)
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It should be noted that Bishop’s views are not necessarily shared by other con-
structivists. For instance, Arend Heyting spoke highly of Abraham Robinson’s
Nonstandard Analysis (Heyting, 1973).

Despite this proverbial ‘rocky start’, there have been reconciliatory attempts
between the communities of Nonstandard and Constructive Analysis. In particu-
lar, a conference entitled Reuniting the antipodes was organized in Venice in 1999
to bring together the two communities (Schuster et al., 2001). However, in (Van
Oosten, 2006), the review of (Crosilla and Schuster, 2005), Van Oosten notes that
little ‘reunification’ had taken place. Nonetheless, he also suggests a notable excep-
tion: in (Palmgren, 2001), Erik Palmgren develops some Nonstandard Analysis in
a constructive system. Other results in this area include (Richman, 1981, p. 208),
(Moerdijk and Palmgren, 1997) and (Palmgren, 1996a; 1996b; 1997; 2000). It
should be noted that in the constructive approach to Nonstandard Analysis, objects
may have ‘strange’ (i.e. non-classical) behaviour. A good example is the presence
of nonzero nilpotent infinitesimals in certain constructive logical systems.

In this paper, we take the dual approach to the above: we investigate the pos-
sibility of formalizing basic notions from constructive mathematics inside classical
Nonstandard Analysis. For instance, the notion of algorithm is central to construc-
tive mathematics. Is there a definition in Nonstandard Analysis which captures this
notion? Similarly, as the connectives in constructive mathematics are intuitionistic
(Bridges, 1999, p. 96), do these have counterparts in Nonstandard Analysis?

For this paper, we limit ourselves to the following questions.

(1) Is there a (simple) notion in Nonstandard Analysis that captures Errett
Bishop’s notion of algorithm?

(2) How will we judge if the correspondence in the previous item is any good?

We first treat the second question in the next section. As noted in Remark 38
below, we do not attempt to capture the equally central constructive notion of
‘proof’ inside Nonstandard Analysis.

2. The second question

2.1. The illusive notion of algorithm. In this section, we formulate a partial
answer to the second question in Section 1, i.e. we formulate a criterion that allows
us to judge how good the correspondence is between Bishop’s notion of algorithm
and a potential (nonstandard) counterpart. Finding such a criterion is non-trivial,
as Bishop nowhere exactly defines the notion of algorithm. We first discuss the
various reasons for this omission.

First and foremost, by keeping the notion of algorithm vague, any result proved in
Constructive Analysis is also a theorem of classical mathematics (called ‘CLASS’),
of intuitionistic mathematics (called ‘INT’) and Russian constructive mathematics
(called ‘RUSS’). In other words, by not committing to a particular definition of
algorithm, Bishop’s ensures a greater generality for his Constructive Analysis. The
following quote by Douglas Bridges reflects this idea.

Although Bishop has been criticised for being too vague in his con-
cept of algorithm, by this very vagueness he left open the possibility
of interpreting his work within a variety of formal systems. Not only
is every theorem of BISH also a theorem of recursive constructive
mathematics - which is, roughly, recursive function theory devel-
oped with intuitionistic logic - but it is also a theorem of Brouwer’s
intuitionistic mathematics, and, perhaps more significantly, of clas-
sical mathematics. (Bridges, 1999, p. 2)
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A second reason for leaving the notion of algorithm vague may be found in (Bishop,
1985). Bishop argues that the ‘naive’ notion of algorithm is more basic and fun-
damental than e.g. the well-known notion of recursive function. Hence, we should
forego the identification of algorithm and recursive function. The following quote
by Bishop reflects this idea.

[The recursive function theorists] admit only sequence of integers or
rational numbers that are recursive (a concept we shall not define
here: see (Kleene, 1952) for details). Their reasons are, that the
concept is more precise than the naive concept of algorithm, that
every naively defined algorithm has turned out to be recursive,
and it seems unlikely we shall ever discover an algorithm that is
not recursive. This requirement that every sequence of integers
must be recursive is wrong on three fundamental grounds. First
and most important, there is no doubt that the naive concept is
basic, and the recursive concept derives whatever importance it
has from some presumption that every algorithm will turn out to
be recursive. (Bishop, 1985, p. 20)

Although Bishop has good reasons for leaving the notion of algorithm vague, the
fact of the matter is that we do not have a direct definition of this fundamental
entity. In this way, it seems difficult to judge whether any notion captures Bishop’s
notion of algorithm. Nonetheless, we do have access to an indirect definition of
algorithm, discussed now.

In his writings, Bishop lists a large number of principles he deems unacceptable
in his Constructive Analysis. We will refer to these principles as non-algorithmic
or non-constructive. A well-known example is the limited principle of omniscience,
which is an instance of the principle of excluded middle.

1. Principle (LPO). For every ϕ in ∆0, we have (∃n ∈ N)ϕ(n) ∨ (∀n ∈ N)¬ϕ(n).

As intuitionistic logic is used in Constructive Analysis (Bridges, 1999, p. 96),
LPO is interpreted as there is a finite procedure which decides the truth of any
existential statement. As such a procedure would allow us to decide the truth of
Goldbach’s conjecture (and a slew of other famous open problems in mathematics),
it seems highly unlikely that anyone will ever construct such a device. This is the
reason behind the rejection of LPO (and therefore the law of excluded middle)
in intuitionistic and constructive mathematics. Thus, by showing that a certain
mathematical theorem implies a non-algorithmic principle, we can show that this
theorem cannot be proved in Constructive Analysis. The reduction of a theorem
to a non-algorithmic principle is called a ‘Brouwerian counterexample’. We refer to
(Mandelkern, 1989) for an overview of the latter.

It is intuitively clear that, by considering a large number of non-algorithmic prin-
ciples and theorems, we obtain an indirect qualification of the notion of algorithm:
algorithms are those procedures that are strictly weaker than all non-algorithmic
techniques. Thus, if a given notion X captures Bishop’s primitive of algorithm, then
X should give rise to the same class of non-algorithmic principles. For instance, LPO
should also be non-algorithmic compared to X in the same way as it is for Bishop’s
primitive of algorithm. The same should hold for all non-algorithmic principles (in
the sense of Bishop) and we arrive at the following (preliminary) criterion.

For a formal notion X to capture Bishop’s primitive of algorithm,
all non-algorithmic principles should be interpreted as principles
not derivable using X.
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Note that this definition is not circular, as ‘non-algorithmic’ is defined as the finite
list of principles rejected in BISH. In order to work with this criterion, it is clear
that we need a good overview of a large number of non-algorithmic principles and
theorems, and their connections. Such is provided by the discipline Constructive
Reverse Mathematics, introduced in Section 2.2. Inspired by these results, we will
formulate a more detailed criterion.

2.2. Introducing Constructive Reverse Mathematics. In this section, we
sketch an overview of the discipline Constructive Reverse Mathematics (CRM).
This survey of CRM will allow us to refine the criterion formulated in the previous
section. In order to describe CRM, we first need to briefly consider Errett Bishop’s
Constructive Analysis.

Inspired by L.E.J. Brouwer’s famous foundational program of intuitionism (van
Heijenoort, 1967), Bishop initiated the redevelopment of classical mathematics with
an emphasis on algorithmic and computational results. In his famous monograph
Foundations of Constructive Analysis (Bishop, 1967), he lays the groundwork for
this enterprise. In honour of Bishop, the informal system of Constructive Analysis
is now called ‘BISH’. In time, it became clear to the practitioners of Constructive
Analysis that intuitionistic logic provides a suitable logical basis for BISH:

Now, our experience shows that when we do constructive mathe-
matics, we are actually doing mathematics with intuitionistic logic.
The desire for algorithmic interpretability forces us to use intu-
itionistic logic, and that restriction of our logic seems to result,
inevitably, in arguments that are entirely algorithmic in character.
(Douglas Briges, (Bridges, 1999, p. 97); See also (Bridges and Vı̂ţă,
2006, p. 7).)

In (Richman, 1990), Fred Richman has expressed a similar opinion. Hence, the
meaning of the logical connectives in BISH differs from the ‘usual’ one in classical
mathematics. The following interpretation of the logical connectives may be found
in (Bridges, 1999, p. 96) and (Bridges and Vı̂ţă, 2006, p. 8).

2. Definition (Connectives in BISH).

(1) The disjunction P ∨Q: we have an algorithm that outputs either P or Q,
together with a proof of the chosen disjunct.

(2) The conjunction P ∧Q: we have both a proof of P and a proof of Q.
(3) The implication P → Q: by means of an algorithm we can convert any

proof of P into a proof of Q.
(4) The negation ¬P : assuming P , we can derive a contradiction (such as

0 = 1); equivalently, we can prove P → (0 = 1).
(5) The formula (∃x)P (x): we have (i) an algorithm that computes a certain

object x, and (ii) an algorithm that, using the information supplied by the
application of algorithm (i), demonstrates that P (x) holds.

(6) The formula (∀x ∈ A)P (x): we have an algorithm that, applied to an object
x and a proof that x ∈ A, demonstrates that P (x) holds.

Evidently, the notion of algorithm is central to Constructive Analysis. We refer
the reader to (Bishop, 1967), (Bishop and Bridges, 1985) and (Bridges and Vı̂ţă,
2006) for a more detailed introduction to the latter.

We now introduce Constructive Reverse Mathematics (CRM) and list some of its
results. We follow Hajime Ishihara’s survey paper (Ishihara, 2006). In effect, CRM
is a spin-off from Harvey Friedman’s well-known foundational program Reverse
Mathematics. In the latter, the aim is to find the minimal axioms that prove a
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certain theorem of ordinary2 mathematics. In many cases, the theorem is also
equivalent to the minimal axioms, where this equivalence is proved in the weak
‘base theory’ RCA0. Stephen Simpson’s monograph Subsystems of Second-order
Arithmetic is an excellent introduction to Reverse Mathematics (Simpson, 2009).
In CRM, the base theory is (inspired by) BISH and the aim is to find the minimal
axioms that prove a certain non-constructive theorem. As in Friedman-Simpson
Reverse Mathematics, we also observe many equivalences between theorems and
the associated minimal axioms in CRM.

We now provide an overview of important CRM results, based on Hajime Ishi-
hara’s survey paper (Ishihara, 2006). These results suggest that the non-constructive
principles exhibit a lot of logical structure. Indeed, although all these principles are
rejected in BISH, some have a higher non-constructive content than others. Thus,
CRM provides (or aims to provide) an exact classification of the non-constructive
content of various well-known principles and theorems. As we will observe, this
classification exhibits a lot of logical structure.

First of all, recall the definition of the arithmetical hierarchy.

3. Definition. For k ≥ 0, we have the following.

(1) A formula is bounded, if every occurrence of quantifiers is of the form
(∃n ≤ t(x⃗)) and (∀m ≤ s(y⃗)), where s and t are terms.

(2) A formula is ∆0 (or Σ0, or Π0) if it is bounded and has no occurrences of
infinite numbers or the predicate ‘is infinite’.

(3) A formula is Πk+1 if it has the form (∀n ∈ N)ϕ(n) with ϕ ∈ Σk.
(4) A formula is Σk+1 if if has the form (∃n ∈ N)ϕ(n) with ϕ ∈ Πk.

Next, we consider the following theorem regarding LPO.

4. Theorem. In BISH, the following are equivalent.

(1) LPO: P ∨ ¬P (P ∈ Σ1).
(2) LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0)).
(3) MCT: (The monotone convergence theorem) Every monotone bounded se-

quence of real numbers converges to a limit.
(4) CIT: (The Cantor intersection theorem).

By Definition 2, all connectives are intuitionistic and hence, the meaning of
the items in the previous theorem differs a lot from that in the classical framework.
Indeed, item (2) is read, in BISH, as there is a finite procedure to decide between x >
0 and its negation. As ‘x > 0’ is an existential statement in BISH (See Definition 19
below or (Bishop, 1967, Definition 3)), LPR seems to be a non-trivial principle. We
will discuss LPR and MCT in more detail in Sections 3.2 and 3.1.

Next, we list equivalences of LLPO, the lesser limited principle of omniscience

5. Principle (LLPO). For every P,Q in Σ1, we have ¬(P ∧Q) → ¬P ∨ ¬Q.

Note that LLPO is an instance of De Morgan’s law, and is rejected in BISH.
Indeed, LLPO states that if a proof of P ∧Q leads to contradiction, then we can de-
cide whether P leads to contradiction or Q leads to contradiction, and the existence
of such a decision procedure is highly doubtful.

6. Theorem. In BISH, the following are equivalent.

(1) LLPO.
(2) LLPR: (∀x ∈ R)[¬(x > 0) ∨ ¬(x < 0)].
(3) NIL: (∀x, y ∈ R)(xy = 0→ x = 0 ∨ y = 0).

2See (Simpson, 2009, p. 2) for a description of ‘ordinary mathematics’.
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(4) CLO: For all x, y ∈ R with ¬(x < y), {x, y} is a closed subset of R.
(5) IVT: a version of the intermediate value theorem.
(6) WEI: a version of the Weierstraß extremum theorem.

We will investigate the principle LLPR in greater detail in Section 3.4.

As the last of the omniscience principles, we consider WLPO, the weaker limited
principle of omniscience.

7. Principle (WLPO). For every P in Σ1, we have ¬P ∨ ¬¬P .

Note that in BISH, the principle of ‘double negation elimination’ is not available:
the formula Q does imply ¬¬Q, but not the other way around. Hence, we observe
that WLPO is weaker than LPO. We have the following theorem.

8. Theorem. In BISH, the following are equivalent.

(1) WLPO.
(2) WPR: (∀x ∈ R)[¬(x > 0) ∨ ¬¬(x > 0)].
(3) DISC: A discontinuous function from NN to N exists.

Finally, we consider several versions of Markov’s principle, named after the Rus-
sian mathematician Andrey Markov (Jr.). The status of Markov’s principle is
ambiguous in constructive mathematics. Although it is accepted in the Russian
constructivist school, it is rejected in Bishop’s Constructive Analysis and in in-
tuitionistic mathematics. An interesting discussion of this topic may be found in
(Bridges and Vı̂ţă, 2006, p. 10-11).

First of all, we consider the usual version of Markov’s principle, a version of
double-negation elimination.

9. Principle (MP). For every P in Σ1, we have ¬¬P → P .

We have the following theorem.

10. Theorem. In BISH, the following are equivalent.

(1) MP.
(2) MPR: (∀x ∈ R)[¬¬(x > 0) → x > 0].
(3) EXT: (The strong extensionality theorem).

Next, we consider a weaker principle: the disjunctive version of Markov’s prin-
ciple. The latter is also a (complicated) instance of De Morgan’s law.

11. Principle (MP∨). For every P,Q in Σ1, we have ¬(¬P ∧ ¬Q) → ¬¬P ∨ ¬¬Q.

12. Theorem. In BISH, the following are equivalent.

(1) MP∨.
(2) MPR∨: (∀x ∈ R)[¬¬(x ≠ 0) → ¬¬(x > 0) ∨ ¬¬(x < 0)].
(3) CLO∨ ∶ For all x, y ∈ R with ¬¬(x < y), {x, y} is a closed subset of R.

Note that ‘x ≠ y’ is short for the existential statement ∣x − y∣ > 0 and is stronger
than the negative statement ¬(x = y).

Finally, we consider a weaker principle: the weak version of Markov’s principle.

13. Principle (WMP). For every decidable P , if for every decidable Q,

¬¬[(∃n)Q(n)] ∨ ¬¬[(∃n)(P (n) ∧ ¬Q(n))],
this implies (∃n)P (n).

We have the following theorem.

14. Theorem. In BISH, the following are equivalent.
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(1) WMP.
(2) WMPR: (∀x ∈ R)([(∀y ∈ R)(¬¬(0 < y) ∨ ¬¬(y < x))] → x > 0).

The following theorem summarizes the relations between the above principles.

15. Theorem. The following hold in BISH.

(1) LPO↔WLPO +MP.
(2) WLPO→ LLPO.
(3) MP↔MP∨ +WMP.
(4) LLPO→MP∨.

Note that we only have selected a number of equivalences and theorems from
Ishihara’s survey paper (Ishihara, 2006). For instance, we have not considered
the famous fan theorem. Nonetheless, even with this partial overview, we may
conclude that the non-algorithmic principles exhibit a lot of logical structure: we
observe ‘degrees’ of non-constructiveness among the non-constructive principles,
rather than just one set of ‘equally non-constructive’ principles.

2.3. An answer to the second question. In the previous paragraph, we have
observed that the non-algorithmic principles in Constructive Analysis exhibit a lot
of structure. This observation allows us to refine the criterion by which we judge
whether a certain notion captures Bishop’s primitive of algorithm. Our preliminary
criterion from Section 2 was the following.

For a formal notion X to capture Bishop’s primitive of algorithm,
all non-algorithmic principles should be interpreted as principles
not derivable using X.

Our final criterion is as follows.

For a formal notion X to capture Bishop’s primitive of algorithm,
all non-algorithmic principles should be interpreted as principles
not derivable using X. Moreover, the interpretations of the non-
algorithmic principles satisfy the same implications and equiva-
lences as their originals in Constructive Reverse Mathematics.

By the previous criterion, a certain formal notion X captures Bishop’s notion of
algorithm if we can use it to ‘reverse engineer’ the results of Constructive Reverse
Mathematics. For the rest of the paper, we attempt to find such a notion X in
Nonstandard Analysis. This notion will give rise to a certain interpretation of
Constructive Analysis in Nonstandard Analysis. In Remark 29, we discuss the
exact nature of this interpretation. In two words, the main goal of the rest of
this paper is as follows: We define a notion called Ω-invariance inside Nonstandard
Analysis, which is intended to capture Bishop’s notion of algorithm. Rather than
providing a ‘literal’ translation from BISH to Nonstandard Analysis, we show that
Ω-invariance gives rise to the same kind of Reverse Mathematics results inside
Nonstandard Analysis.

3. The first question

In this section, we explore the possibility of capturing Bishop’s notion of algo-
rithm by a simple notion from Nonstandard Analysis. For expository reasons, our
presentation remains at the informal level. The reader only needs to be acquainted
with the very basic notions of Nonstandard Analysis.

For the rest of this paper, we take N = {0,1,2, . . .} to denote the set of natural
numbers, which is extended to ∗N = {0,1,2, . . . , ω′, ω′ + 1, . . .}, the set of hypernat-
ural numbers, with ω′ /∈ N. The set Ω = ∗N ∖ N consists of the infinite numbers,
whereas the natural numbers are called finite. We tacitly assume that the domain
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of functions f ∶ N → N can be extended to ∗N. We reason in an unspecified3 sys-
tem of Nonstandard Analysis which does not involve the transfer principle Σ1-TR
defined below, or stronger principles.

3.1. The monotone convergence theorem. We consider the following Brouwe-
rian counterexample by Bishop concerning the monotone convergence theorem for
sequences of reals.

16. Example (From (Bishop, 1985, p. 6)). We represent the terms of the sequence
[in the monotone convergence theorem] by vertical marks marching to the right,
but remaining to the left of the bound B.

-. . . B

The classical intuition is that the sequence gets cramped, because there are in-
finitely many terms, but only a finite amount of space to the left of B. Thus, it has
to pile up somewhere. That somewhere is its limit L.

-L B

The constructivist grants that some sequences behave in precisely this way. I call
those sequences stupid. Let me tell you what a smart sequence would do. It will
pretend to be stupid, piling up at a limit, (in reality a false limit) Lf . Then when
you have been convinced it really is piling up at Lf , it will take a jump and land
somewhere to the right!

-Lf B
55
. . .

jump

With this informal example, Bishop intends to cast doubt on the possibility that
a finite procedure can compute the limit of a bounded increasing sequence. In
other words, the example illustrates that it is impossible that we can prove MCT
in BISH.

To see that the monotone convergence theorem actually implies LPO in BISH,
consider the following sequence,

zn ∶=
⎧⎪⎪⎨⎪⎪⎩

wn (∀m ≤ n)ψ(m)
w +∑n

i=1
w+B
2i

otherwise
, (1)

where ψ is ∆0 and wn is an increasing sequence below B, converging to w < B. By
definition, zn converges to w if and only if (∀n ∈ N)ψ(n). By MCT, we can decide
if zn converges to w or not. By the definition of zn in (1), this allows us to decide
if (∃n ∈ N)¬ψ(n) or not, i.e. we have LPO. Moreover, the usual proof of MCT can
be used to prove the implication LPO→MCT. Hence, MCT is equivalent to LPO.

In light of the equivalence between MCT and LPO, the following two remarks
are important here.

First of all, in (Sanders, 2011), it is shown that a certain (complicated) version
of MCT from Nonstandard Analysis is equivalent to the following principle, to be
compared to LPO.

3The reader may check that a version of Nonstandard Analysis based on I∆0 + exp suffices for
our purposes. In general, a nonstandard version of RCA0 (Simpson, 2009) seems to suffice.
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17. Principle (Σ1-TR). For all ϕ ∈ ∆0, we have

(∃n ∈ N)ϕ(n) ∨ (∀n ∈ ∗N)¬ϕ(n). (2)

The previous principle is the transfer principle of Nonstandard Analysis, limited
to Σ1-formulas. Note that Σ1-TR is a kind of ‘hyperexcluded’ middle: it excludes
the possibility that

(∀n ∈ N)ψ(n) ∧ (∃n ∈ ∗N)¬ψ(n), (3)

for any ψ ∈ ∆0. Moreover, in (Moerdijk and Palmgren, 1997), it is shown that the
full transfer principle implies the principle of excluded middle in intuitionistic logic.
Hence, we suspect there to be some connection between Σ1-TR and LPO.

Secondly, in the absence of Σ1-TR, we cannot exclude that (3) holds for some
ψ ∈ ∆0. In this case, the sequence zn in (1) has exactly the behaviour depicted
in Example 16. Indeed, zn seems to converge to w for any finite n ∈ N, but at
some point, zn jumps over w. Hence, there seems to be a connection between the
standard version of MCT and Σ1-TR.

In the following paragraph, we investigate these -admittedly vague- connections
further by studying another famous principle equivalent to LPO. We finish this
paragraph with a remark on Σ1-TR.

18. Remark. We tacitly assumed that parameters x⃗ of natural numbers are allowed
in ϕ in (2). Written out in full, the latter formula thus reads, for fixed k ∈ N,

(∀x⃗ ∈ Nk)[(∃n ∈ N)ϕ(n, x⃗) ∨ (∀n ∈ ∗N)¬ϕ(n, x⃗)].
For the rest of this paper, we will assume that such parameters are allowed every-
where. However, we usually omit parameters for aesthetic reasons.

3.2. The constructive continuum. In this paragraph, we study Brouwer’s well-
known theorem that the intuitionistic continuum cannot be split in two parts (van
Heijenoort, 1967, p. 446). To this end, we need some definitions concerning real
numbers in Constructive Analysis.

19. Definition.

(1) A real number x is a sequence qk ∶ N→ Q such that

(∀n,m ∈ N)(∣qm − qn∣ < 1
m
+ 1

n
). (4)

(2) We write ‘x > 0’ if (∃k ∈ N)(qk > 1
k
), and ‘x < 0’ if (∃k ∈ N)(qk < − 1

k
).

(3) We write ‘x ≥ 0’ if (∀k ∈ N)(qk ≥ − 1
k
), and ‘x ≤ 0’ if (∀k ∈ N)(qk ≤ 1

k
).

(4) We write ‘x = 0’ if x ≤ 0 ∧ x ≥ 0.

Thus, in Constructive Analysis, a real number is a Cauchy sequence of rational
numbers which converges quickly. The usual operations + and × can be defined
easily on the real numbers (Bishop, 1967, Definition 2).

Now consider the following principle.

20. Principle (LPR). (∀x ∈ R)(x > 0 ∨ ¬(x > 0)).

With the above definition, it is clear that LPR has the same syntactical form
as LPO: they both express the existence of a decision procedure for (certain) Σ1-
formulas and their negations. By (Ishihara, 2006, Theorem 1), LPO and LPR
are indeed equivalent. Thus, LPR is rejected in Constructive Analysis, and, by
Definition 2, there is indeed no way to (constructively) split the continuum in the
two sets (−∞, x0] and [x0,+∞), for any x0 ∈ R.

We now study the connection between Σ1-TR and LPR. The latter expresses
that we can decide, by means of a finite procedure, whether x > 0 holds or not.
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Now, if Σ1-TR is available, then the existential formula x > 0 is equivalent to the
formula (∃k ≤ ω)(qk > 1

k
), for any choice of ω ∈ Ω. As the latter is a bounded

formula, it is easy to verify whether it holds. Thus, we observe that if Σ1-TR is
available, then we can easily judge whether x > 0 holds or not (modulo a procedure
to decide bounded formulas). Similarly, if we have (∃k ≤ ω)(qk > 1

k
) for all ω ∈ Ω,

then we obtain, by underflow, (∃k ∈ N)(qk > 1
k
), i.e. x > 0.

In the previous paragraph, we observed that Σ1-TR implies a version of LPR:
given the former principle, we can decide if x > 0 or ¬(x > 0) by considering
(∃k ≤ ω)(qk > 1

k
). However, the most important observation to be made is that

the choice of ω in the latter formula does not matter: by Σ1-TR, the formula
(∃k ≤ ω)(qk > 1

k
) is equivalent to (∃k ∈ N)(qk > 1

k
), for any choice of ω ∈ Ω.

Finally, we note that Σ1-TR also yields a way to decide Σ1-formulas. Indeed,
in the same way as in the previous paragraphs, we have that (∃n ∈ N)ϕ(n) is
equivalent to (∃n ≤ ω)ϕ(n), for any choice of ω ∈ Ω, if Σ1-TR is available. Thus,
Σ1-TR provides a certain decision procedure for Σ1-formulas, which is similar to
the content of LPO.

In this paragraph, we obtained a more concrete connection between LPO and
Σ1-TR. Indeed, we observed that both give rise to a certain decision procedure
for Σ1-formulas. However, the most important observation was that, in the case
of Σ1-TR, the decision procedure does involve an infinite number ω, but that the
procedure does not depend of the choice of ω ∈ Ω.

3.3. Turing machines and independence. In the previous paragraph, we hinted
at a certain -still vague- notion of independence as the key to the connection between
Σ1-TR and LPO. To make this notion more precise, we now study a concrete
example of computabilty: the Turing machine. We refer to (Soare, 1987) for an
introduction to the latter.

By (Soare, 1987, Theorem 2.2, p.64), the membership relation of a set A may be
decided by a Turing machine, if and only if A is ∆1, i.e. there are ϕ1, ϕ2 ∈ ∆0, s.t.

A = {m ∈ N ∶ (∃n1 ∈ N)ϕ1(n1,m)} = {m ∈ N ∶ (∀n2 ∈ N)ϕ2(n2,m)}. (5)

We now show that ∆1-sets satisfy the following very concrete independence condi-
tion.

21. Theorem. For every ∆1-set A ⊂ N, there are N × N → N-functions pA(n,m)
and qA(n,m) such that, for any fixed ω ∈ Ω, we have

(∀k ∈ N)[k ∈ A↔ pA(k,ω) < qA(k,ω)]. (6)

Proof. Assume A is ∆1, i.e. we have (5) for some ϕ1, ϕ2 in ∆0. Define pA(n,m) as
the least n1 ≤m such that ϕ1(n1, n), if such exists and m otherwise. Let qA(n,m)
be the least n2 ≤ m such that ¬ϕ2(n2, n) if such exists and m otherwise. We now
prove that pA and qA indeed satisfy (6).

First of all, fix ω ∈ Ω. For k ∈ N, if k ∈ A, then pA(k,ω) is finite and qA(k,ω) is
infinite, by (5). In particular, we have pA(k,ω) < qA(k,ω). Now suppose there is
some k0 ∈ N such that pA(k0, ω) < qA(k0, ω) and k0 /∈ A. By (5), we have (∀n1 ∈
N)¬ϕ1(n1,m0) and, by definition, the number pA(k0, ω) must be infinite. Similarly,
the number qA(k0, ω) must be finite. However, this implies pA(k0, ω) ≥ qA(k0, ω),
which yields a contradiction. Thus, we have k ∈ A ↔ pA(k,ω) < qA(k,ω), for all
k ∈ N. It is clear that we obtain the same result for a different choice of ω ∈ Ω. �
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By the previous theorem, for every set A ⊂ N in ∆1, there is a formula ψ in ∆0

such that, for any fixed ω ∈ Ω, we have

(∀k ∈ N)[k ∈ A↔ ψ(k,ω)].

In other words, the set A is fully described by a simple formula ψ(n,ω). Moreover,
the description involves an infinite number ω, but is independent of the choice of
ω ∈ Ω. Thus, we have found a concrete independence property which captures
the Turing computable sets. Motivated by this results, we introduce the following
definition.

22. Definition. Let ψ(n,m) be ∆0 and fix ω ∈ Ω. Then ψ(n,ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)(ψ(n,ω) ↔ ψ(n,ω′)). (7)

For f ∶ N ×N→ N, the function f(n,ω) is called Ω-invariant, if

(∀n ∈ N)(∀ω,ω′ ∈ Ω)(f(n,ω) = f(n,ω′)).

The following theorem shows that the (truth) value of an Ω-invariant object is
already determined at some finite stage.

23. Theorem. For every Ω-invariant formula ψ(n,ω), we have

(∀n ∈ N)(∃m0 ∈ N)(∀m,m′ ∈ ∗N)[m,m′ ≥m0 → ψ(n,m) ↔ ψ(n,m′)]. (8)

For every Ω-invariant function f(n,ω), we have

(∀n ∈ N)(∃m0 ∈ N)(∀m,m′ ∈ ∗N)[m,m′ ≥m0 → f(n,m) = f(n,m′)]. (9)

In each case, the number m0 can be computed by an Ω-invariant function.

Proof. This proof requires the techniques underflow and overflow from Nonstan-
dard Analylsis, available even in very weak systems of Nonstandard Analysis (Im-
pens and Sanders, 2008). For expository reasons, we do not go into details. �

In light of Theorems 21 and 23, it seems justified to claim that Ω-invariance
(partially) captures the notion of ‘algorithm’ and ‘finite procedure’. We will refer
to Ω-invariant functions and formulas as ∗-computable functions, ∗-algorithms, ∗-
finite procedures, ∗-decision procedures, etc., to avoid possible confusion with the
original nomenclature.

3.4. Reverse engineering Constructive Reverse Mathematics. In this sec-
tion, we use the notion of ∗-algorithm to obtain results similar to Theorem 4, inside
Nonstandard Analysis. The theorems in these section are proved in an unspecified4

system of Nonstandard Analysis which does not involve the transfer principle Σ1-
TR or stronger principles.

We first prove the following theorem.

24. Theorem. Given Σ1-TR, a ∗-algorithm can decide which disjunct holds in

(∃n ∈ N)ϕ(n, x⃗) ∨ (∀n ∈ ∗N)¬ϕ(n, x⃗), (x⃗ ∈ Nk, ϕ ∈ ∆0) (10)

i.e. there is an Ω-invariant formula ψ(x⃗, ω) such that

(∀x⃗ ∈ Nk)(ψ(x⃗, ω) → (∃n ∈ N)ϕ(n, x⃗) ∧ ¬ψ(x⃗, ω) → (∀n ∈ ∗N)¬ϕ(n, x⃗)). (11)

4The reader may check that a version of Nonstandard Analysis based on I∆0 + exp suffices for
our purposes. In general, a nonstandard version of RCA0 (Simpson, 2009) suffices.
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Proof. By Σ1-TR, the formula (∃n ∈ N)ϕ(n, x⃗) is equivalent to (∃n ≤ ω)ϕ(n, x⃗),
for any fixed ω ∈ Ω and x⃗ ∈ Nk. Also, if (∀n ≤ ω)¬ϕ(n, x⃗), then (∀n ∈ N)¬ϕ(n, x⃗),
and we obtain (∀n ∈ ∗N)¬ϕ(n, x⃗), by Σ1-TR.

We define the function f(x⃗,m) as follows.

f(x⃗,m) =
⎧⎪⎪⎨⎪⎪⎩

1 If (∃n ≤m)ϕ(n, x⃗)
0 If (∀n ≤m)¬ϕ(n, x⃗)

.

By the previous paragraph of the proof, we have

(∃n ∈ N)ϕ(n, x⃗) ↔ f(x⃗, ω) = 1 and (∀n ∈ ∗N)¬ϕ(n, x⃗) ↔ f(x⃗, ω) = 0.

for any fixed ω ∈ Ω and x⃗ ∈ Nk. In particular, this implies that f(x⃗, ω) is Ω-invariant,
and we have found a ∗-algorithm to decide (10), i.e. we have (11). �

Recall that LPO is interpreted in Constructive Analysis as there is an algorithm
to decide whether (∃n ∈ N)ϕ(n), or its negation, holds. Although the previous
theorem is a step in the right direction, formula (10) is not quite the same as the
disjunction in LPO. The following definitions (inside Nonstandard Analysis) will
make (10) look more like LPO.

25. Definition. [∗-disjunction] The formula A⋎B is short for the statement There
is an Ω-invariant formula ψ(x⃗, ω) such that

(∀x⃗ ∈ Nk)(ψ(x⃗, ω) → A(x⃗) ∧ ¬ψ(x⃗, ω) → B(x⃗)). (12)

Note that A⋎B indeed implies A∨B. In addition, there is an Ω-invariant formula
which tells us which disjunct of A ∨B holds. Hence, A ⋎B indeed expresses There
is a ∗-algorithm that decides which disjunct of A ∨B holds.

26. Definition. [∗-negation] For ϕ in ∆0, the formula ⨼[(∃n ∈ N)ϕ(n)] is defined
as (∀n ∈ ∗N)¬ϕ(n) and the formula ⨼[(∀n ∈ N)ϕ(n)] is defined as (∃n ∈ ∗N)¬ϕ(n).

Note that blocks of existential (resp. universal) quantifiers can be combined into
one existential (resp. universal) quantifier. Of course, it is possible to define ∗-
negation in full generality, but this would lead us too far.

The newly introduced connectives will also be called ‘∗-connectives’. The previ-
ous definitions yield the following principle, to be compared to LPO.

27. Principle (LPO). For every ϕ ∈ ∆0, we have (∃n ∈ N)ϕ(n)⋎⨼[(∃n ∈ N)ϕ(n)].

The following remark shows that the ∗-negation is not just an aesthetic device,
but behaves like its intuitionistic counterpart.

28. Remark. In intuitionistic logic, ¬[(∃n ∈ N)ϕ(n)] implies the universal formula
(∀n ∈ N)¬ϕ(n), but ¬[(∀n ∈ N)ϕ(n)] is weaker than the existential formula (∃n ∈
N)¬ϕ(n). By Definition 2, the intuitive justification of this asymmetry is that, even
if it is impossible that ϕ(n) holds for all n ∈ N, this does not provide a method
to compute a counterexample. Similarly, ⨼[(∃n ∈ N)ϕ(n)] implies (∀n ∈ N)¬ϕ(n),
but ⨼[(∀n ∈ N)ϕ(n)] is weaker than the existential formula (∃n ∈ N)¬ϕ(n). The
latter formula can be stated as there is a ∗-algorithm that computes n0 ∈ N such that
¬ϕ(n0). Indeed, if (∃n ∈ N)¬ϕ(n), then (µn ≤ ω)¬ϕ(n) computes the least such
number, in an Ω-invariant way. Furthermore, if there is a proof of the universal
formula (∀n ∈ N)ϕ(n) in Nonstandard Analysis, then -under certain conditions-
there is also a proof of (∀n ∈ ∗N)ϕ(n). Such results are called conservation results.
See e.g. (Avigad and Helzner, 2002, Theorem 4.4) for a textbook example. This
partially explains the definition of ∗-negation.
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At this point, we believe we should discuss the exact nature of the interpretation
we are establishing between Constructive and Nonstandard Analysis.

29. Remark. In this paper, we will not obtain a literal translation of intuitionistic
logic (or Constructive Analysis) inside Nonstandard Analysis. Moreover, we do
not provide some version of the well-known realizability interpretation. Our aim
is similar, but different: we define new connectives (∗-disjunction and ∗-negation)
which are based on Ω-invariance in the same way the intuitionistic connectives are
based on the primitive notion of algorithm. The definitions of these new connectives
are inspired by their intuitionistic counterparts, but, a priori, that is the only
connection.

After introducing these new objects, we will translate a number of well-known
principles (like LPO and LLPO) from CRM to Nonstandard Analysis, using the
∗-connectives. For the most part, this ‘translation’ consists in replacing the in-
tuitionistic connectives with their nonstandard counterpart, i.e. the translation is
usually purely mechanical. We prove that these translated principles (called LPO
and LLPO) satisfy the same equivalences in Nonstandard Analysis as their coun-
terparts in CRM do. Whenever a mechanical translation was not possible for a
given principle W in CRM (e.g. for the principle DISC or Π1-LEM), we have used
the meaning of W in BISH to obtain a reasonable counterpart W of W in Non-
standard Analysis. It is beyond the scope of this paper to discuss examples of the
latter sort. However, in a sense, the translation is both syntactic and semantic in
nature.

Hence, the main goal of this paper becomes clear: We define a notion called
Ω-invariance inside Nonstandard Analysis, which is intended to capture Bishop’s
notion of algorithm. Rather than providing a ‘literal’ translation from BISH to
Nonstandard Analysis, we show that Ω-invariance gives rise to the same kind of
Reverse Mathematics results inside Nonstandard Analysis.

We have the following theorem.

30. Theorem. The principle LPO is equivalent to Σ1-TR.

Proof. The reverse implication follows immediately from Theorem 24 and Defini-
tions 25 and 26. For the forward implication, let ϕ be as in Σ1-TR. By LPO, one
of the disjuncts of

(∃n ∈ N)ϕ(n) ∨ (∀n ∈ ∗N)¬ϕ(n)
must hold. This immediately implies Σ1-TR. �

By Theorem 4, LPO is equivalent to LPR. The latter principle closely resembles
the following one.

31. Principle (LPR). (∀x ∈ R)[x > 0 ⋎ ⨼(x > 0)].

By Definitions 25 and 26, LPR is the statement there is a ∗-decision procedure
for x > 0 and ⨼(x > 0). This interpretation is similar to that of LPR in Constructive
Analysis. We now prove the equivalence between LPO and LPR, to be compared
to Theorem 4.

32. Theorem. The principle LPO is equivalent to LPR.

Proof. For the forward implication, recall that x > 0 is defined as (∃k ∈ N)(qk > 1
k
)

and that ⨼(x > 0) is defined as (∀k ∈ ∗N)(qk ≤ 1
k
). By Theorem 30, we may use

Σ1-TR. By the latter, if (∀k ∈ N)(qk ≤ 1
k
) then also ⨼(x > 0) follows. Moreover, the

number x is a real, i.e. we have (4). By Σ1-TR, we obtain

(∀n,m ∈ ∗N)(∣qm − qn∣ < 1
m
+ 1

n
).
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Thus, for infinite ω,ω′, the difference between qω and qω′ is only infinitely small.
By this observation, in case x = 0 is false, it suffices to check if qω > 0 or if qω < 0 to
know whether x > 0 or x < 0. Given Σ1-TR, x = 0 is equivalent to (∀k ≤ ω)(∣qk ∣ ≤ 1

k
),

for any fixed ω ∈ Ω.

Finally, we define the ∗-algorithm which decides between x > 0 and ⨼(x > 0).
Fix some ω ∈ Ω. First, check if (∀k ≤ ω)(∣qk ∣ ≤ 1

k
). If this formula holds, then we

have x = 0 and return ‘⨼(x > 0)’. Otherwise, check if qω > 0. If this formula holds,
return ‘x > 0’. Otherwise, return ‘⨼(x > 0)’.

This ∗-algorithm is easily brought in the form (12). Indeed, the formula ψ(ω) ≡
[(∀k ≤ ω)(∣qk ∣ ≤ 1

k
) ∨ (qω < 0 ∧ (∃k ≤ ω)(∣qk ∣ > 1

k
))] is Ω-invariant. Hence,

¬ψ(ω) → x > 0 ∧ ψ(ω) → ⨼(x > 0).

For the reverse implication, assume LPR and let ϕ be as in Σ1-TR and assume
ϕ(n) holds for all n ∈ N. Suppose there is an ω ∈ Ω such that ¬ϕ(ω) and let ω0 be
the least of these. We first define the function gϕ(i) as follows

gϕ(i) =
⎧⎪⎪⎨⎪⎪⎩

1 (∃n ≤ i)¬ϕ(n)
0 (∀n ≤ i)ϕ(n)

.

Secondly, hϕ(i) is the least n ≤ i such that ¬ϕ(n), if such exists, and i otherwise.
Finally, we define the real x as follows

qk =
k

∑
i=0

1

2i−hϕ(i) gϕ(i).

Note that x satisfies (4), i.e. that x is indeed a real number.

As qk = 0 for k ∈ N, we cannot have x > 0. Similarly, as qm = ∑ω0−m
i=0

1
2i

for
m ≥ ω0, we cannot have ⨼(x > 0). However, we have just showed that both x > 0
and ⨼(x > 0) are impossible. This contradicts LPR and we conclude that there
cannot be ω ∈ Ω such that ¬ϕ(ω). Together with our assumption that (∀n ∈ N)ϕ(n),
the principle LPR thus implies (∀n ∈ ∗N)ϕ(n). From this, Σ1-TR follows easily
and, by Theorem 30, LPO is obtained. �

The previous theorem is our first step towards ‘reverse engineering’ Construc-
tive Reverse Mathematics. We now obtain a result similar to Theorem 32 for the
principles LLPO and LLPR. By Definitions 25 and 26, the latter correspond to the
following principles in Nonstandard Analysis.

33. Principle (LLPO). For every P,Q in Σ1, we have ⨼(P ∧Q) → ⨼P ⋎ ⨼Q.

34. Principle (LLPR). (∀x ∈ R)(⨼(x > 0) ⋎ ⨼(x < 0)).

Before we prove the equivalence between the previous principles, we need to
consider the following remark regarding the constructive continuum.

35. Remark. In (Bridges, 1999, Axiom set R2), we find ¬(x > y∧x < y) among the
axioms for the constructive continuum. Furthermore, Bishop states that this for-
mula, though negative in nature, is provable in his Constructive Analysis (Bishop,
1967, p. 21). Thus, it seems justified to tacitly assume that ⨼(x > 0 ∧ x < 0) holds
for all real numbers. We need this property in the proof of Theorem 36.

We have the following theorem.

36. Theorem. The principles LLPO and LLPR are equivalent.
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Proof. We first study the exact content of LLPO. Consider the following formula

⨼[(∃n ∈ N)ϕ1(n) ∧ (∃m ∈ N)ϕ2(m)], (13)

with ϕ1, ϕ2 ∈ ∆0. It is clear that the antecedent of LLPO, i.e. ⨼(P ∧ Q), has
exactly this form. By Definition 26, (13) is equivalent to

(∀n ∈ ∗N)¬ϕ1(n) ∨ (∀m ∈ ∗N)¬ϕ2(m). (14)

The consequent of LLPO, i.e. ⨼P ⋎ ⨼Q, then has the form

(∀n ∈ ∗N)¬ϕ1(n) ⋎ (∀m ∈ ∗N)¬ϕ2(m). (15)

Thus, LLPO is the statement that if (14) holds, then there is a ∗-algorithm deciding
which disjunct of this formula holds. i.e. (15).

Now assume LLPO and fix x ∈ R. As discussed in Remark 35, we may assume
the formula ⨼(x > 0 ∧ x < 0). By Definition 26, the latter formula is equivalent to

(∀k ∈ ∗N)[qk ≤ 1
k
∨ (∀l ∈ ∗N)(ql ≥ − 1

l
)]. (16)

We apply LLPO to decide which of the disjuncts of this formula holds. As the first
disjunct of (16) is ⨼(x > 0) and the second one is ⨼(x < 0), we obtain LLPR.

For the other direction, assume LLPR, let ϕ1 and ϕ2 be as in (13). We now
define a ∗-algorithm to decide between (∀n ∈ ∗N)¬ϕ1(n) and (∀m ∈ ∗N)¬ϕ2(m).
To this end, fix ω′ ∈ Ω and consider the following three cases.

First of all, if (∀n ≤ ω′)¬ϕ1(n) is false, we must have (∀m ∈ ∗N)¬ϕ2(m), by
(14). Thus, we output ‘⨼[(∃m ∈ N)ϕ2(m)]’.

Secondly, if (∀m ≤ ω′)¬ϕ2(m) is false, we must have (∀n ∈ ∗N)¬ϕ1(n), and we
output ‘⨼[(∃n ∈ N)ϕ1(n)]’.

For the third case, we may assume (∀n ≤ ω′)¬ϕ1(n) and (∀m ≤ ω′)¬ϕ2(m). We
first define the function gϕ1,ϕ2 as follows

gϕ1,ϕ2(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if (∃n ≤ i)ϕ1(n),
1 if (∃m ≤ i)ϕ2(m),
0 if (∀m ≤ i)¬ϕ2(m) and (∀n ≤ i)¬ϕ1(n)

.

Note that the previous function is well-defined, as the case (∃n ∈ ∗N)ϕ1(n)∧ (∃m ∈
∗N)ϕ(m) cannot occur, by (14). We also define the function hϕ1,ϕ2(i) as the least
n′ ≤ i such that ϕ1(n′) ∨ ϕ2(n′), if such exists, and i otherwise. Finally, we define
the real number x as

qk =
k

∑
i=0

1

2i−hϕ1ϕ2
(i) gϕ1,ϕ2(i).

Note that x is indeed a real number by (4), and the assumptions made in this case.
By LLPR, we can decide between ⨼(x > 0) and ⨼(x < 0). If the first formula holds,
we have (∀k ∈ ∗N)(qk ≤ 1

k
). This is only possible if (∀m ∈ ∗N)¬ϕ2(m) holds, and

we output this formula. Similarly, if ⨼(x < 0) is holds, we have (∀k ∈ ∗N)(qk ≥ − 1
k
),

which is only possible if (∀n ∈ ∗N)¬ϕ1(n) holds, and we output this formula.

Hence, LLPR provides a ∗-algorithm to decide which of the disjuncts of (14)
holds. From this, LLPO easily follows and we are done. �

Finally, we prove one partial result from Theorem 15.

37. Theorem. The principle LPO implies LLPO.
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Proof. Assume LPO. By Theorem 30, we may use Σ1-TR. Let ϕ1 and ϕ2 be as
in (14). We can easily verify which disjunct in the latter holds, by checking if
(∀n ≤ ω)¬ϕ1(n) and (∀m ≤ ω)¬ϕ2(m), for any fixed ω ∈ Ω. Indeed, by Σ1-TR,
these bounded formulas are equivalent to (∀n ∈ ∗N)¬ϕ1(n) and (∀m ∈ ∗N)¬ϕ2(m),
respectively. Thus, LLPO follows. �

3.5. An answer to the first question. In this paragraph, we formulate a partial
answer to the first question from Section 1.

Although suggestive, Theorems 32 and 36 do not even scratch the surface of
Constructive Reverse Mathematics (CRM). Indeed, as is clear from Section 2.2,
there is a large (and growing) number of principles and equivalent theorems that
constitute CRM. Furthermore, we did not treat formulas of the form ¬¬ϕ, nor
did we attempt to interpret intuitionistic implication5. Thus, the results in this
paper are more suggestive than definitive in nature. They do suggest an interesting
avenue of research, however.

Hence, the answer to the first question is a careful ‘maybe’: we need to treat
a large number principles from CRM inside Nonstandard Analysis before we can
accurately judge if the notion of Ω-invariance gives rise to the ‘same’ kind of equiv-
alences as we find in CRM. In (Sanders, 2012b), this investigation is undertaken
‘in full’ and a large number of equivalences was obtained in a similar fashion to
the above. However, one encounters a significant problem with the current ‘naive’
approach and new ideas are needed to overcome this hurdle. In particular, an in-
terpretation for the constructive notion of ‘proof’ inside Nonstandard Analysis is
required, as discussed in Remark 38 below.

As usual, any answer leads to many questions. The first question that comes to
mind in light of our above results is: Why is there a connection between Nonstandard
and Constructive Analysis? We now briefly speculate on this topic.

In Nonstandard Analysis, the notion of infinite number is central. The finite
numbers are exactly the natural numbers. The new numbers in ∗N ∖ N are the
infinite numbers and no ‘finite’ operation F can take a finite number to an infinite
number. The ‘finite’ operations include all the usual N→ N-functions.

_? _?
0 1 . . . N ∗N

55
ω

F X

We now propose a similar (but vague) interpretation for the natural numbers in
Constructive Analysis, when assuming an external point of view. In BISH, the no-
tion of algorithm is central. A number only exists after an algorithm has been given
to compute it, i.e. when it has been constructed. The (vague) set N of numbers
that have been constructed is always expanding. However, there are some numbers
we can never hope to construct. For instance, it is generally agreed that Construc-
tive Analysis can be formalized in HAω, Heyting arithmetic augmented with all
finite types. However, the function6 Hε0(x) cannot be defined in the latter sys-
tem. Hence, for most elements x0 ∈ N , we can never construct the number Hε0(x).
Thus, we obtain the following picture of N: the numbers N are the ‘constructible’
(or ‘constructed’) numbers, whereas the numbers in N ∖ N are non-constructible.

5Note that it is possible to define ‘⨼’ in such a way that the counterpart of Markov’s principle,

i.e. ⨼⨼P → P (P ∈ Σ1), is not derivable in (our base theory of) Nonstandard Analysis. Hence,

our results are not just an instance of the fact that recursive mathematics RUSS is a model for
BISH, as might be wrongly suggested by Theorem 21. We thank Martin Davis for the discussion

regarding this question.
6The function Hα(x) is called the Hardy function of level α ∈ ORD. See (Buss, 1998).
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Moreover, no ‘constructive’ operation C can ever take a number in N outside of
this set.

_? _?
0 1 . . . N N

55
Hε0(x0)

C X

We emphasize that the above comparison is vague and informal. We do believe
it to serve an explanatory purpose.

In the following final remark, we discuss the proverbial ‘elephant in the room’
regarding Definition 2.

38. Remark. In this paper, we have concentrated on finding a concept from Non-
standard Analysis which captures Bishop’s notion of (constructive) algorithm. How-
ever, as is clear from Definition 2, the notion proof plays an important role in Con-
structive Analysis. Nonetheless, we have not attempted to provide an interpretation
for this equally central notion.

In (Sanders, 2012a), a first attempt is made to establish an interpretation of
the constructive notion of proof in Nonstandard Analysis. As it turns out, in
the same way Constructive Analysis is limited to formulas that come with proofs,
the limitation to formulas A which satisfy (a version of) the Transfer Principle
‘A↔ ∗A’ from Nonstandard Analysis, provides a suitable interpretation of ‘proof’.
Note that by Definition 26 and Remark 28, a kind of Transfer is already built
into ∗-negation. We refer to (Sanders, 2012a) for details. A full interpretation
of Constructive Analysis inside Nonstandard Analysis in this spirit is forthcoming
in (Sanders, 2012c). These results endow Constructive Analysis with a certain
‘robustness’, as discussed in (Sanders, 2013).

4. Conclusion and Future research

4.1. Conclusion. In this paper, we made an attempt at bringing Nonstandard
and Constructive Analysis closer together, i.e. at reuniting the antipodes. This was
accomplished by attempting to isolate algorithm, the central notion of Constructive
Analysis, inside Nonstandard Analysis. We used the following two questions from
the introduction as guiding principles.

(1) Is there a (simple) notion in Nonstandard Analysis that captures Errett
Bishop’s notion of algorithm?

(2) How will we judge if the correspondence in the previous item is any good?

By reviewing the main results in the discipline Constructive Reverse Mathematics
(a foundational program based on Constructive Analysis), we arrived at a criterion
by which we might indirectly capture Bishop’s primitive notion of algorithm. In
short, a formal notion captures Bishop’s primitive of algorithm if it gives rise to
the same equivalences as found in Constructive Reverse Mathematics. Indeed, if
the latter is the case, then the same principles are non-algorithmic in both cases,
i.e. with regard to the formal notion and with regard to Bishop’s algorithm. Hence,
the formal notion must (approximately) capture Bishop’s primitive of algorithm.

In answer to the first question, we defined ‘Ω-invariance’, a candidate nonstan-
dard counterpart of the notion of algorithm. We then applied our criterion to
Ω-invariance. In particular, we showed that several famous non-algorithmic princi-
ples (e.g. LPO and LLPO) behave in the same way in Nonstandard Analysis based
on Ω-invariance. To this end, we defined counterparts in Nonstandard Analysis
of the intuitionistic connectives ∨ and ¬. In conclusion, we suggested that more
equivalences need to be proved in Nonstandard Analysis before we can answer the
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first question positively. We also provided an explanation why there is überhaupt a
connection between Nonstandard Analysis and Constructive Analysis.
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Keisler, H. Jerome. 1976. Elementary Calculus: An Infinitesimal Approach, Prindle Weber &

Schmidt. Available online at http://www.math.wisc.edu/keisler/calc.html.
Kleene, Stephen Cole. 1952. Introduction to metamathematics, D. Van Nostrand Co., N. Y.

Mandelkern, Mark. 1989. Brouwerian counterexamples, Math. Mag. 62, no. 1, 3–27.

Moerdijk, Ieke and Erik Palmgren. 1997. Minimal models of Heyting arithmetic, J. Symbolic
Logic 62, no. 4, 1448–1460.
Palmgren, Erik. 1996a. Overview of Constructive Nonstandard Mathematics. Website:
http://www2.math.uu.se/∼palmgren/biblio/nonstd.html.

. 1996b. Constructive nonstandard analysis, Méthodes et analyse non standard, Cahiers
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