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Abstract

The so called peer methods for the numerical solution of Initial Value Prob-
lems (IVP) in ordinary differential systems were introduced and later applied
to different types of problems by R. Weiner, B.A. Schmitt and coworkers in a
series of papers [10], [11], [12], [13], [16], [17], [18] as an alternative to classical
Runge–Kutta (RK) and multistep methods attempting to combine the advan-
tages of these two classes of methods. In particular, peer type methods have
been proposed in [11], [12], [13] for the numerical solution of IVPs in parallel
computers. More recently, several explicit two step peer methods for non stiff
systems proposed in [17], [18] have been proved to be competitive with standard
RK methods in a wide selection of test problems.

The aim of this paper is to propose an alternative procedure to construct
families of explicit two step peer methods in which the available parameters
appear in a transparent way. This allows us to obtain families of fixed stepsize s
stage methods with stage order 2s−1, which provide dense output without extra
cost, depending on some free parameters that can be selected taking into account
the stability properties and leading error terms. A study of the extension of these
methods to variable stepsize is also carried out. Optimal s stage methods with
s = 2, 3 are derived.
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1. Introduction

We consider the numerical solution of (non stiff) IVPs for a differential
system

d

d t
y(t) = f(t, y(t)), y(t0) = y0 ∈ R

m, (1)
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where f : R× R
m → R

m is assumed to be sufficiently smooth so that for all y0
there is a unique smooth solution to the right of t0.

To introduce the s–stage two–step peer methods, let cj , j = 1, . . . , s be a
given admissible set of nodes, i.e.

|ci − cj | 6∈ {0, 1} for all i 6= j. (2)

We assume that for any given step size h > 0 there is a starting procedure that
allows us to obtain (sufficiently accurate) approximations

Y0,j ' y(t0,j), f0,j = f(t0,j, Y0,j), j = 1, . . . , s

to the solution of (1) and to the vector field at the internal grid points t0,j = t0+
cjh, j = 1, . . . s in the first step interval [t0, t1 = t0+h]. Then an s–stage explicit
two–step peer method is an algorithm that computes new approximations

Y1,j ' y(t1,j), f1,j = f(t1,j, Y1,j), j = 1, . . . , s

to the solution of (1) and the vector field at the internal grid points t1,j =
t1 + cjh, j = 1, . . . s of the next step [t1, t2 = t1 + h] by means of the equations

Y1,j =

s∑

k=1

ajkY0,k + h

s∑

k=1

bjkf0,k + h

j−1∑

k=1

rjkf1,k, j = 1, . . . , s (3)

where A = (ajk), B = (bjk), R = (rjk) ∈ R
s×s are given matrices that define

the method. A and B are full matrices and R is strictly lower triangular.
It must be noticed that integration methods that combine information about

the solution in two consecutive steps have been considered for a long time as
can be seen in the earlier publications [2], [7], [8] and [16]. In particular, the
General Linear Methods introduced by J.C. Butcher in [2] as a generalization of
linear multistep (multivalue) methods and Runge–Kutta (multistage) methods
also contain the explicit peer two–step methods.

Weiner and Schmitt and co-workers have provided for some special A-matrix
methods of type (3) of different orders [10], [17], [18] that are competitive with
the standard integrators in use.

Putting e = (1, . . . , 1)T ∈ R
s, c = (c1, . . . , cs)

T and

Yk =




Yk,1

Yk,2

...
Yk,s


 , f(tke+ hc,Yk) =




f(tk,1, Yk,1)
f(tk,2, Yk,2)

...
f(tk,s, Yk,s)


 ∈ (Rm)

s
, (4)

equations (3) can be written in the matrix form

Y1 = (A⊗ Im) Y0 + h (B ⊗ Im)f(t0e+ hc,Y0)
(5)

+h (R⊗ Im) f(t1e+ hc,Y1),
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where ⊗ denotes the standard Kronecker product and Im is the unit matrix of
order m. For our studies of order and stability it will be sufficient to consider
the scalar case (m = 1) in which (5) becomes

Y1 = A Y0 + h B f(t0e+ hc,Y0) + h R f(t1e+ hc,Y1). (6)

As it has been pointed out in [11], [18] the method (5) is zero-stable if and
only if the matrix A has an eigenvalue λ1(A) = 1 and the remaining eigenvalues
λj(A), j = 2, . . . , s have modulus ≤ 1 and those of modulus one correspond to
simple elementary divisors. Hence, a safe stability requirement is to choose A
so that

λ1(A) = 1, λj(A) = 0, j = 2, . . . , s, (7)

because these conditions ensure the zero stability ([6], pp. 293). Remark that
λ1(A) = 1 is a consequence of the preconsistency condition Ae = e. Thus,
Weiner and coworkers take in [18] a constant matrix A of the form A = e eTs +
QWQ−1 where W,Q are some special matrices such that Ae = e and A has
eigenvalues 1 (simple) and 0 and ei = (0, . . . , 1, . . . , 0)T is the i-th unit vector
of the canonical basis of Rs.

Here we will choose an alternative family of matrices A of the form

A = P−1 Â P, (8)

with lower triangular constant P and upper triangular constant Â given by

P =




1 0 . . . 0 0
p21 1 . . . 0 0
p31 p32 . . . 0 0
...

...
...

...
ps−1,1 ps−1,2 . . . 1 0
ps1 ps2 . . . ps,s−1 1




, Â =




1 â12 . . . . . . â1s
0 0 â23 . . . â2s
0 0 0 â34 . . .
...

... âs−1,s

0 . . . 0 0




,

(9)
that clearly satisfy (7). Note that the preconsistency condition Ae = e implies
that Pe = e1.

The main reason to take A with the form (8), (9) is that equations (6) can
be written as

P Y1 = Â PY0 + hB̂ Pf(t0e+ hc,Y0) + hR̂ Pf(t1e+ hc,Y1), (10)

with B̂ = PBP−1 and R̂ = PRP−1 where R̂ is lower triangular. Now for a
given admissible set of nodes and a constant matrix P with Pe = e1 the number
of available parameters in the vector equation (10) is

s (s− 1)

2
in Â+ s2 in B̂ +

s(s− 1)

2
in R̂ = s (2s− 1),
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that are separated (linearly) into s sets of 2s− 1 at each stage. In fact, for the
first stage the free parameters are those of the first row of the matrix

(
Â|B̂|R̂

)
=




1 â12 â13 . . . â1s b̂11 . . . b̂1s 0

0 â23 . . . â2s b̂21 . . . b̂2s r̂21 0
...

...
...

...
...

...
...

...
...

...

0 b̂s1 . . . b̂ss r̂s1 . . . r̂s,s−1 0




,

(11)
for the second stage those of the second row and the same for the remaining
stages. Because of this, in our order studies we may consider independently the
order conditions of each stage of the transformed method (10). This simplifies
considerably the derivation of particular explicit methods.

Note that if A has the above spectrum (7) there exists a non singular real
matrix S that transforms A to the Jordan canonical form i.e.

A = S J S−1 with J =




1 0 0 . . . 0
0 0 α2 . . . 0

0
. . .

...
... αs−1

0 0




,

with αj either 0 or else 1. Now if S possesses a LU decomposition without
pivoting, S = LU , with unit diagonal elements in L, then A can be written in
the form

A = L
(
UJU−1

)
L−1,

and it can be checked that the matrix UJU−1 has the same zeroes as Â of (9).
Hence, even though not all matrices A satisfying the spectral assumption (7)
can be written in the form (8), (9), those for which the corresponding S admits
a LU decomposition without pivoting can.

For our (absolute) stability studies of the methods (6) we apply them to the
scalar test equation y′ = λ y, where λ is a complex constant. Putting z = λh,
(6) becomes

Y1 = (I − z R)−1 (A+ z B) Y0,

or equivalently
Y1 = P−1 M(z)P Y0

with M(z) = (I − z R̂)−1 (Â+ z B̂) ∈ Cs×s . Then the stability region S is the
set of all z ∈ C such that all eigenvalues of M(z) satisfy |λj(M(z))| ≤ 1 and
those with |λj(M(z))| = 1 correspond to simple divisors in Jordan’s canonical
form.

2. Order conditions

In standard explicit RK methods the difference y(tn + h)− yn+1 defines the
order of accuracy. Here, none of the ci needs to be 1, and moreover we must
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take into account the order of accuracy of all stages y(t1e + hc) −Y1, i.e. the
so called stage order of the method. This is the motivation of the following
definition of stage order:

For the method (6) with the matrix A given by (8), (9) we introduce the
linear s-dim valued vector operator L[y(t);h] defined by

L[y(t);h] ≡ Y(t+ h)−A Y(t) − h B Y′(t)− h R Y′(t+ h), (12)

with Y(t) = y(te+ hc) ≡ (y(t+ c1h), . . . , y(t+ csh))
T .

Definition 1 (Stage Order). For a given admissible set of nodes the method
(6),(8),(9) has stage order p if

L[y(t);h] = O
(
hp+1

)
, (13)

for all y(t) sufficiently smooth.

Note that the preconsistency condition Ae = e is equivalent to L[1;h] = 0
and the method has order p and error constant Cp+1 iff the s–dim vector linear
operator L defined by (12) satisfies

L[tj ;h] = 0, for j = 1, . . . , p and L[tp+1;h] = Cp+1 (p+ 1)!hp+1 6= 0 .

Remark 1. Since L defined by (12) is a linear operator of y(t) the Taylor series
expansion at t will have the form

L[y(t);h] = C0y(t) +C1y
′(t)h2 +C2y

′′(t)h2 + . . .

with some s–valued constants Cj = Cj(A,B,R, c1, . . . , cs) and if the method
has order p then Cj = 0, j = 0, 1, . . . , p and Cp+1 6= 0. Because of this linear
dependence on y(t), both the order and the error constantCp+1 are independent
of the time t of expansion. This implies that by choosing e.g. the time expansion
at t∗ = t+ c1h, since Y(t) = (y(t∗), y(t∗ + (c2 − c1)h), . . . , y(t

∗ + (cs − c1)h))
T

depends only on the differences cj−c1, the coefficients of the Taylor’s expansion

L[y(t∗);h] = D0y(t
∗) +D1y

′(t∗)h2 +D2y
′′(t∗)h2 + . . .

Dj = Dj(A,B,R, c2 − c1, . . . , cs − c1) depend only on the relative differences
to the first node c1, and similarly for any other node. Thus, by fixing a given
node ck, the order conditions as well as the error constant depend only on
cj − ck, j 6= k.

Putting L̂[y(t);h] = PL[y(t);h], in view of (12) it can be written as

L̂[y(t);h] = PY(t+ h)− Â PY(t) − h B̂ P Y′(t)− h R̂ P Y′(t+ h), (14)

and because of (10), condition (13) is equivalent to L̂[y(t);h] = O
(
hp+1

)
.
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Denoting by Z(t) = (zj(t))
s
j=1 ≡ P Y(t) ≡ P y(te+ hc), the linear operator

L̂[y(t);h] of (14) can be written equivalently as

L̂[y(t);h] = Z(t+ h)− Â Z(t) − h B̂ Z′(t)− h R̂ Z′(t+ h), (15)

and the method has order p if the right hand side of (15) is O(hp+1).
To introduce a further simplification in the study of the order conditions,

we define a new scaled time τ so that t = τh and a new function u(τ) = y(hτ).
Then Z(t) = P y(te+hc) = P u(τe+c), and putting ξ[u(τ)] = P u(τe+c) ∈ R

s,
the method (6),(8),(9) has order p iff

Â ξ[u(τ)] + B̂ ξ̇[u(τ)] + R̂ ξ̇[u(τ + 1)] = ξ[u(τ + 1)], (16)

holds for all u(τ) ∈ Πp(τ) (the set of polynomials in τ with degree ≤ p), where
the dot denotes the derivative with respect to τ . Further by the linear depen-
dence of ξ on u(τ), it is enough to check (16) for τ = 0.

Next we will show that, for a given admissible set of nodes, under some
minor restrictions on the components of P the equations of (16) possess a unique

solution in the free parameters of Â, B̂ and R̂ with stage order 2s − 1. As a
first step to establish the existence of s–stage methods with stage order 2 s− 1
we prove the following

Lemma 1. For a given admissible set of nodes ci, i = 1, . . . , s and arbitrary
constants pij , 1 ≤ j < i ≤ s, consider the construction of a method of order
p = 2 s− 1.

• The first stage order equation of (16) possesses a unique solution in the
unknowns of the first row of (11) i.e.

â12, . . . , â1s, b̂11, . . . , b̂1s. (17)

• The last stage order equation of (16) possesses a unique solution in the
unknowns of the last row of (11) i.e.

b̂s1, . . . , b̂ss, r̂s1, . . . , r̂s,s−1. (18)

Proof. Since the first stage order equation is a linear equation in the unknowns
(17) it will be enough to show that the corresponding homogeneous equation of
(16) possesses only the trivial solution, i.e., that if for any polynomial u(τ) ∈
Π2s−1(τ) we have

s∑

j=2

â1j ξj [u(0)] +

s∑

j=1

b̂1j ξ̇j [u(0)] = 0, (19)

then â1j = 0, j = 2, . . . , s and b̂1j = 0, j = 1, . . . , s.
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By choosing for u(τ) the polynomial

u(τ) =
(τ − c1)

2(τ − c2)
2 . . . (τ − cs−1)

2(τ − cs)

(cs − c1)2(cs − c2)2 . . . (cs − cs−1)2
∈ Π2s−1(τ),

we have

u(cj) = 0, (j = 1, . . . , s), u̇(cj) = 0, (j = 1, . . . , s− 1), u̇(cs) = 1,

and therefore

ξj [u(0)] = ξ̇j [u(0)] = 0, (j = 1, . . . , s− 1), ξs[u(0)] = 0, ξ̇s[u(0)] = 1,

and by substituting into (19) we get b̂1s = 0.
Next repeating the process with the polynomial

u(τ) =
(τ − c1)

2(τ − c2)
2 . . . (τ − cs−2)

2(τ − cs−1)(τ − cs)

(cs−1 − c1)2(cs−1 − c2)2 . . . (cs−1 − cs−2)2(cs−1 − cs)

we arrive to b̂1s−1 = 0. And following in this way we obtain that all b̂1j = 0.
After that, with the polynomials

uk(τ) =
s∏

j=1,j 6=k

τ − cj
ck − cj

∈ Πs−1(τ), k = s, s− 1, . . . , 1,

we derive successively the vanishing of the coefficients â1s, â1,s−1, . . . , â11 of (19).
The proof for the last stage order equation follows a similar pattern. We

need to show that if

s∑

j=1

b̂sj ξ̇j [u(0)] +

s−1∑

j=1

r̂sj ξ̇j [u(1)] = 0 (20)

holds for all polynomials u(τ) of degree ≤ 2s− 1 then all b̂sj and r̂sj must be
zeroes.

Taking a polynomial u(τ) =
∫ τ

0 v(τ) ∈ Π2s−1(τ) with (remark that we con-
sider an admissible set {ci|i = 1, . . . , s})

v(τ) =
(τ − c1) . . . (τ − cs)(τ − (c1 + 1)) . . . (τ − (cs−2 + 1))

(cs−1 − c1) . . . (cs−1 − cs)(cs−1 − (c1 + 1)) . . . (cs−1 − (cs−2 + 1))
,

we obtain that r̂s,s−1 = 0. In this way we derive successively r̂s,s−2 = 0, . . . , r̂s1 =

0 and then b̂sj = 0, j = s, . . . 1.

For the order equations corresponding to the stages k = 2, . . . , s−1 the exis-
tence of a unique solution of the k-th component of the vector equation (16) in

the unknowns âk,k+1, . . . , âks, b̂k1, . . . , b̂ks, r̂k1, . . . , r̂k,k−1 requires an additional
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relation between the nodes and the elements of P at each stage. In fact, the
k–th stage order equation of (16) is given by

s∑

j=k+1

âkj ξj [u(0)] +

s∑

j=1

b̂kj ξ̇j [u(0)] +

k−1∑

j=1

r̂kj ξ̇j [u(1)] = ξk[u(1)], (21)

where u(τ) ∈ Π2s−1(τ). Note that for u(τ) = 1, ξ[u(τ)] = Pe = e1 and
ξ̇[u(τ)] = P0 = 0 and then (21) is clearly satisfied. Hence it is enough to
require (21) for the remaining elements of a basis of Π2s−1(τ). Taking u(τ) =
τm,m = 1, . . . , 2s− 1 this condition becomes

det[µk+1(0), . . . , µs(0), µ̇1(0), . . . , µ̇s(0), µ̇1(1), . . . , µ̇k−1(1)] 6= 0 (22)

with

µj(τ) =

(
j∑

i=1

pji(τ + ci), . . . ,

j∑

i=1

pji(τ + ci)
2s−1

)T

∈ R
2s−1. (23)

Condition (22) can be expressed in a simpler way in terms of the determinant
of a matrix with dimension s − k − 1. Let us consider for example the order
conditions of the second stage (k = 2) for the case of four stages (s = 4).
According to (21) there will be a unique solution if and only if

4∑

j=3

â2j

(
j∑

l=1

pjl u(cl)

)
+

4∑

j=1

b̂2j

(
j∑

l=1

pjl u̇(cl)

)
+ r̂21 u̇(1 + c1) = 0, (24)

for all u(τ) ∈ Π7(τ) implies that all involved â2j , b̂2j and r̂21 coefficients are
zero.

Taking the polynomials u6(τ) ∈ Π6(τ) = Π2s−2(τ) and u7(τ) ∈ Π7(τ) =
Π2s−1(τ) such that

u̇6(τ) ≡ Π5
i=1(τ − ci), u̇7(τ) ≡ u̇6(τ) τ,

with c5 = c1 + 1, clearly the coefficients of b̂2j and r̂21 in (24) vanish and we
have the two linear equations

4∑

j=3

â2j

(
j∑

l=1

pjl um(cl)

)
= 0, m = 6, 7

and, due to the consistency condition Pe = e1,

â23




3∑

j=1

p3j (um(cj)− um(0))


+ â24




4∑

j=1

p4j (um(cj)− um(0))


 = 0 ,

for m = 6 and m = 7. Suppose we rewrite both equations as

â23 α6 + â24 β6 = 0 , â23α7 + â24 β7 = 0 ,
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then it is clear that this interpolation problem has a unique solution unless its
coefficient matrix is singular, that is, when α6 β7 = α7 β6, which gives us a
condition on coefficients pij and nodes ci.

In general, for stage k with 1 < k < s, let P (k) be the (s−k)×s matrix that
is obtained from P after deleting the first k rows, and let Q(k) be the s× (s−k)
matrix with

Q
(k)
ij =

∫ ci

0

s+k−1∏

q=1

(x − cq)x
j−1 dx , (25)

and cs+j = 1+ cj. Then in order to have a unique solution, the square matrices
P (k) Q(k) should be non-singular, that is

det [P (k) Q(k)] 6= 0, for all k = 2, . . . , s− 1 . (26)

To prove that there is a unique solution for the b̂kq and r̂kq coefficients of
stage equation k, we can follow the same procedure as the one used for the last
stage. We may therefore state the following

Theorem 2. For all s ≥ 2 there is a family of s–stage, fixed stepsize, two step
peer methods (6),(8),(9) with order 2s−1 that depends on the s+(s−2)(s−1)/2
parameters (the s non confluent nodes ci and the (s − 2)(s − 1)/2 elements of

P with Pe = e1) with the s − 2 relations (26). The coefficients Â, B̂, R̂ are
uniquely determined by (16) for u(τ) ∈ Π2s−1(τ).

Remark 2. According to Remark 1, for a method with s stages and order
2s− 1, the available parameters in Â, B̂, R̂ depend only on the s− 1 differences
ck−cl, k 6= l to a fixed node cl. This allows us to choose a pivot node. Assuming
c1 < . . . < cs, the choice cs = 1 (used for example in [18]) provides the numerical
solution at grid points but, if some cj < 0, the method uses information of the
back step and requires a special starting procedure. On the other hand, if c1 = 0
and some cj > 1, the final step must be taken so that the last stage gives the
approximation to the solution at the end point of the integration interval.

In the case of two-step methods with variable stepsize, let us suppose that we
advance the numerical solution from the known stages Y0,j corresponding to the
points t0,j = t0 + cjh, obtained with stepsize h and we want to modify the size
of the next step by a factor σ, so that the new Y1,k ' y(t1+σh) = y(t0+h+σh)
are given by

Y1,j =

s∑

k=1

ajkY0,k + h

s∑

k=1

bjkf0,k + σh

j−1∑

k=1

rjkf1,k.

With the notations (4), for a scalar case they can be written in the vector form

Y1 = A Y0 + h B f(t0e+ hc,Y0) + (σh) R f(t1e+ σhc,Y1). (27)

where now the matrices A(σ), B(σ) and R(σ) can depend on the stepsize ratio
σ.
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To ensure the zero-stability, we are considering methods with

A = P−1 Â P (28)

with P constant, lower triangular, satisfying the condition Pe = e1 and Â =
Â(σ) as in (9) so that A has the eigenvalue unity (simple) and the remaining
eigenvalues are zero.

It is well known that the zero–stability is guaranteed if any product of con-
secutive matrices

A(σk+r)A(σk+r−1) . . . A(σr) ,

is uniformly bounded for all k, r. Note that the stability depends on the sequence
of step sizes {h0, h1, . . .}. Weiner and co–workers choose the matrix A constant
with all the eigenvalues equal to zero except one, simple, equal to one. In this
way, the method is zero–stable for any sequence of step sizes {hj}. In our case,
since P is constant, the stability is equivalent to the uniform boundedness of
the product of matrices

‖Â(σk+r)Â(σk+r−1) . . . Â(σr)‖ ≤ K < ∞, for all k, r , (29)

and this is ensured if the coefficients âij (that can depend on the step size ratios
σn) are uniformly bounded.

Theorem 3. The variable stepsize two–step peer method (27) with matrix A

satisfying (8), (9) and Â = Â(σ) is zero–stable for any step size sequence such

that the coefficients of the matrix Â are uniformly bounded.

Proof. To prove (29) we will see that for all fixed r and k ≥ s− 2

Â(σr+k)Â(σr+k−1) . . . Â(σr) = Â(σr+s−2)Â(σr+s−3) . . . Â(σr) . (30)

Decomposing the matrix Â = Â(σ) in blocks

Â(σ) =

(
1 d(σ)T

0 T (σ)

)
,

and taking into account that T (σ) is strictly upper triangular matrix of dimen-
sion s− 1, it is easy to see that

Â(σr+s−2)Â(σr+s−3) . . . Â(σr) =

(
1 dTs,r
0 0

)
,

with

dTs,r = d(σr)
T + d(σr+1)

TT (σr) + . . .+ d(σr+s−2)
TT (σr+s−3) . . . T (σr).

Consequently, the product of s consecutive matrices is a matrix with only the
first row non zero, and with the first element of this row unity. From here, it is
clear that (29) holds.
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Then, if âij(σn) are uniformly bounded for the σn ratios, the matrices Â(σn)

are also uniformly bounded, ‖Â(σn)‖ ≤ K, where K ≥ 1 since Ae = e. There-
fore, for any product of consecutive matrices we have the bound

‖Â(σr+k)Â(σr+k−1) . . . Â(σr)‖ ≤ Kmin{k+1,s−1} ≤ Ks−1.

Let us remark that with the above choice of the transition matrix A =
A(σ) = P−1Â(σ)P the calculation of coefficients for variable step size is very
similar to the case of fixed step size. To find the expressions for the coefficients
of the matrices, we only have to take into account that the interpolation points
are now given by {c1, c2 . . . , cs, 1+σn c1, . . . , 1+σn cs} and that R is replaced
by σn R. Note that now, we can not ensure that ci 6= 1 + σcj for all values of
σ, unless ci ∈ (0, 1] or ci ∈ [0, 1) for all i.

By introducing the linear operator corresponding to (15)

L̂[y(t), h, σ] ≡ P Y(t+ h, σh)− Â P Y(t, h)
(31)

−h B̂ P Y′(t, h)− (σh) R̂ P Y′(t+ h, σh),

where now the two–arguments vector function Y(t1, h1) is defined by

Y(t1, h1) = y(t1e+ h1c) = (y(t1 + cjh1))
s
j=1 ∈ R

s, (32)

the method (27) has order p iff the operator L̂[y(t), h, σ] defined by (31),(32)

satisfies L̂[y(t), h, σ] = O(hp+1), uniformly for σ in some compact Jσ containing

σ = 1, or equivalently iff L̂[y(t), h, σ] = 0, ∀y(t) ∈ Πp(t).
To simplify the derivation of the order conditions we introduce again a new

time τ by t = hτ and u(τ) = y(t) = y(hτ). Then defining the s-valued vector
functions

ξ[u](τ, σ) = (ξj [u](τ, σ))
s
j=1 = P u(τe+ σc).

The variable stepsize method (27) has order p if and only if

Â ξ[u](τ, 1) + B̂ ξ̇[u](τ, 1) + σR̂ ξ̇[u](τ, σ) = ξ[u](τ, σ) (33)

holds for all polynomial u(τ) ∈ Πp(τ), where dots denote derivative with respect
to τ .

The point we want to address now is under which conditions on the stepsize
ratios σn a method obtained with fixed stepsize and order p can be extended to
a zero-stable, pth order, variable step size method, according to equations (33).

Let us suppose that for some fixed admissible nodes ci and matrix P we
have a fixed stepsize method of order p = 2s − 1. Equations (33) are continu-
ous on σ and have solution for σ = 1, therefore they define a unique solution
A(σ), B(σ), R(σ) for some neighborhood around σ = 1. Moreover, since for
u(τ) ∈ Πp(τ) the equations (33) are polynomic on σ, the coefficients of the

solution matrices Â(σ), B̂(σ), R̂(σ) will be rational on σ. Hence, the coefficients
of the variable stepsize method will be defined for all σ except for at most a
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finite number of values of the stepsize ratio σ. Let us suppose, without loss of
generality, that there is only one such singular value of σ, σ∗

1 . For any small
value ε1 > 0, the method with fixed stepsize can be extended to variable step-
size for all σ ∈ Jσ = [0, σmax]\(σ∗

1 − ε1, σ
∗
1 + ε1). In practice, if a stepsize ratio

σ ∈ (σ∗
1 − ε1, σ

∗
1 + ε1) is selected by the stepsize control algorithm, the value

σ = σ∗
1 − ε1 can be taken instead to guarantee the existence of the method yet

maintaining the local truncation error under the prescribed error tolerance. The
zero–stability is guaranteed because Jσ is a compact set and the coefficients of
A(σ) are continuous.

Note that the construction of suitable peer methods will require the selec-
tion of the free parameters ci and pij such that the method has maximum order
(for example p = 2s− 1), maximum stability domain and minimum forbidden
stepsize ratios σ∗

1 , σ
∗
2 , . . . In addition, for the valid stepsize ratios σ the corre-

sponding coefficients of the matrices A(σ), B(σ), R(σ) should not be too large,
and ε1, ε2, . . . should be as small as possible.

3. Peer methods with s = 2

From the previous section, it follows that a two-stage peer method of order
three can be obtained for any choice of c1 and c2 for which (c1−c2) (1−c1−c2) 6=
0. Indeed, solving the order conditions (16) leads to :

Â =



1

−2 + 3d

d3

0 0


 , B̂ =



2− 3 d+ d2

d2
1− d

d2
(6− d) d2

6 (d− 1)

d (3 + 2 d)

6 (d− 1)


 , R̂ =




0 0

d (d2 − 6)

6 (d− 1)
0


 ,

(34)
where 0 6= d 6= 1 with d := c2 − c1. The leading term in the Taylor’s expansion
of L̂[y(t), h] is given by

(
1
24 (d− 1)2

− 1
72 (d

2 − 2 d− 6) d2

)
h4 y(4)(t) ,

so that no method with s = 2 can be found of order 4. It is even impossible to
impose that one stage has order 4, while the other remains of order 3.

The matrix P , given in (9), reads P =

(
1 0
−1 1

)
, which means that

A =

(
1− â12 â12
1− â12 â12

)
, B =

(
b̂11 − b̂12 b̂12

b̂11 + b̂21 − b̂12 − b̂22 b̂12 + b̂22

)
, R = R̂,

and, since L[y(t), h] = P−1 L̂[y(t), h], its leading term is

(
1
24 (d− 1)

2

1
72

(
3− 6 d+ 9 d2 + 2 d3 − d4

)
)

h4 y(4)(t) .
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The characteristic equation of M(z) is given by

p2(λ) = det(M2(z, d)− λI) = λ2 − Tλ+D, (35)

whereby

T = 1 + z
d2 + 7 d− 6

3 d
+ z2

6− d2

6 d
, D = z

d2 + 4 d− 6

3 d
+ z2

d2 + 5 d− 6

6 d
.

Given a value for d, stability along the imaginary axis is then obtained for those
values of z for which the spectral radius ρ(M) < 1. This study can be carried
out by means of the Routh-Hurwitz criterion [5, pp. 194], that allows to check
whether or not all the roots of a polynomial q(µ) with real coefficients have a
negative real part. Before doing so, it is necessary to use the mapping λ → µ
defined by

µ =
λ+ 1

λ− 1
,

which transforms the interior of the unit disk of the λ–plane in the left half of
the µ–plane. This leads to

q2(µ) = (1− µ)2 p2(λ) = E1 + E2 µ+ E3 µ
2 ,

whereby

E1 = 1 + T +D = 2 +
−12 + 11d+ 2d2

3d
z +

5

6
z2 = 2 + δz +

5

6
z2 ,

E2 = 2 +
12− 8 d− 2 d2

3 d
z +

6− 5 d− d2

3d
z2 = 2 + γ1z + γ2z

2 , (36)

E3 = 1− T +D = −z +
2 d2 + 5 d− 12

6 d
z2 .

The Routh-Hurwitz criterion shows that the roots will belong to C− iff E1,
E2 and E3 have the same sign. A detailed analysis gives the following result,
shown in the left part in Figure 1 : the stability interval along the negative real
axis as a function of d ∈ [−2, 2] is given by [ρ, 0] whereby

ρ =





−3d−
√
9d2 − 60

5
if − 2 ≤ d < 0,

− 6d

12− 5d− 2d2
if d ∈ (0, dmax],

−γ1 +
√
γ2
1 − 8γ2

2γ2
if d ∈ [dmax, ddisc),

−3 δ +
√
9 δ2 − 60

5
if ddisc ≤ d ≤ 2,
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 − 2.400
 − 2.211

 − 1.549

 − 0.511

ρ

 − 2 1.209 1.767 2

0.622

1.613

ν

− 2 0.66 0.97 2.0

Figure 1: Stability along the negative real axis (left) and the positive imaginary axis (right)
for the two–stage peer method as a function of d.

where dmax = (−15 +
√
609)/8 = 1.20974 . . . and ddisc = 1.76753 . . . is a root of

9 δ2 − 60 = 0. The optimal value for d, considering only stability along the real
axis, is thus given by dmax.

Let us now consider stability along the imaginary axis. Since the Routh-
Hurwitz criterion can not be used, we can only rely on a numerical procedure,
which resulted in the right part of Figure 1. There we show ν as a function of
d, where [−ν, ν] is the interval of stability along the imaginary axis. For small
positive values of d, this interval is empty but the stability region is in fact very
close to the imaginary axis. From d ≈ 0.663 onward, the interval is non-empty
and a maximum is reached at d = 0.972 . . ..

Considering both stability along the real axis and along the imaginary axis,
it is clear that the optimal values are obtained for d = dmax, for which ρ = −2.4
and ν = 1.199 . . ..
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For this value d = dmax the coefficients of the method are c2 = c1 + ddisc,

A =




2169− 73
√
609

4608

2439 + 73
√
609

4608

2169− 73
√
609

4608

2439 + 73
√
609

4608


 =

(
0.0797551 0.920245

0.0797551 0.920245

)
,

B =




283− 11
√
609

384

19− 3
√
609

384

−911 + 43
√
609

384

835 + 45
√
609

384


 =

(
0.0300594 −0.143317

0.391018 5.06642

)
,

R =




0 0

−57− 9
√
609

64
0


 =

(
0 0

−4.36096 0

)
,

(37)
and the leading term of the local truncation error is

1

4!




569

32
− 23

32

√
609

−49891

512
+

2093

512

√
609


 h4 y(4)(t0) =

(
0.001833 . . .
0.143221 . . .

)
h4 y(4)(t0) ,

such that ‖C4‖2 = 0.143236.
Let us analyze now the extension of the method obtained to variable stepsize.

The expressions for the non-zero coefficients of the matrices Â(σ), B̂(σ) and

R̂(σ) can be written down in terms of (only differences between) c1, c2 = c1+d,
c3 = 1 + σ c1 and c4 = 1 + σ c2. One then obtains

â12 =
(c1 − c3)

2
(c1 − 3 c2 + 2 c3)

(c1 − c2)
3

b̂11 = − (c2 − c3) (c1 − c3) (c1 + c2 − 2 c3)

(c1 − c2)
2

b̂12 = − (c1 − c3)
2
(c2 − c3)

(c1 − c2)
2

b̂21 =
1

6

(c3 − c4)
2
(−4 c3 − 2 c4 + 3 c2 + 3 c1)

(c2 − c3) (c1 − c3)

b̂22 =
1

6

(c3 − c4)
2 (−c3 + 3 c1 − 2 c4)

(c2 − c3) (c1 − c2)

r̂21 = −1

6

(c3 − c4)
(
2 c3

2 + 2 c3 c4 − 3 c2 c3 − 3 c1 c3 + 6 c1 c2 + 2 c4
2 − 3 c2 c4 − 3 c1 c4

)

σ (c2 − c3) (c1 − c3)
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This holds for all c1, c2, c3 such that (c1 − c2) (c1 − c3) (c2 − c3) 6= 0, i.e.

d 6= 0, σc1 + 1− c1 6= 0, σc1 + 1− c2 6= 0.

The coefficient â12 is polynomic in σ. Consequently, the matrices Â(σ) and
A(σ) are uniformly bounded for any bounded set Jσ. The other coefficients are
rational functions of σ. Remark that the factor d in r̂21 can be eliminated, since
c3 − c4 = σ (c1 − c2). This means that B̂(σ) and R̂(σ) cannot be bounded for
any choice of Jσ, but they will be for carefully chosen Jσ.

For the above method, c2 − c1 = dmax and the forbidden stepsize ratios will
depend on the selection of the node c1. Thus, taking c1 = 0, c2 = dmax, which
is a natural selection, the method can be extended to variable stepsize for all
bounded σ. More specifically, taking for example J = [0, 3], it is easy to see
that

maxi,j≤2(|ai,j(σ)|) = 0.920 for all σ,
maxσ∈J maxi,j≤2(|bi,j(σ)|) = maxi,j≤2(|bi,j(3)|) = 88.609,
maxσ∈J maxi,j≤2(|ri,j(σ)|) = maxi,j≤2(|ri,j(3)|) = 32.384.

For c2 = 1, c1 = 1 − dmax, the method can be extended to variable stepsize for
all σ except for σ1 = (c1 − 1)/c1 = 5.76779. In this case, for J = [0, 3],

maxσ∈J maxi,j≤2(|ai,j(σ)|) = maxi,j≤2(|ai,j(0)|) = 1.0,
maxσ∈J maxi,j≤2(|bi,j(σ)|) = maxi,j≤2(|bi,j(3)|) = 25.810
maxσ∈J maxi,j≤2(|ri,j(σ)|) = maxi,j≤2(|ri,j(3)|) = 13.038.

In both cases, the method can be extended to variable stepsize for practical
sequences of the stepsize.

4. Peer methods with s = 3

With 3 stages, we can construct methods of order 2s− 1 = 5, expressed in
terms of the parameters p32, d2 = c2−c1 and d3 = c3−c1. According to Lemma
(1) the first and last rows of Â, B̂ and R̂ are uniquely defined in terms of the
free parameters. On the other hand, for the second stage, the matrices Q(2) and
P (2) from (25) are

P (2) = (−1− p32, p32, 1), Q(2) = (u(c1), u(c2), u(c3))
T

with u(x) =

∫ x

0

(t− c1)(t− c2)(t− c3) dt, and

det [P (2)Q(2)] = d33 (3 d
2
3−5 d3−5 d2 d3+10 d2)+p32 d

3
2 (3 d

2
2−5 d2−5 d2 d3+10 d3) .

According to Theorem 2, the second row of Â, B̂ and R̂ is uniquely determined
in terms of the free parameters whenever

p32 6= −d33 (3 d
2
3 − 5 d3 − 5 d2 d3 + 10 d2)

d32 (3 d
2
2 − 5 d2 − 5 d2 d3 + 10 d3)

.
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The free parameters p32, d2 and d3 can be chosen to maximize the stability
interval and minimize the coefficients of the leading term of the local error. An
analysis similar to the case s = 2 should be carried out, but now, with three
degrees of freedom, only a numerical study can be done.

If we restrict ourselves to values for d2 and d3 such that {c1, c2, c3} ∈ [0, 1],
then only methods with small stability regions can be obtained and for such
methods d2 or d3 should be in the neighbourhood of 1, but in case d2 or d3
equals 1 the interpolation problem has no solution. For instance, for p32 =
1.5, d2 = 0.55 and d3 = 0.9 the method has a stability region as is shown in
Figure 2 and C6 = (0.28125 · 10−5, 0.867177 · 10−3, −0.7111306 · 10−3), such
that ‖C6‖2 = 0.112147 · 10−2.

0

0.02

0.04

0.06

0.08

0.1

Im(z)

–0.1 –0.08 –0.06 –0.04 –0.02 0
Re(z)

Figure 2: Stability region for the case where p32 = 1.5, d2 = 0.55 and d3 = 0.9.

After extensive numerical search (see e.g. Figure 3) where we take into ac-
count the length of the stability intervals along the real and imaginary axes and
also the value of the error constants, we have found that for p32 = −0.522, d2 =
0.904 and d3 = 1.141 the corresponding fifth order method has a stability in-
terval [−2.02, 0] and an interval at the imaginary axis of [−0.24, 0.24]. Fig-
ure 4, which plots this stability region, shows however that along the imag-
inary axis, stability is obtained in practice in the interval [−0.6, 0.6]. For
this method, C6 = (.254477 · 10−6, .305637 · 10−2, .198147 · 10−2) such that
‖C6‖2 = .364247 · 10−2. In Table 1 we give the coefficients, 16 figures accurate,
of this method.

Larger stability intervals can be obtained taking larger values of d2 and d3.
For example, for p32 = −1.45, d2 = 1.1 and d3 = 2.9, the interval along the real
axis is [−2.40, 0], but the value of ‖C6‖2 is about 40 times larger than for the
other method.

Let us analyze now the extension of the method to variable stepsize. Taking
c1 = 0, c2 = 0.904, c3 = 1.141 and p32 = −0.522 the method can be extended
to variable stepsize except for σ1 = (c3 − 1)/c2 = 0.155973 More specifically,
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Figure 3: Stability intervals along the real axis (top, left) and along the imaginary axis (top,
right) and the value of errc= ‖C6‖2 for p32 = −0.522.
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Figure 4: Stability region for the three–stage peer method with p32 = −0.522, d2 = 0.904 and
d3 = 1.141
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Table 1: Three–stages peer method with order 5, p32 = −0.522, d2 = 0.904, d3 = 1.141.

a11 = .8550915032094356 · 10−3, b11 = .17221562082482 · 10−3,
a12 = .6920062545834602, b12 = .4157917858290455 · 10−1,
a13 = .3071386539133304, b13 = −.1777025246226498 · 10−1,
a21 = 5.040475668342306, b21 = 1.11675014341160,
a22 = 6.195524959834524, b22 = 41.79901177123005,
a23 = −10.23600062817683, b23 = 21.92218031561608,
a31 = 2.631537032613216, b31 = .593029841197872,
a32 = 3.564843018724515, b32 = 20.47703416241365,
a33 = −5.196380051337731, b33 = 10.66647071584238,

r21 = −56.85542007719709,
r31 = −27.35949528575123,
r32 = .4704121159473891 .

taking for example J = [0, 2]\(0.15, 0.16), it can be seen that

maxσ∈J maxi,j≤3(|ai,j(σ)|) = maxi,j≤3(|ai,j(2)|) = 254.010,
maxσ∈J maxi,j≤3(|bi,j(σ)|) = maxi,j≤3(|bi,j(2)|) = 831.929,
maxσ∈J maxi,j≤3(|ri,j(σ)|) = maxi,j≤3(|ri,j(2)|) = 523.363

With this selection of the coefficients, the stepsize control algorithm must avoid
the values of σn close to σ1, which correspond to strong reductions of the step-
size, taking σn = 0.15 when this happens.

For c1 = −0.141, c2 = 0.763, c3 = 1 and p32 = −0.522 the method can be
extended to variable stepsize for all σ except for σ1 = (c2−1)/c1 = 1.6808, σ2 =
5.57297 and σ3 = (c1 − 1)/c1 = 8.0922 In this case, for J = [0, 2]\(1.6, 1.8),

maxσ∈J maxi,j≤3(|ai,j(σ)|) = maxi,j≤3(|ai,j(2)|) = 247.480,
maxσ∈J maxi,j≤3(|bi,j(σ)|) = maxi,j≤3(|bi,j(1.8)|) = 2146.400,
maxσ∈J maxi,j≤3(|ri,j(σ)|) = maxi,j≤3(|ri,j(1.6)|) = 1289.670.

With this selection of the coefficients, the stepsize control algorithm must
avoid the values of σ close to σ1 = 1.16808, which correspond to reasonable
increasing of the stepsize, limiting it to σ = 1.16 unless it is larger than 1.18.
In any case, this is not a dramatic limitation.

5. Numerical experiments

To show the performance of the peer methods above developed we present
here the results obtained with the following two problems:
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• Kepler’s problem

p′i = − qi
(q21 + q22)

3/2
, q′i = pi, i = 1, 2 ,

with initial conditions

p1(0) = 0, p2(0) =

√
1 + e

1− e
, q1(0) = 1− e, q2(0) = 0 ,

where 0 ≤ e < 1 is the eccentricity of the orbit. It is well known that
its solution is periodic with period T = 2π. We have taken e = 0.5 and
[0, 4T ] as integration interval.

• The Euler equations that describe the motion of a free rigid body

d

dt




y1
y2
y3


 =




0 ω3y3 −ω2y2
−ω3y3 0 ω1y1
ω2y2 −ω1y1 0






y1
y2
y3


 , (38)

where ω−1
j = Ij > 0 are the principal momenta of inertia and y =

(y1, y2, y3)
T is the angular momentum. We have taken ω1 = 1, ω2 =

1 − 0.51/
√
1.51, ω3 = 1 + 1/

√
1.51 together with the initial conditions

y1(0) = 0, y2(0) = 1 and y3(0) = 1. For these conditions, the solution is
periodic with period T = 7.45056320933097 . . . . The integration interval
considered was also [0, 4T ].

We have selected in our experiments two peer methods:

• The two-stage third order formula with optimal stability region, given in
(37) with c1 = 0.

• The three-stage fifth order formula given in Table 1, with c1 = 0.

In all the cases we have used a fixed stepsize, taking h = T/N for N = m 2i,
i = 0, 1, . . ., with m depending on the order of the method and the problem
being integrated, in such a way that for h = T/m the global error is smaller
than, but not far from 1. For example, for the Kepler problem integrated with
the fifth order formulas we have taken m = 20. To start the integration, the
stages corresponding to the first step were defined as the exact solution, that is,
Y0,k = (y(t0 + c1h)

T , . . . , y(t0 + csh)
T )T .

For each integration we have computed at each step the global error, mea-
sured in the Euclidean norm, and we have obtained the maximum of these val-
ues, GE. We have also computed the number of function evaluations required
NFCN at each integration.

First in order to verify numerically the order of the methods we plot the val-
ues of the global errors versus the stepsizes used, in double logarithmic scale. In
Figure 5 we can see clearly that the numerical order agrees with the theoretical
one for both methods.
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Figure 5: Numerical order of the peer methods of orders 3 and 5.
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Figure 6: Efficiency plot with the Kepler’s problem for the peer method of order 3 and the
Bogacki-Shampine RK method of order 3 (left) and for the peer method of order 5 and the
DOPRI RK method (right).

Next, to test the efficiency of the methods we have compared them with
standard RK methods of the same order. On one side we have considered
the Bogacki and Shampine RK method of order 3 [1], whose (2-norm of the)
coefficient of the leading term of the local error is 0.0418111 and its stability
interval is [−2.51, 0]. On the other side, we have considered the well known
Dormand and Prince RK method [4], that has an error coefficient 0.399080·10−3

and [−3.31, 0] as stability interval. Both RK methods have been used in the
ODE suit [14] in MATLAB.

In Figure 6 we display the efficiency plots, log10(GE) versus log10NFCN,
corresponding to the Kepler problem. It can be observed that the peer methods
are slightly more efficient than the RK methods in both cases.

In Figure 7 we display the efficiency plots corresponding to the Euler equa-
tions. It can be observed that the peer method of order three has a behaviour
similar to the one of Bogacki-Shampine formula, whereas the peer method of
order five seems to be slightly more efficient than DOPRI.
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Figure 7: Efficiency plot with the Euler’s equations for the peer method of order 3 and the
Bogacki-Shampine RK method of order 3 (left) and for the peer method of order 5 and the
DOPRI RK method (right).

In order to analyse these results, we must take into account that, in the
case of the third order methods, the peer formula requires two stages per step
whereas the RK formula requires three. Thus, if we want to compare them
at equal computational cost, we must scale the error coefficient of the peer
method by the factor (2/3)4 and its stability interval by 3/2. This gives us
0.028 and [−3.6, 0] for the peer versus 0.0418111 and [−2.51, 0] for the RK. This
can explain why the performance is slightly better for the peer method.

Regarding the fifth order methods, the DOPRI formula needs six function
evaluations per step, whereas the peer method requires only 3. Then we must
scale the error coefficient of the peer method by 1/26 and its stability interval
by a factor of 2. This gives us 0.569136 ·10−4 and [−4.04, 0] for the peer method
versus 0.399080 · 10−3 and [−3.31, 0] for the DOPRI, which can explain the
better performance of the peer method.

6. Conclusions

We have shown that fixed stepsize stable explicit two step peer methods
with s stages can attain order 2s − 1 and we have studied the extension of
these methods to variable stepsize. We have also obtained particular methods
with s = 2, 3 and orders 3 and 5 respectively. We have finally presented some
numerical experiments, showing that peer methods with optimal order can be
competitive with standard RK formulas with the same order. Further research
on variable stepsize implementations of these methods is in progress.
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