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Abstract—The construction of the impedance matrix in the
Method of Moments requires the calculation of interaction
integrals between the expansion functions, through the Green’s
function and its derivatives. The singular behaviour of the
Green’s function poses considerable problems for an accurate
numerical evaluation of these integrals, requiring techniques such
as singularity extraction or cancellation. In this contribution we
will show why these methods fail when the medium is highly
conductive. A novel technique is proposed to handle these highly
challenging integrals. The complexity of the new method is
independent of the conductivity.

I. INTRODUCTION

The Method of Moments (MoM) is one of the most power-

ful approaches for solving electromagnetic scattering problems

in piecewise homogeneous media. Its main advantage com-

pared to other techniques, such as the Finite Difference Time

Domain (FDTD) method and the Finite Elements (FE) method,

is that only the surface of the objects must be discretised. The

disadvantage, however, is that the resulting system matrix is

fully dense, describing the interaction between all expansion

functions by integrals with the singular 3D Green’s function,

given by g(r) = e−jkr

4πr , or its gradient as the kernel. Different

techniques to calculate these integrals have been proposed in

the past, focusing on regularising the 1
r

behaviour. The two

most prominent approaches are singularity extraction (SE) [1],

[2], [3], [4] and singularity cancellation (SC) [5], [6], [7].

However, both these techniques assume that the numerator of

the Green’s function, i.e. e−jkr , is a well-behaved function

with a fairly small absolute value of the derivative. Indeed,

for lossless media the wavenumber k is real and for the

usual λ
10 discretisation, the function cos 2πr

λ
− j sin 2πr

λ
is

smooth. In that case, the wavenumber k is given by ω
c

√
ǫrµr,

with λ = 2π
k

. For a very good conductor (with conductivity

σ ≫ ωǫ), we have that k ≈ 1−j
δ

, with the skin depth

δ =
√

2
ωµσ

[8]. Note that, in general, as the conductivity

σ becomes larger, both the real part and imaginary part of k

grow, and are approximately equal to each other in magnitude.

As a consequence, e−jkr becomes a function that is both

highly oscillatory and exponentially damped and can by no

means be considered as a smooth function to be handled by the

standard numerical quadratures. In fact, as will be shown later

in this contribution, a very specialised approach, tuned to this

damped behaviour, is required in order to accurately evaluate

the impedance integrals in highly conductive media. A similar

topic has been treated in [9], but in a different manner that,

to our knowledge, does not lead to a scalable solution (i.e.

a calculation time that is independent of the conductivity σ,

assuming the frequency does not vary). The outline of this

paper is as follows. Section II introduces the MoM interaction

integrals that occur when modelling a scattering problem at a

body with complex ǫ and µ. Section III gives a short overview

of the currently most widely used techniques for calculating

the singular or near singular impedance integrals and also

explains the reason for their breakdown when the interacting

medium is highly conductive. Section IV introduces our novel

method for tackling the impedance integrals in these media

and in Section V, this method is applied to a few challenging

cases. Essentially, the full-wave treatment (as opposed to using

a surface impedance) we propose is useful whenever the

thickness of the conductor becomes of the order of or smaller

than the skin depth. By means of numerical illustration and

validation, Section VI applies our approach to the case of

’tunnelling’ through a very thin conductive spherical shell.

Additionally, some further fields of application are suggested

that may benefit from this work.

II. IMPEDANCE INTEGRALS IN THE MOM

Discretisation of the Boundary Integral Equations (BIE) in

the MoM leads to a dense linear system, the matrix elements of

which describe the interaction, through the Green’s function,

between the expansion functions. Scattering at objects with a

permittivity ǫ and permeability µ (but neither infinitely lossy)

requires the introduction of two equivalent surface current

densities, electric and magnetic, which can be solved for

as the solution of the Poggio-Miller-Chang-Harrington-Wu-

Tsai (PMCHWT) [10] BIE. In this contribution, it will be

assumed that the surface current densities are expanded into

Rao-Wilton-Glisson (RWG) [11] functions (which we will

denote as b(r)), defined on a mesh of flat triangles, although

the proposed techniques have a broader field of application

(including an extension to a curvilinear mesh and the use of

higher order basis functions). The resulting matrix elements

require the calculation of the following integrals (as part of

the T and K operators [2]) over the support Si of the test

functions bi and the support Sj of basis functions bj :

I1 =

∫

Si

bi(r) ·
∫

Sj

g(R)bj(r
′)dS′dS (1)

I2 =

∫

Si

[∇ · bi(r)]
∫

Sj

g(R)[∇′ · bj(r′)]dS′dS (2)
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I3 = PV

∫

Si

bi(r) ·
∫

Sj

∇g(R)× bj(r
′)dS′dS (3)

with PV indicating the Principal Value of the integral. When

the supports of bi and bj overlap in at least a point, the above

integrals have a non-continuous integrand, although they are

integrable. For Si = Sj (the self patch case), I3 becomes zero.

In order to determine these integrals over a triangle, for each

possible b, it suffices to calculate the following integrals:

It1 =

∫

Si

r ·
∫

Sj

g(R)r′dS′dS (4)

It2 =

∫

Si

∫

Sj

g(R)dS′dS (5)

It3 = PV

∫

Si

∫

Sj

∇g(R)× r
′dS′dS (6)

To obtain the integrals I1, I2 and I3, these integrals It1, It2
and It3 are required, in addition to some others that are merely

variations in terms of the presence or absence of r or r′. The

reason both It1 and It2 are included here, instead of just one of

them, is to demonstrate in the examples that the presence of r

has no mentionable influence on the achieveable accuracy. In

short, if the three integrals above can be evaluated efficiently

and accurately, this also guarantees accurate evaluation of all

the integrals that are required in the impedance matrix.

In the next section, we will briefly revisit the techniques

of Singularity Extraction and Singularity Cancellation, the

workhorses behind most MoM implementations.

III. CALCULATION OF IMPEDANCE INTEGRALS IN

DIELECTRICS

In order to obtain an accurate solution from the PMCHWT

BIE, it is essential that the integrals described in the previous

section are evaluated with a relatively high accuracy. When

the expansion functions bi and bj are well-separated (i.e.

their distance from each other is considerably larger than their

size), the integrand is sufficiently smooth and a straightforward

Gaussian quadrature rule allows for exponential convergence.

More challenging are the cases when the supports overlap

(singular) or are very close (near-singular). Both situations

require a specialised approach that deals with the singular or

near-singular behaviour of the integrand.

We will first elaborate on the concept of Singularity Extrac-

tion, which is based on the fact that interaction integrals with

static kernels, for example 1
R

, can be integrated analytically.

As such, for instance, It2 can be rewritten as:

It2 =

[

∫

Si

∫

Sj

[g(R)− 1

R
]dS′dS +

∫

Si

∫

Sj

1

R
dS′dS

]

(7)

The second double integral is evaluated analytically and the

first double integral, from which the singular part is extracted,

is now regular. Note that, even though the first integrand is

now continuous, it is not C∞ because the first derivative, in

this example, displays a discontinuity at R = 0. Additional

terms have to be extracted for continuity in the derivatives [2].

Singularity Extraction can also be applied to the near-singular

case, in order to smooth the integrand and thus increasing the

efficiency. An essential assumption behind the philosophy of

Singularity Extraction is that, by extracting the singular (or

near-singular) static part, the remaining integral automatically

becomes suitable for numerical quadrature. As we will see

later, in the case of conductive media, this is not the case.

A second technique, in competition with Singularity Ex-

traction, is Singularity Cancellation. This method aims to

regularise the integrand by a suitable change of coordinates.

Considering again It2 as an example, a simple yet effective

transformation to polar coordinates in the inner integral would

do the trick:

It2 =

[

∫

Si

dS

∫ 2π

0

dφ

∫ R(φ)

0

g(R)RdR

]

(8)

where we have assumed, in order to more clearly demonstrate

the idea, that we are dealing with the self patch case (Si =
Sj). The Jacobian (R) compensates the 1

R
that appears in the

Green’s function and as such regularises the integrand to a C∞

function. An advantage of this approach is that it does not rely

on the existence of analytical solutions for the static part. This

allows for more flexibility in the expansion functions, paving

the way for higher order solutions.

IV. CALCULATION OF IMPEDANCE INTEGRALS IN

CONDUCTIVE MEDIA

In order to understand the difficulties that occur when

calculating the impedance integrals in conductive media, it

is instructive to look at the behaviour of the Green’s function

for various values of the conductivity σ, as shown in Fig. 1.

The pulsation ω is chosen equal to 300 MHz. The distance r

is varied from 0 to λ
10 , with λ the free space wavelength (with

ǫr = µr = 1). Note how even a relatively poor conductor

(with σ = 100S · m−1) dampens the Green’s function by

more than five orders of magnitude over a distance of about
λ
60 . Copper, one of the most widespread conductors in industry,

has σ ≈ 59.6 · 106S ·m−1, leading to a Green’s function that

is extremely localised around the origin.
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Figure 1. The absolute value of the Green’s function g(r) for a few values
of σ.

This behaviour explains why straightforward application

of techniques such as Singularity Extraction or Singularity
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Table I
THE WAVE NUMBER k (1/m)AND SKIN DEPTH δ (m) IN COPPER

(σ ≈ 59.6 · 106S ·m−1) AS A FUNCTION OF THE FREQUENCY f (HZ)
AND FREE SPACE WAVE NUMBER k0 (1/m).

f k0 k δ
103 2.96 · 10−5 (4.8507 − i4.8507) · 102 2.06 · 10−3

106 2.96 · 10−2 (1.5339 − i1.5339) · 104 6.52 · 10−5

109 2.96 · 101 (4.8507 − i4.8507) · 105 2.06 · 10−6

Cancellation break down for high conductivity, because they

neglect the highly oscillatory but at the same time exponen-

tially damped character of e−jkr . In addition, SE suffers from

numerical cancellation issues between the different extracted

terms. A numerical comparison for conductive media between

SE, SC and our novel approach will be given further in this

paper.

In order to introduce our new technique for treating these

integrals in conductive media, the explanation will be based

on It2. Further on it will also be shown how both It1 and It3
can be treated almost identically. So, in the remainder of this

section, we will be looking at a way to efficiently evaluate the

following integral:

Iij =

∫

Si

∫

Sj

g(R)dS′dS (9)

for arbitrary values of σ. In order to do this, a specialised

approach is required for both the inner and outer integrals.

A. Inner Integral

First, we will take a look at evaluating the inner integral,

namely

Ij(r) =

∫

Sj

g(|r − r
′|)dS′ (10)

where, although r can be anywhere in space, the most chal-

lenging and practically interesting cases are when r is very

close to Sj or even in it. The key to accurately integrate the

strongly pulsed behaviour is focusing the numerical quadrature

points only in those regions where the Green’s function has a

non-negligible value, based on a certain tolerance ε. The wave

number in a good conductor approximately satisfies

k ≈ |k|√
2
(1 − j) (11)

with |k| ≈ √
ωµσ (see Table I for some numerical values

using copper as an example). This allows us to approximately

express the numerator of the Green’s function in terms of |kr|
only,

e−jkr ≈
[

cos
|kr|√
2
− j sin

|kr|√
2

]

e
− |kr|√

2 (12)

The behaviour of this function is illustrated in Fig. 2 (with

x = |kr|).
Beyond a certain electrical length, the numerator of the

Green’s function drops to a fraction εcut compared to its value

in the origin. As such a certain cut-off value of r can be

determined, beyond which the remainder can be neglected,

namely

rcut = −
√
2 ln εcut
|k| = −δ ln εcut (13)
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Figure 2. The real part, imaginary part and absolute value of the function
[
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−

x√
2 .

With this knowledge, the inner integral can now be eval-

uated to any desired tolerance independent of σ. As a first

step, a similar transform as in the Singularity Cancellation

method is employed, namely a Duffy transformation, see, e.g.

[3]. As mentioned before, this allows for more flexibility in the

integrand and will in fact allow us to treat the inner integrals

of It1, It2 and It3 in an identical manner, despite the different

kernel. With respect to a carefully selected ro the integral

Ij(r) is transformed to polar coordinates (ρ, φ):

Ij(r) =

∫ φ2

φ1

dφ

∫ ρ2(φ)

ρ1(φ)

g(|r − (r0 + ρuρ)|)ρdρ (14)

This point ro is found by first projecting r into the plane of

the triangle Sj and calling this projection rp. If rp lies within

Sj , it is equal to ro. If rp lies outside the triangle, ro is that

point on the edge of the triangle that lies closest to rp. This

process of finding ro is illustrated in Fig. 3.

rp = ro

rp

rp

ro

(3)

(3)

ro
(2)

(1) (1)

(2)

Figure 3. The point ro is found as the point on the triangle (or its edge)
that is closest to rp. This is illustrated for three different possibilities of rp.

Once ro is determined, Sj is divided into one, two or three

triangles (depending on the location of ro), each having ro

as one of their corners. This is illustrated in Fig. 4. The total

integral is expressed as the sum of the integrals over these

subtriangles, a similar approach as, e.g., [7] and [12].

The integration over one subtriangle can be rewritten as

Ij(r) =

∫ φe

0

dφ

∫ ρe(φ)

0

g(|r − (r0 + ρuρ)|)ρdρ (15)
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Figure 4. The division into subtriangles for three different cases. The location
of ro is indicated by the small circle. Left: ro lies in the triangle, which is
subdivided into three parts. Middle: ro lies on the edge of the triangle, which
is subdivided into two parts. Right: ro lies on the corner of the triangle and
no subdivision is needed.

Let us first look at the radial integration for a subtriangle:

Ij(r, φ) =

∫ ρe(φ)

0

g(|r − (r0 + ρuρ)|)ρdρ (16)

The endpoint of the integration ρe(φ) is dependent on the

triangle shape, on the angular coordinate and also on the value

of rcut, which might truncate the integration domain. The latter

occurs when the endpoint is further away from r than the

distance rcut. In that case, the integration is carried out from

ρ = 0 to ρ = ρe,t, such that the new endpoint is rcut away

from r. This is illustrated in Fig. 5. Clearly, this cut-off does

not compromise the accuracy, due to the rapid decay of the

Green’s function.

ρ
r

r

o ρ= 0
e

ρ
e,t

cutr

Figure 5. The truncation of the radial integration domain from [0, ρe] to
[0, ρe,t] to keep all quadrature points within a distance rcut from r.

Regarding the shape of the integrand, it must be noted that,

while the polar coordinate transform is capable of cancelling

out a 1
R

singularity, I3j leads to a 1
R2 singularity. In addition,

due to the conductive behaviour, the function will in any case

have its least smooth behaviour around ρ = 0, although the

limitation of radial distance to rcut largely solves this problem.

One interesting approach to tackle integrands such as I3j
with possible endpoint singularities is the Double Exponential

(DE) transform [13], essentially mapping a [−1, 1] region on

a [−∞,+∞] region that can be handled with a trapezoidal

rule to exponential accuracy. This allows for the desired

flexibility in terms of kernel and expansion functions. The

radial integrand now becomes (supressing dependencies of φ

and assuming ρe to indicate the integration endpoint, whether

or not truncated to ρe,t):

Ij(r, φ) =
ρe

2

∫ ∞

−∞
g(|r−(r0+ρ(t)uρ(t))|)ρ(t)ψ′(t)dt (17)

in which ρ(t) = ρe

2 ψ(t)+
ρe

2 and with ψ(t) the so-called dou-

ble exponential transform given by ψ(t) = tanh
(

π
2 sinh(t)

)

.

To our knowledge, the DE transform was first employed for

the calculation of impedance integrals in [12], which also

contains a large amount of background on the technique.

The essential difference with regard to conductive integrals

is the use of rcut in this work. An alternative for DE is using

Gauss quadrature. Even though it cannot handle the singular

behaviour of I3j , it performs better for those integrals that

are regularised by the Duffy Transform (i.e. achieves roughly

one or two orders of magnitude additional precision for the

same number of quadrature points). So, in the case of the

self-patch, when I3j is zero, it would lead to a more efficient

solution. However, in any case different from the self-patch

we would need the K-operator in addition to the T-operator,

so our recommendation is to use the DE transform to calculate

the different radial integrals simultaneously, which reduces

the number of evaluations of the Green’s function, whilst

still achieving any practically desired tolerance. So, in the

remainder of this article we will use the DE transform (like

in our own MoM implementation for these integrals), but the

reader should be aware that Gauss quadrature can be a decent

alternative in some cases, but unfortunately fails in others. As

an example, integral (17) is evaluated for the following data:

r = (0, 0, d), ro = (0, 0, 0), uρ = (1, 0, 0) and ρe = 1. The

results are given in Table II for a few choices of the parameters.

The use of the truncation distance rcut essentially imposes

a maximal absolute error on the integral. If the interaction

distance d is well beyond the skin depth δ, this may lead

to a large relative error (because the value of the integral is

very small). However, in the MoM scheme, it is pointless

to evaluate these integrals to higher precision because they

barely contribute. Essentially, the more distant an interaction,

the less accurate its evaluation needs to be. That is exactly

what the use of rcut accomplishes. Note that in all numerical

experiments, both here and in the next sections, the values of

ǫrel are obtained through comparison with a numerical result

using a much higher amount of quadrature points, which is

used as the reference result.

Having control over the radial integral, it is now used as

the integrand for the angular quadrature:

Ij(r) =

∫ φe

0

Ij(r, φ)dφ (18)

Regarding the choice of quadrature rule and number of sample

points needed to evaluate (18), it is important to notice that,

when rcut is small compared to the dimensions of the triangle,

the integrand is actually not strongly dependent on φ because

in that case only a limited portion of the triangle has to be

integrated over. This is illustrated in Fig. 6. As such, in those

cases, as little as one integration point is usually sufficient.

When the conductivity is high, these cases will occur quite

often and it is worth detecting them. If the complete triangle

plays a role, then a Gaussian quadrature rule is employed. For
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Table II
THE RELATIVE ERROR (εrel) AND ABSOLUTE ERROR (εabs) FOR THE

NUMERICAL EVALUATION OF THE RADIAL INTEGRAL (17). THE NUMBER

OF QUADRATURE POINTS FOR THE DOUBLE EXPONENTIAL FORMULA IS

nρ .

δ d
δ

εcut nρ εrel εabs
10−2 101 10−3 17 1 1.8 · 10−8

10−2 101 10−5 17 0.6 1.07 · 10−9

10−2 101 10−7 17 0.11 2.05 · 10−10

10−2 101 10−7 33 1.5 · 10−4 2.77 · 10−12

10−2 101 10−7 65 2.8 · 10−5 5.05 · 10−13

10−5 10−10 10−3 17 1.2 · 10−2 4.92 · 10−8

10−5 10−10 10−3 33 5.8 · 10−5 2.3 · 10−10

10−5 10−10 10−3 65 5.8 · 10−5 2.3 · 10−10

10−5 10−10 10−5 33 1.8 · 10−5 7.1 · 10−11

10−5 10−10 10−5 65 8.5 · 10−8 3.4 · 10−13

10−5 10−10 10−7 65 1.3 · 10−10 5 · 10−16

most practical purposes, 8 sample points in φ turn out to be

sufficient. In order to illustrate the obtainable accuracy and the

fact that the complexity is independent of the conductivity, we

consider the following example. The triangle is defined by the

vertices (0, 0, 0), (1, 0, 0) and (0, 1, 0), the first of which is

chosen to be ro. Table III shows the accuracy of the angular

integral for a few locations of the observer point r, a few

values of k and different numbers nφ of sample points for the

angular integration. The radial integration was performed with

sufficient accuracy so as not to influence the results.

ro

Figure 6. The integration domain when rcut is smaller than the dimensions
of the triangle. In contrast, when rcut becomes larger, the integration domain
becomes the entire triangle.

Table III
THE RELATIVE ERROR (εrel) AND ABSOLUTE ERROR (εabs) FOR THE

NUMERICAL EVALUATION OF THE ANGULAR INTEGRAL (18).

δ rcut r nφ εrel εabs
10−3 0.011 (0.0, 0.0, 0.0) 1 9.99 · 10−6 4.4 · 10−11

10−3 0.018 (0.0, 0.0, 0.0) 1 9.99 · 10−6 4.4 · 10−10

10−2 0.11 (0.0, 0.0, 0.0) 1 9.99 · 10−6 4.4 · 10−9

10−2 0.11 (0.0, 0.0, 0.1) 1 0.22 4.4 · 10−9

10−2 0.11 (0.0, 0.0, 0.2) 1 1 4.4 · 10−13

10−1 1.15 (0.0, 0.0, 0.2) 1 8.18 · 10−5 4.8 · 10−8

10−1 1.15 (0.0, 0.0, 0.2) 8 2.49 · 10−5 15 · 10−8

10−1 1.15 (0.0, 0.0, 0.2) 16 2.34 · 10−5 1.4 · 10−8

It is clear that the previously described methods allow for

efficient and accurate evaluation of the inner integral (14).

Application of the DE technique and the introduction of

rcut makes the calculation time and accuracy independent of

Table IV
THE RELATIVE ERRORS AS A FUNCTION OF k = q − iq FOR EVALUATION

OF THE INNER INTEGRAL USING SINGULARITY EXTRACTION (WITH 15
TERMS), SINGULARITY CANCELLATION (WITH 17 QUADRATURE POINTS

BOTH FOR THE RADIAL PART AND THE ANGULAR PART) AND OUR NOVEL

APPROACH (USING THE SAME AMOUNT OF QUADRATURE POINTS AS SC
AND rcut FOR A TOLERANCE OF 10−2).

q ǫrel,SE ǫrel,SC ǫrel,novel

100 3 · 10−7 2 · 10−7 2 · 10−7

101 1 · 10−6 3 · 10−7 5 · 10−4

102 3 · 1029 5 · 10−5 1 · 10−2

103 4 · 1069 8 · 10−1 1 · 10−2

104 4 · 10109 1 · 100 1 · 10−2

the conductivity. The inner integral will now serve as the

integrand of the outer integral, over triangle Si. However,

before moving on to the outer integral, the numerical accuracy

and efficiency of our treatment of the inner integral will be

compared with that of Singularity Extraction and Singularity

Cancellation. The latter comes in many shapes, but here we

will simply employ our previously discussed technique, but

setting rcut = ∞, which reduces to a typical Duffy Transform.

Of course, other cancellation approaches may lead to different

results, but this example merely serves as an illustration of

the problems that will occur in, to our belief, all of them.

For Singularity Extraction, we use a formulation without a

’regular remainder’, i.e. we extract as many analytical terms

as is necessary for a sufficiently accurate result (in this case 15

terms) if there was no conductivity. For the numerical example,

we take a source triangle that has vertices at (0, 0, 0), (1, 0, 0)
and (0, 1, 0), with an observer point 10−7 above its center of

mass and we use a wavenumber k of the form q − iq. The

results are shown in Table IV.

As can be observed, the Singularity Extraction method

becomes numerically unstable and diverges, due to the many

terms that suffer from numerical cancellation. If only one or

two terms are extracted (instead of 15) and the remainder is

integrated numerically, a similar problem as with the Singular-

ity Cancellation technique will appear, which can not keep up

with the increasingly rapid variation of the Green’s function

and loses accuracy. The novel approach is less accurate and

more expensive at low losses but manages to stay within the

chosen tolerance for the cases of high conductivity, whereas

other methods fail in this region.

B. Outer Integral

The outer integral is given by

Iij =

∫

Si

Ij(r)dS (19)

and the others have a similar form and can also be treated

in a completely identical manner as will be described in

this subsection. However, for the sake of the argument, the

approach will be focusing on Iij,2. For the inner integral, the

key to efficient evaluation was a focusing of quadrature points

in the regions where the integrand is non-negligible (through

the choice of rcut and the use of the DE transform). A similar

objective lies behind the philosophy of the proposed method to

evaluate the outer integral. As an example, and to illustrate the
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difficulties, Fig. 7 shows two triangles Si and Sj that, when

projected onto each other, overlap only partially. When the

conductivity is high, the parts on Si that are not very close to

Sj (basically within the rcut range as previously determined)

will hardly contribute to the outer integral. If the two triangles

are parallel and right above each other, the integrand will in

fact hardly change at all. The only regions on Si where the

outer integrand is not smooth are those that are very close to

an edge of Sj , because in that case the inner integrand and

hence the result of the inner integration changes rapidly. In

order to accurately evaluate the integral, these latter regions

will require special care. Our novel approach is designed to

determine those parts of Sj that contribute to the outer integral

and to focus the quadrature points in those regions where the

integrand changes rapidly.
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Figure 7. The situation of two triangles that only partially overlap when
projected onto each other, with the dashed line indicating the projection of
the top triangle on the plane of the bottom triangle.

As a first step, the integration region on Si is reduced by

eliminating those parts that are too far from the plane of Sj

to give any contribution. This is obtained by calculating the

intersection (if any) between Si and the region between two

planes, one at a distance rcut below and parallel to Sj and a

similar plane above Sj . Depending on the configuration, this

leads to a single polygon with three, four or five edges. If there

is no intersection, Si is too far away from Sj and the entire

interaction integral, in view of the previously chosen tolerance

ε, can be considered zero. This process is illustrated in Fig. 8.

The next step attempts to further reduce the integration

domain and also identifies those regions where a rapid change

of the integrand can be expected. This in turn leads to a subdi-

vision of the integration domain in judiciously chosen subtri-

angles, such that in the end quadrature points are distributed in

such a way that the overall integration precision is guaranteed.

In order to achieve this, Sj is first projected onto the plane of

Si. This projection is subsequently extended (in the plane of

Si) with polygons, covering a distance of at least rcut from

the original projection. The reduced integration domain for the

outer integral is then determined as the intersection between

Si and Sj’s projection including its extensions. This process

is illustrated in Fig. 9. In this particular example, the plane of
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A Sj
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Y

Si
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X

Z

Figure 8. The domain of Si (lying in the yz-plane) is reduced to the darkly
shaded area (the polygon ABCD), which is the intersection between Si and
the (infinite) volume described by the plane of Sj (dashed thin line in the
xy-plane) and its upward projection (dashed thick line) over a distance rcut.

triangle Sj is parallel to that of Si (the geometry is shown

in Fig. 7). The solid black line in Fig. 9.a represents the

projection Sj,p of Sj in the plane of Si. We now first extend

this projection Sj,p over a distance rcut to the outside. This

extension is also shown in Fig. 9.a (the dashed lines). From this

it follows that the integration over Si can be restricted to the

darkly shaded area (denoted Ŝ). Refering to the reasoning put

forward w.r.t. the integration over φ in (18), it is clear that the

integrand will not vary uniformly over Ŝ. In order to guarantee

the overall integration precision, the boundary of the projected

triangle Sj,p is now also extended to the inside as depicted in

Fig. 9.b, finally leading to the subdivision of Ŝ in elementary

integration polygons (6 in this particular example), as shown

in Fig. 9.c. The numerical integration over these polygons now

leads to an overall positioning of the sample points accounting

for the exponential variation of the integrand imposed by the

Green’s functions (see Fig. 10 for a detail of the behaviour of

this integrand), as such making sure that the precision obtained

for the inner integration (10) does not get compromised when

performing the outer integration (19).

To further illustrate the principles put forward by means of

the example of Fig. 9, we again turn to the example shown

in Fig. 8. In this special case, the projection Sj,p of Sj on

Si reduces to the line AD in Fig. 8, as the planes of Si and

Sj are perpendicular. Applying the procedure followed in the

example of Fig. 9 now simply amounts to the reduction of the

outer integration domain to the polynomial ABCD.

The combination of the first and second steps guarantees

that the integrand in each polygon is non-negligible and that

each possible steep variation is covered by one polygon. In

a final step the actual integration needs to be carried out

over these domains. The easiest approach, which delivers

accurate results, is to divide each polyon into triangles and then

consider all these triangles separately. Numerical quadrature

over a triangle is already present in most implementations,

reducing the amount of programming required.
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Figure 9. (a) Triangle Si (lightly and darkly shaded area) is reduced to the
region forming its intersection with the projection Sj,p (solid line) of triangle
Sj and its extensions to the outside over a distance rcut (dashed lines). The

darkly shaded area Ŝ is the resulting domain for the outer integration. (b) In
addition to the outward extension, the projection Sj,p must also be extended
inwards. This does not change the total integration domain, but it influences
the division into polygons. The white dashed lines indicate the region that is
shown in detail in Fig. 10 (c) Schematic representation of the total integration
domain (identical to the darkly shaded area in (a) and (b)), subdivided into
the polygons over which the individual integrations takes place.

(a)

(b)

Figure 10. (a) A detail of the absolute value of the inner integrand (in dB), in
the region indicated by the the white dashed lines in Fig. 9.b. In that example,
rcut is equal to 0.05 and was chosen to achieve a 10−5 accuracy. Here we
see the exponential behaviour of the integrand near the edges (indicated by
the black lines), dropping below 10−5 beyond a distance rcut. The outward
extension of the projection is indicated by the white dashdot line. (b) Similar
to (a), but now showing the absolute value of the inner integrand (in dB)
minus its value at (0.4, 0.4, 0). The white dashdot lines indicate the inward
extension.

V. PERFORMANCE

This section will evaluate the performance and accuracy

for calculating the impedance integrals for a few of the most

interesting and challenging cases. The techniques described in

the previous sections will be applied to each of the integrals

It1, It2 and It3. Three particular geometrical situations will be

considered that are of particular importance to potential appli-

cations. These are the so-called self patch (when two triangles

overlap), the orthogonal neighbour patch (when they touch in

a line and have orthogonal planes) and the case of two parallel

triangles that are close to each other. Note that the self patch

for I3 is always zero and consequently that the self patch for

It3 does not need to be calculated. Note that the accuracy of

all results has been obtained through self-convergence (using

the same method but with higher precision and, consequently,

more quadrature points). For the low conductivity cases, our
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technique for the inner integral has been compared with SE

and SC (see also Table IV), which verifies the implementation.

The evaluation of the outer integral has been compared with an

adaptive technique (progressive refinement of the integration

region into more triangles), which is incredibly slow for higher

conductivity but does, eventually, confirm our results. For

every result, we generated a reference value that is at least two

orders of magnitude more precise, in terms of all parameters

(number of quadrature points for the radial, angular and outer

integral, as well as the tolerance for rcut).

A. Self Patch

The first example under consideration is that of the interac-

tion between two identical triangles, which is the cornerstone

of the impedance matrix. The triangle is defined by the vertices

(0, 0, 0), (1, 0, 0) and (0, 1, 0). The material through which

they interact is chosen to be copper (σ ≈ 59.6 · 106S ·m−1)

and the self patch integral is studied at different frequencies.

The challenging situations are those for which δ is small (or,

equivalently, |k| is large), which happens in the limits of high

conductivity and high frequency. The results are shown in

Table V. Note that the self patch contribution to the K-operator

is always zero [10], hence the omission of It3 for this example.

Table V
THE RELATIVE ERRORS (εrel,1 AND εrel,2) FOR THE NUMERICAL

EVALUATION OF THE IMPEDANCE INTEGRALS It1 AND It2 IN THE CASE OF

A SELF PATCH. THE NUMBER OF QUADRATURE POINTS USED FOR THE

OUTER INTEGRATION (19) IS GIVEN BY nO

f (Hz) δ εcut (nO , nφ, nρ) εrel,1 εrel,2
104 6.4 · 10−4 10−3 (24, 4, 33) 1.2 · 10−3 1.1 · 10−3

104 6.4 · 10−4 10−5 (312, 8, 33) 1.9 · 10−5 1.1 · 10−5

105 2.0 · 10−4 10−3 (24, 4, 33) 1.0 · 10−3 0.9 · 10−3

105 2.0 · 10−4 10−5 (144, 4, 33) 1.2 · 10−6 5.1 · 10−6

106 6.4 · 10−5 10−3 (24, 4, 33) 1.0 · 10−3 1.0 · 10−3

106 6.4 · 10−5 10−5 (84, 4, 33) 3.2 · 10−6 3.8 · 10−6

107 2.0 · 10−5 10−3 (24, 4, 33) 1.0 · 10−3 1.0 · 10−3

107 2.0 · 10−5 10−5 (84, 4, 33) 7.0 · 10−6 8.0 · 10−6

108 6.4 · 10−6 10−3 (24, 4, 33) 1.0 · 10−3 1.0 · 10−3

108 6.4 · 10−6 10−5 (84, 4, 33) 1.0 · 10−5 0.9 · 10−5

The results show that our approach is stable for small δ

and can also achieve a desired tolerance, for the frequency

ranging over many orders of magnitude. Further numerical

tests show that our approach is stable for δ at least as small as

10−14m, indicating the inherent robustness of our approach.

Actually, the critical parameter in determining the behaviour

of the integrand is δ
dm

, with dm the typical size of the mesh

elements (so dm = 1m for the self patch example). Taking

a closer look at realistic values of δ
dm

, two frequency ranges

need to be treated. In the case of high frequencies, dm will be

of the order of λ
10 (with λ the wavelength in the background

medium), while in the low frequency regime, dm is determined

by the geometry and can be considered independent of the

frequency. In the high frequency regime, with dm ≈ λ
10 , we

have that δ
dm

≈ 10
πc

√

ω
2µσ . As the frequency increases, the skin

depth decreases as 1√
ω

, but the discretisation of the triangles as
1
ω

, eventually leading to a situation where our special approach

is no longer required as the dimensions of the triangles become

even smaller than δ. However, for copper, δ
dm

= 1 for ω =

1.4 · 1018s−1 (or f = 2.2 · 105 THz), so in practice any high

frequency simulation for the microwave and millimeter wave

range involving copper (or other good conductors) requires

the techniques we previously described. At low frequencies,

we have δ
dm

= 1
dm

√

2
ωµσ

and the parameter depends both on

the frequency and the geometry. An important aspect that has

not yet been discussed before are the conditions under which it

is allowed to use triangles that are considerably larger than the

skin depth δ. Roughly said, this is valid when the curvature of

the geometry is sufficiently smooth in comparison with δ. As

a result, near sharp corners of a conducting object it will still

be necessary to refine the mesh in order to accurately catch

the electromagnetic behaviour. However, this can be done in

a localised manner, without affecting the mesh of those parts

that are smooth.

B. Neighbour Patch

Whilst the self patch is critical for the contribution due to the

T operator of the PMCHWT formulation [10], the associated

impedance integrals discretising the K operator are zero. The

most common neighbour patches, namely those where the two

triangles lie in the same plane, also result in a zero contribution

[10]. As such, here we will consider the case of two orthogonal

triangles that touch in one line (as shown in Fig. 8), which,

incidentally, is also of considerable practical importance. Si is

again defined by the vertices (0, 0, 0), (1, 0, 0) and (0, 1, 0),
while Sj has (0, 0, 0), (1, 0, 0) and (0, 0, 1) as its corners. The

remaining logarithmic edge singularity in the outer integral

is a well-known issue [10], but due to the focusing of our

quadrature points in a small region near the common edge,

relatively good and stable results can be obtained by simply

applying a brute force Gaussian integration.

Table VI
THE RELATIVE ERRORS (εrel,3) FOR THE NUMERICAL EVALUATION OF

THE IMPEDANCE INTEGRAL It3 IN THE CASE OF AN ORTHOGONAL

NEIGHBOUR PATCH.

f (Hz) δ εcut (nO , nφ, nρ) εrel,3
104 6.4 · 10−4 10−5 (210, 8, 33) 2.3 · 10−4

105 2.0 · 10−4 10−5 (210, 8, 33) 3.1 · 10−4

106 6.4 · 10−5 10−5 (210, 8, 33) 1.1 · 10−4

107 2.0 · 10−5 10−5 (210, 8, 33) 2.9 · 10−4

108 6.4 · 10−6 10−5 (210, 8, 33) 9.9 · 10−5

The results, shown in Table VI, demonstrate that it is

possible to obtain an accuracy that is more than enough for

most applications. If a still better accuracy is required, certain

approaches could be followed (e.g. [10]) to get rid of the

remaining edge singularity, but that is beyond the scope of

this paper.

C. Thin Plate Triangles

In a practical application, many of the impedance integrals

(for interaction through a conductive medium) will be neg-

ligible, simply because the triangles are too distant and the

kernel is highly lossy. In many cases, only the self patch,

neighbour patches and point patches (when two triangles
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touch in exactly one point) contribute (the so-called singular

integrals). However, one exception is that of very thin plates,

with a thickness of the order of the skin depth or smaller. In

that case, the interaction between the two walls through the

conductive medium has an important contribution and needs

to be accounted for. An important aspect regarding accuracy

is that these integrals do not require the same accuracy as

the self patch contribution because, due to the lossy nature

of the medium, they are perturbations of the diagonal. If the

self patch is known to 10−5 accuracy and the distance of

the wall leads to a 10−3 drop in interaction strength, then

only approximately 10−2 relative accuracy is required for

the interactions through the wall. Any additional accuracy

would get numerically lost in the uncertainty on the self

patch. Our approach automatically takes this into account

through the value of rcut. So, two types of relative errors

will be given in the results, namely εrel,2 =
|It2−It2,ref |

|It2,ref |
and εrel,2,s =

|It2−It2,ref |
|It2,sp| , with It2,sp the evaluation of the

self patch integral corresponding to Si. To make it more

challenging, we will consider triangles that, while parallel

(as is the case for thin walls), do not have a completely

overlapping support. This creates some difficulties for the outer

integral, solved by our approach. Si is defined by the vertices

(0, 0, 0), (1, 0, 0) and (0, 1, 0) and Sj by (1, 1, d), (0, 1, d)
and (1, 0, d), where d is the thickness of the plate (and the

distance between the triangles). The results will again focus

on the accuracy of It2. The results are shown in Table VII.

Table VII
THE RELATIVE ERRORS εrel,2 AND εrel,2,s FOR THE NUMERICAL

EVALUATION OF THE IMPEDANCE INTEGRAL It2 IN THE CASE OF

NEAR-SINGULAR PARALLEL TRIANGLES.

f (Hz) d εcut (nO, nφ, nρ) εrel,2 εrel,2,s
104 10−5 10−5 (112, 8, 33) 7.0 · 10−6 3.5 · 10−6

104 10−4 10−5 (112, 8, 33) 7.9 · 10−6 3.4 · 10−6

104 10−3 10−5 (112, 8, 33) 2.7 · 10−5 3.0 · 10−6

104 10−2 10−5 (112, 8, 33) 1 8.1 · 10−8

106 10−5 10−5 (112, 8, 33) 1.0 · 10−5 4.3 · 10−6

106 10−4 10−5 (112, 8, 33) 4.1 · 10−5 4.5 · 10−6

106 10−3 10−5 (112, 8, 33) 1 8.1 · 10−8

108 10−5 10−5 (112, 8, 33) 4.3 · 10−5 4.6 · 10−6

108 10−4 10−5 (112, 8, 33) 4.3 · 10−5 8.1 · 10−8

The cases where εrel,2 = 1 are the result of rcut being

smaller than d (meaning that the integral will be evaluated to

zero). However, as shown by εrel,2,s ≤ 10−5, this is within

our desired tolerance.

VI. NUMERICAL EXAMPLE

To illustrate the previously developed techniques, we will

consider the practical case of very thin, conductive walls,

which was in fact the original motivation for this work. If the

wall thickness is of the order of the skin depth or smaller, the

’tunneling effect’ cannot be neglected and a full-wave solution

is required. In order to allow verification of the numerical

result, a configuration will be chosen that allows comparison

with an analytical solution. Figure 11 displays this geometry

(not to scale), which consists of a hollow conductive sphere

with radius R and thickness d.

Rd

ε0

σ

k

0εE
in

Figure 11. The geometry for the numerical example.

The parameters are chosen as follows: R = 1m, d = 10µm,

σ = 59.6 ·106S ·m−1 (copper). The incoming plane wave has

a frequency of 4.77 · 107 Hz (so k = 1 for the background

medium) and is linearly polarised with k = (1, 0, 0) and

E
in = (0, 0, 1). The skin depth of copper at this frequency

is δ = 9.46µm. The surfaces of each sphere are discretised

in 584 triangles, leading to a total of 3504 unknowns. The

impedance integrals were calculated with a tolerance of 10−5.
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Figure 12. A comparison (between simulation and analytical result) of the
electric field after scattering at a very thin conductive shell.

The results are displayed in Fig. 12, comparing the total

simulated field with the analytical result obtained from the

Mie series. The results are plotted along the dashed line shown

in Fig. 11 (which is the x-axis). The error is represented as

10 log10(|Esim − Ean|), which is a measure for the distance

in the complex plane. As such, it compares the complex field

values, taking both amplitude and phase into account. The

distance between the data and the error can be interpreted

as the relative accuracy of the result. This is better than 1%,

except close to the walls. This is due to geometrical meshing

error (flat triangles are used to model a curved surface).

Similar results are very difficult to obtain with a method that

discretises the volume instead of the boundaries. In order to

catch this behaviour it is, however, necessary to accurately

evaluate the impedance integrals. An identical simulation,

but using traditional Singularity Cancellation (without rcut)

instead of our method, failed to converge.

In a second simulation, using the same geometry as shown

in Fig. 11, we evaluate the Shield Penetration (SP) for these
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enclosures for various values of d. The SP, in this case, is

defined as

SP = 20 log10

( |E(0, 0, 0)|
|Ein(0, 0, 0)|

)

(20)

The results are shown in Fig. 13 for d
δ

ranging from 0.1 to 10,

with the error defined in the same way as for Fig. 12. Clearly

the simulations agree very well with the analytical solution

throughout the entire domain.
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Figure 13. The Shield Penetration as a function of d, calculated both
analytically and numerically.

Of course, the accurate modeling of the tunneling effect

through a conductor is not the only application of this work.

A full-wave treatment (as opposed to using, e.g., a surface

impedance approximation) is necessary whenever the thick-

ness becomes of the order of the skindepth or when the inside

becomes important for other reasons, e.g. in the study of

the effect of corners or of impurities within the conductor.

Additionally, it provides a smooth extension of the full-wave

approach for dielectrics to conductors, without requiring a

sudden transition to surface impedances, possibly leading

to more reliable results in the transition zone. It may also

serve as a reference against which different high conductivity

approaches can be evaluated. A deeper investigation of all

these applications will be the subject of future work.

VII. CONCLUSION

In this paper, the accurate and scalable evaluation of

impedance integrals in a conductive medium has been treated.

An error-controllable approach was proposed that is stable for

the high conductivity limit, evaluating both the inner and outer

integral with care. The main novelty is with regard to the use

of a cut-off distance - at various places in the algorithm -

to more efficiently focus numerical effort. The performance

of the approach was shown through a few challenging case

studies (self patch, neighbour patch and near singular case)

and the example of very thin conductive shells. Finally, some

suggestions for application of this technique were listed.
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