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ABSTRACT:  

 

Objective: To summarize and evaluate proton (1H) and phosphorus (31P) magnetic resonance 

spectroscopy (MRS) findings in migraine. 

Methods: A thorough review of 1H and/or 31P-MRS studies in any form of migraine published 

until September 2011. 

Results:  Some findings were consistent in all studies, such as a lack of ictal/interictal brain pH 

change and a disturbed energy metabolism, the latter which is reflected in a drop in 

phosphocreatine (PCr) content, both in the resting brain and in muscle following exercise. In a 

recent interictal study adenosine triphosphate (ATP) was found to be significantly decreased in 

the occipital lobe of migraine with aura patients, reinforcing the concept of a mitochondrial 

component to the migraine threshold, at least in a subgroup of patients. In several studies a 

correlation between the extent of the energy disturbance and the clinical phenotype severity 

was apparent. Less consistent but still congruent with a disturbed energy metabolism is an 

observed lactate (Lac) increase in the occipital cortex of migraine with (prolonged) aura 

patients. No increases in brain glutamate (Glu) levels were found so far.  

Conclusion:  The combined abnormalities found in MRS studies imply a mitochondrial 

component in migraine neurobiology. This could be due to a primary mitochondrial dysfunction 

or be secondary to e.g. brain disexcitability. The extent of variation in the data can be attributed 

to both the variable clinical inclusion criteria used and the variation in applied methodology. 

Therefore it is necessary to continue to optimize MRS methodology to gain further insights, 

especially concerning Lac and Glu. 
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INTRODUCTION 

 

Migraine is a complex neurovascular disorder, involving complex genetics, multiple neurotransmitter 

systems, and multiple cortical and subcortical regions of the brain (1). Experimental migraine models 

have been useful but incomplete in reflecting the full scope of the human condition (2). At present, no 

integrative model exists to explain this multifaceted syndrome. Over the past 25 years, several 

magnetic resonance spectroscopy (MRS) studies have been performed in migraine patients. Whereas 

in the first ten years these studies comprised mostly phosphorus MRS (31P-MRS), a majority of proton 

MRS (1H-MRS) studies were performed since 2003. Although a large number of data have been 

generated, the contribution to our understanding of migraine pathophysiology by these heterogeneous 

studies is not straightforward. Of these thirty-one MRS-studies, two handled multinuclear MRS (i.e. 

both 1H-MRS and 31P-MRS) and another three used visual stimulation to excite the brain. Thirty 

studies covered one or more brain areas, predominantly the occipital cortex, although measurements 

were also performed in other cortical regions and non-cortical regions such as the basal ganglia. Only 

nine studies covered 31P-MRS of muscle tissue. Most studies emphasized on migraine with aura 

(MwA) and its rare subtype of hemiplegic migraine. To a lesser extent migraine without aura (MwoA) 

was covered, especially in combination with 1H-MRS. The majority of studies were obtained 

interictally. 31P-MRS results were mostly depicted as molar concentrations (i.e. absolute 

quantification), whereas 1H-MRS studies used almost exclusively ratios (i.e. relative quantification) to 

represent the results. 

 

A review of MRS data in migraine has not been performed since 2006 (3). We therefore embarked on 

an updated review of both 31P-MRS and 1H-MRS data . Besides discussing the objective MRS results, 

a critical review was made of patient and control inclusion criteria (i.e. migraine subtypes, regions of 

interest, age, gender, attack frequency, prophylaxis, ictal versus interictal) as well as methodological 

aspects (i.e. field strength, coil, MR-parameters, quantification method, assumptions concerning 

adenosine triphosphate or ATP) and their respective potential shortcomings. Eligibility criteria for 

papers to be included in this review were original articles in English on both 31P-MRS and 1H-MRS in 

muscle and brain of migraine patients, published up to September 2011 and available through 

MEDLINE using the search terms ‘Migraine’ and ‘Magnetic Resonance Spectroscopy’. This search 
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yielded 76 papers of which 30 original articles fulfilled eligibility criteria and were included. Two papers 

were excluded for language raison (one paper in Polish and one in Japanese), two more papers were 

excluded due to co-morbidities (lupus, during transient global amnesia). Among the 76 papers were 6 

review papers on MRS in migraine, as well as one additional MRS study in a rat model of migraine. A 

broader MEDLINE search with ‘Migraine’ and ‘Spectroscopy’ did not yield additional papers, but using 

the search terms “MRS” and ‘migraine’ 1 additional eligible paper was identified, bringing the total of 

original articles to 31. Citation lists of all original articles and review papers were searched for 

additional references, but none were found. A Web of Science search using search terms ‘Migraine’ 

and ‘Magnetic Resonance Spectroscopy’ did not yield additional original articles. 

 

31P-MRS FINDINGS 

 

31P-MRS is a noninvasive tool to analyze energy metabolism of brain, muscle and other tissues (4). 

Under normal aerobic circumstances, ATP is produced through glycolysis and oxidative 

phosphorylation. ATP can also be generated through transfer of inorganic phosphate (Pi) from 

phosphocreatine (PCr) to adenosine diphosphate (ADP) via the creatine kinase reaction. 

Anaerobically, the brain switches to the significantly less efficient anaerobic glycolysis to produce ATP. 

The concentrations of ATP ([ATP]), PCr ([PCr]) and Pi ([Pi]), as well as phospholipids can be derived 

directly from the 31P-spectrum (Fig. 1A). Additional parameters can be calculated, such as the PCr/Pi 

ratio (which reflects the energy status of the cell), the phosphorylation potential defined as 

ATP/(ADPxPi), the ADP concentration ([ADP]) and the percentage of v/vmax (the ratio of the actual 

velocity of oxidative metabolism to the maximum oxydative capacity). The concentration of 

magnesium ([Mg2+]), which is an important cofactor in the creatine kinase reaction, as well as the 

intracellular pH (pHi), can be calculated from chemical shifts in the spectra. Table 1 gives a detailed 

overview of 31P-MRS studies in the brain of migraine patients.   

 

BRAIN 

 

Ictal changes 
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Only the group of Welch et al. measured brain energy phosphate metabolism and pHi during migraine 

attacks in both MwoA and MwA patients (5, 6). They observed a significant reduction of the PCr/Pi 

ratio in both anterior and posterior brain areas of MwA (but not in MwoA) patients, indicating a low 

availability of free cellular energy, but there was no alteration in brain pHi during attacks (as well as 

interictally). Additionally, low magnesium levels were observed during migraine attacks without 

changes in pHi (7). These early 31P-MRS studies in migraine failed to support the prevailing concept at 

that time that migraine pain was caused by brain ischemic acidosis, but rather suggested a disordered 

energy metabolism during a migraine attack. 

 

Interictal changes 

Most 31P-MRS studies were performed interictally, but the duration of the headache-free interval is 

rarely specified. Interictal phosphorus brain abnormalities in occipital lobes were common to different 

subtypes of migraine, such as MwoA (5, 6, 8-12), MwA (5, 6, 9-11, 13, 14), familial hemiplegic 

migraine (FHM) (11, 15), basilar-type migraine (10, 14), migraine with prolonged aura (9, 10, 16, 17) 

as well as in migrainous stroke (9, 10, 16, 18). A few studies report similar results in other brain 

regions, including the basal ganglia (19) and frontotemporal (11, 20) and parietal brain areas (20). 

First of all, a significant decrease in [PCr] (8, 9, 12-15, 17) and an increase in [Pi] (13-15, 17) resulting 

in a reduced PCr/Pi ratio (5, 16, 17, 19, 20) were the most generalized observations, regardless of the 

brain region. One study, Boska et al., reported only a depletion of PCr in anterior brain regions of MwA 

and the occipital cortex of FHM patients (11). The calculated value of the phosphorylation potential 

was significantly decreased in migraine patients, as reported in a number of studies (8, 9, 12-15). The 

brain [ATP] was always assumed constant and equal to normal controls, being 3 mM or was not 

mentioned at all, except for Reyngoudt et al. who quantified [ATP] in the occipital lobe of MwoA 

patients and found a significant decrease compared to controls, at least in a subgroup of patients (12). 

A significantly increased [ADP], indicating that brain tissue is working at a higher metabolic rate and 

hence has a lower energy reserve, was also frequently observed (8, 9, 13-15, 18). The percentage of 

v/vmax was found to be significantly increased in migraine patients (8, 9, 14, 15). 

pHi was measured in all abovementioned studies and no significant pHi-changes were observed in all 

but three studies (13, 14, 18). The pHi-changes found in these studies should be regarded carefully, 

though, because of the presence of large standard deviations (13), borderline significance (14) or 
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migrainous stroke (18). The same remark holds true for Mg2+, an essential cofactor for mitochondrial 

membrane stability and in oxidative phosphorylation, which was found significantly decreased in a 

minority of studies (7, 10, 11, 14). 

The combined abovementioned abnormalities suggest a mitochondrial component in the neurobiology 

of migraine, at least in a subgroup of patients. Indeed, a similar cerebral 31P-MRS pattern has been 

observed in some mitochondrial cytopathies (21, 22). However, a consistent pattern of mitochondrial 

abnormalities (e.g. from muscle biopsies or mitochondrial DNA analysis) in migraine has not emerged, 

and these steady state measurements reflect the balance of ATP demand and mitochondrial 

function/ATP production (4). Anyhow, the data suggests the brain of migraine patients is compromised 

to deal with metabolic stress. 

It seems that the cerebral 31P-MRS findings correlate with the severity of the clinical phenotype in 

several studies (10, 12, 16, 19) . Reyngoudt et al. observed a reduction in [ATP] in patients with the 

highest attack frequency and suggested that the existence of (a) subgroup(s) may explain apparent 

contradictions between previous studies as most were performed on small and/or heterogeneous 

patient groups (see further) (12). 

 

MUSCLE 

Several 31P-MRS studies also reported a defective energy metabolism in skeletal muscle tissue 

(always in the gastrocnemius muscle except for two studies which did not specify which calf muscle), 

including MwoA, MwA, migraine with prolonged aura, FHM and migrainous stroke patients (8, 13-18, 

23, 24). The measurement paradigm generally existed of a rest period, followed by an exercise period, 

and again followed by a rest period. The (isokinetic) exercise involved pressing a pedal (plantar 

flexion) connected with a pneumatic ergometer and the cycle rest-exercise-rest was repeated several 

times. Most 31P-MRS muscle studies showed no significant differences in phosphorus metabolites 

between patients and controls at rest (8, 13-15, 17, 18). However, following exercise patient's muscles 

had a lower PCr content and a higher Pi content than controls showing a slower recovery of both PCr 

and Pi, which is reflected in an elevated recovery time constant. According to Uncini et al., the degree 

of muscle oxidative metabolism defect in FHM patients seemed to be correlated with the clinical 

phenotype (15). PCr and Pi concentrations at rest and during work and recovery were calculated 
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assuming an intramuscular ATP concentration of 8 mM (25). These 31P-MRS data suggest a 

multisystem oxidative metabolism defect, including both muscle and brain tissue. 

 

1H-MRS FINDINGS 

 

1H-MRS allows the detection of a number of important neurotransmitters, such as glutamate (Glu) and 

γ-aminobutyric acid (GABA) and related compounds such as glutamine (Gln), as well as the 

endproduct of anaerobic glycolysis, lactate (Lac) (26). Glu is the major excitatory neurotransmitter in 

the central nervous system and constitutes with Gln the so-called Glu-Gln cycle. N-

acetylaspartylglutamate is the most abundant peptide neurotransmitter in the mammalian central 

nervous system, consisting of NAA and glutamic acid coupled via a peptide bond, and is thought to 

play a role as a major osmolyte in the vertebrate brain (46). Other metabolites including N-

acetylaspartate (NAA), total creatine (tCr, ‘total’ referring to the contribution of both creatine and 

phosphocreatine), choline (Cho) and myo-inositol (mIns) are also found abundantly in brain using 1H-

MRS (Fig. 1B). NAA is considered a neuronal marker of particular axonal integrity whereas mIns is 

assumed to be a glial marker. NAA is synthesized and located predominantly in neuronal 

mitochondria, and assumed to be involved in mitochondrial/cytosolic carbon transport. mIns is at the 

center of a complex metabolite pathway involving inositol phosphates and inositol phospholipids which 

have well established functions in signal transduction and in Ca2+ homeostasis in the central nervous 

system. tCr depicts the combined spectral resonance of both creatine and PCr, that together play a 

role in the creatine kinase reaction. Finally, Cho reflects membrane turnover. Table 2 gives a detailed 

overview of 1H-MRS studies in the brain of migraine patients. 

 

Lac 

An early 1H-MRS study showed elevated interictal levels of cerebral Lac in the occipital cortex of a 

heterogeneous group of migraine patients (i.e. three MwA patients, one basilar-type migraine patient, 

one migrainous stroke patient and one migraine with prolonged aura/ migrainous stroke patient) (27). 

A similar observation was made in the cerebellum of four patients with FHM2, a rare subtype of MwA 

(23). In a functional 1H-MRS study, visual stimulation resulted in a Lac increase in the occipital visual 

cortex of MwA patients with both visual symptoms and paraesthesia, paresis and/or dysphasia, but not 
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in MwA patients with only visual symptoms, in which Lac was already higher than normal in the resting 

state (28). The authors of the abovementioned studies suggested that the accumulation of Lac was a 

marker for a disturbance in oxidative glycolysis, related to energy metabolism impairment, which is 

typical for mitochondrial diseases (29). Recent studies, however, performed by Reyngoudt et al. at 

higher field strength (3T) in MwoA patients did not demonstrate significant increases in Lac, both at 

rest (30) and following visual stimulation (31). It was postulated that the lack of stimulation-induced 

Lac increase in MwA, as reported in Sandor et al. (28), and also in patients with mitochondriopathies 

might be partially attributed to a saturation of Lac transporter systems (32). In the subgroup of MwA, 

with high resting-state Lac levels, it was hypothesized that the aura was limited to the visual cortex, 

whereas in the subgroup of migraine patients with both visual symptoms and paraesthesia, paresis 

and/or dysphasia, this was not the case. Experiments demonstrated that decreased pHi, which would 

accompany increased extracellular Lac, is an inhibiting factor for cortical spreading depression (CSD), 

which is believed to be at the basis of the aura symptoms (33). However a decrease of pHi has never 

been observed, and an accurate detection, let alone accurate quantification of Lac, is cumbersome 

and will be discussed further on in this paper.   

 

NAA 

A functional 1H-MRS study reported significantly reduced NAA levels in the occipital cortex of MwA 

patients but not in MwoA patients compared to controls, before and following visual stimulation (34). 

The authors hypothesized the presence of less efficient mitochondrial functioning in MwA patients 

compared to MwoA patients and controls (34), and that the reversible loss of NAA during visual 

stimulation is due to a redistribution of NAA from the intra to the extracellular space which would result 

in a variation in chemical environment that may alter its magnetic resonance visibility (35). The 

hypothesis of a mitochondrial deficiency was also put forward by a study in which decreased NAA was 

found in the (left) thalamus of MwoA patients (36). Finally, a reduced NAA concentration was also 

found at rest in the cerebellum of FHM1 patients (37), in the left temporoparietal cortex (site of 

migrainous stroke) of a sporadic hemiplegic migraine (SHM) patient (38) and in the occipital cortex of 

another SHM patient (39), which has been rather attributed to neuronal impairment or loss. The latter 

is obvious in migrainous stroke but may also fit with the frequently observed cerebellar atrophy in FHM 

(40). 
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Glu/Gln 

Glu levels were found to be markedly reduced in the cerebellum of FHM1 patients in a 1H-MRS study 

performed at 1.5 T (37). However, methodological aspects including a potential spectral overlap of 

Gln- and GABA-resonances at 1.5 T make it difficult to assess these changes. According to Dichgans 

et al., the reduction of Glu may in part reflect neuronal impairment as was already indicated by a 

concomitant NAA reduction (37). Another possibility to explain the decreased Glu levels is an impaired 

glutamatergic neurotransmission. The latter hypothesis, however, is in contrast with a prediction of 

enhanced glutamatergic neurotransmission in FHM1 patients, based on a gain of function of pre-

synaptic Ca2+ channels by CACNA1A mutations (41). The concomitant decrease in Glu and NAA 

(described above) are therefore likely to be attributed to atrophy. 

Recently susceptibility loci for migraine, both MwA and MwoA, have been described in genome-wide 

association studies, and some refer to Glu homeostasis (42-44). Although no significant metabolite 

differences were observed in a study using two-dimensional 1H-MRS, linear discriminant analysis 

revealed a separation between migraine patients and controls based on Gln and N-

acetylaspartylglutamate in the anterior cingulate cortex (ACC) and insula, suggesting glutamatergic 

abnormalities in the brain of migraine patients compared to controls (45). At present, however, there is 

no direct proof of altered brain glutamate levels in MwA and MwoA. 

 

mIns     

Limited data are reported concerning mIns. A decreased mIns content was found in the left 

temporoparietal cortex of one SHM patient during prolonged hemiparetic migraine aura (38). Another 

study in FHM1 patients showed an increased interictal cerebellar mIns concentration (37). As mIns is 

considered an in vivo glial marker, an increase in this metabolite would signify a regional glial cell 

proliferation (46), which could be in line with an autopsy report that gave evidence of a proliferation of 

astrocytes and gliosis in the cerebellum of a CACNA1A mutation carrier (47).  

 

Cho 

A single study reports a decreased Cho level in the cerebellum of MwA patients, suggesting a 

variation in membrane turnover and/or composition (48). 
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METHODOLOGY 

Not only have MRS studies been performed in a wide variety of migraine subtypes and brain regions 

(see Tables 1 and 2), they also have been performed using different strategies concerning the 

recruitment of patients and control subjects (Table 3) and there are substantial methodological MRS 

differences (Table 4). We will discuss these important methodological aspects, before we attempt to 

draw general conclusions from the body of MRS literature in migraine so far. 

 

REGIONS OF INTEREST 

 

Occipital 

In most studies the occipital cortex was chosen as the region of interest (5-11, 13-18, 23, 27, 28, 30, 

31, 34, 37, 39, 49). According to several studies this was due to the fact that aura, with most often 

visual symptoms, could be attributed to this area in MwA patients (13, 27, 37, 49). However, aura 

symptoms are experienced by 20-30% of migraine patients. Consequently, other reasons for 

performing measurements in the occipital lobes are more of a practical nature, including its ideal 

location for high signal-to-noise ratio when using surface coils, as stated in several early MRS studies 

(5-7), and the fact that it is easily stimulated (28, 31, 34).  

 

Frontal regions, ACC, insula, cerebellum, hypothalami, thalami,… 

Frontal regions were investigated in some earlier studies based on the hypothesis that CSD 

progressed anteriorly (5-7). Frontal regions, including the primary motor cortex, were also examined in 

a few more recent studies, including a study covering FHM and migrainous stroke (11, 20). Moreover, 

in the study of Prescot et al. (45) the ACC as well as the insula were under investigation for reasons 

that both brain areas are implicated in the perception of pain (50, 51). MRS was also performed in the 

cerebellum of MwA (48) and FHM patients (37). The cerebellum was investigated in FHM patients 

since a substantial proportion develop cerebellar degeneration (37). Subclinical cerebellar 

abnormalities have been described and are more pronounced in MwA than MwoA (52), but the 

cerebellar volume in MwA is unaltered (53). The thalamus and hypothalamus, subcortical structures 

involved in the pathophysiology of migraine attacks, were investigated in MwoA patients (1, 36) and 
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(probable) chronic migraine (54) respectively. Several other studies focused on larger brain regions, 

both grey and white matter, for different reasons (see Table 1 and 2 for details), including the 

hemisphere on the side of the headache (5-7), the site of MRI abnormalities (38), or to look at white 

matter specifically (19).  

 

Muscle 

31P-MRS of muscle was always conducted in the right calf muscles (almost exclusively in 

gastrocnemius muscle except for two studies where the muscle type was not specified) (8, 13-18, 23, 

24). Reasons for this are practical since surface coils can easily be positioned around the calf, 

gastrocnemius is a large enough muscle to perform localized spectroscopy and calf muscles can 

easily be fatigued by employing an ergometer. 

 

PATIENTS AND CONTROLS 

 

Age and gender 

All but five studies (9, 18, 19, 37, 39) reported the age-ranges of both migraine patients and controls. 

Overall, most subjects were between 20 and 45 years of age, but there are limited data in children and 

adolescents (14, 17, 39, 49).  

Migraine patients and controls were matched for both gender and age in merely four studies (10, 14, 

23, 31, 45), for age specifically in approximately 50 % of the studies (8, 11, 12, 17, 19, 27, 28, 30, 34, 

48, 54) and for gender specifically in one study (36).    

 

Migraine subtypes and attack frequency 

Patient groups did not always exist of a homogeneous migraine subtype making interpretations of 

metabolic alterations not always as straightforward. Montagna et al. performed 31P-MRS in a large 

cohort of migraine patients including MwoA patients, MwA patients and a group of 'complicated' 

migraine patients, the latter comprising both migrainous stroke and migraine with prolonged aura (9). 

In Lodi et al., 31P-MRS was performed in a migraine group consisting of MwoA, MwA, basilar-type 

migraine, migraine with prolonged aura and migrainous stroke as well as in a group of cluster 

headache patients (10). Both studies, Montagna et al. (9) and Lodi et al. (10), did not mention 
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migraine attack frequencies. Watanabe et al. reported elevated Lac levels in the occipital cortex of five 

(two with MwA, one with basilar-type migraine, one with migrainous stroke and one with migraine with 

prolonged aura/ migrainous stroke) out of six investigated migraine patients (27). The migraine patient 

group in the study of Sandor et al. was also rather heterogeneous, including patients suffering from 

MwA, migraine with prolonged aura and MwAplus, the latter consisting of patients who had visual aura 

associated with at least one of the following: paraesthesia, dysphasia or paresis (some perhaps 

should have been labeled hemiplegic migraine ?) (28). In Prescot et al., they mention patients who 

suffered from acute episodic migraine without verifying whether it concerned MwoA or MwA (45). In 

several studies the criteria for 'migraine attack frequency' were not very stringent (13, 19, 20, 34, 37) 

or were lacking altogether (5-7, 9-11, 15, 24, 48, 49). 

Several studies, though, did cover homogeneous patient groups who experienced a well-defined 

number of attacks, as was the case for MwoA (8, 12, 13, 30, 31, 34), MwA (19, 34) and FHM1 (37). 

 

Ictal versus interictal 

In all but a few studies migraine patients were scanned interictally, mostly because of obvious 

practical reasons but also to explore the interictal character of the disorder rather than the attack itself. 

Attack-free intervals ranged from 48 hours (12, 27, 30, 31) to a few days (11, 28, 34, 49), from a week 

(5-7, 10, 14) to more than a week (17, 19, 20, 23, 39). In all other studies no information concerning 

the attack-free period is specified (8, 9, 13, 15, 16, 18, 24, 36, 37, 45, 48, 54).   

The first 31P-MRS studies in migraine, however, were studies in which both ictal and interictal 

measurements were performed, yet in two different fractions of the migraine patients (5-7). In these 

aforementioned studies not one patient underwent both an ictal and interictal measurement or had an 

aura at the time of the study. These ictal spectra were measured between 3 and 48 hours following 

the headache onset (5-7). Finally, Jacob et al. obtained an ictal 1H-MR spectrum during a long-lasting 

migraine attack of a SHM patient (38).   

 

Prophylaxis: yes or no? 

Most studies described the lack of use of prophylactic medication in a certain (in most cases not 

defined) time period before as well as during the course of the MRS-experiments (8, 9, 11-14, 16, 18, 

24, 30, 31, 34, 36, 39, 49). In quite a few other studies, however, no information about the medication 
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history of migraine patients is given (15, 17, 19, 20, 27, 28, 37, 48, 54). Furthermore, in the earliest 

MRS-studies (5-7) as well as in Prescot et al. (45), a small minority of patients studied ictally were 

taking medication for migraine prophylaxis.  

 

MRS METHODOLOGY 

 

Methodological differences may also explain the discrepancies found in MRS studies in migraine. 

Methodological aspects include the choice of magnetic field strength, coil, localization technique, 

repetition time, echo time, flip angle, (pre)processing steps, signal estimation, quantification 

procedure,... These aspects can be found in Table 4. 

 

Magnetic field strength and coils 

Only a minority of the studies was conducted at higher field strengths (i.e. ≥ 3 T) (11, 12, 30, 31, 37, 

45), providing greater spectral resolution, which allows more accurate metabolite quantification and 

determination of spectral frequencies, which is also the basis of pH and [Mg2+] calculations. A potential 

spectral overlap of Gln- and GABA-resonances was mentioned in a 1H-MRS study performed at 1.5 T 

by Dichgans et al. (37). The variability in the MRS data reflects a combination of true variation 

between study subjects and experimental variation, which mainly arises from the signal-to-noise ratio 

of the acquired spectra. It is possible that the signal-to-noise ratio, in particular in 31P-MRS with the 

inherent lower sensitivity of the 31P-nucleus, did not allow to detect significant differences between 

controls and some patient subgroups. This holds true for 1H-MRS as well and the detection of more 

subtle metabolic changes, such as a rise in Lac in healthy volunteers (28, 34), could be achieved with 

high-field MR systems and/or the use of surface coils.  

Indeed, the detection of Lac has long been a burning issue in MRS. It should be emphasized that Lac 

is a low-concentration metabolite in healthy brain tissue (i.e. in the orders of 0.2-1 mM). And although 

early functional 1H-MRS studies, performed at lower field strength (i.e. 1.5 T), found Lac increases of 

60-150% (55-57), Mangia et al. (58-60) reported in several advanced 1H-MRS studies, performed at 7 

T, an increase in [Lac] of 0.1-0.2 mM following visual stimulation and corresponding to an increase of 

only 20%. A Lac increase of up to 0.2 mM is unlikely to reflect a switch to anaerobic glycolysis, 

according to Mangia et al. (59, 60). Considering these results and the fact there is very little 
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information about absolute Lac values in the migrainous brain, except the 3 T functional 1H-MRS study 

of Reyngoudt et al. in which Lac concentrations of 0.5-0.6 mM were found in controls and MwoA (31), 

one should be very careful concerning Lac quantification as well as the interpretation of the results.  

 31P-MRS studies were generally performed using surface coils because of a high achievable signal-

to-noise ratio (5-10, 13-20, 23, 24). Volume coils were employed in most 1H-MRS studies (19, 23, 28, 

30, 31, 34, 36, 45, 48) compared to in only two studies performing 31P-MRS (11, 12). In a few studies 

information concerning coil specification was lacking (37-39, 49).  

 

MRS measurement parameters 

Table 4 describes which MRS localization technique was used in each study. The majority of 31P-MRS 

studies made use of the depth-resolved surface-coil spectroscopy (8-10, 13-18, 23, 24) whereas 1H-

MRS was mostly performed using point-resolved spectroscopy (19, 20, 27, 28, 30, 31, 34, 36-39, 54). 

The advantages of single voxel applications are a homogeneous magnetic field across the volume, 

good spectral resolution and the measurement of a well-defined volume, although the latter can 

simultaneously be seen as a main drawback since other important areas may be missed. This can be 

solved by multivoxel applications although this increases measurement times significantly. Moreover, 

magnetic field inhomogeneities across an entire object, inherent to multivoxel measurements, make 

quantitative spectroscopy quite challenging.    

The choice of specific MRS measurement parameters such as echo time and repetition time may also 

have a substantial effect on the acquired spectra. Spectra acquired at short echo time often reveal a 

complex spectral pattern and severe overlap of broad resonances from macromolecules and lipids, 

further complicating the accurate assessment of changes in metabolites. Moreover, long echo times 

are often preferred for the detection of low-concentration resonances such as Lac (19, 20, 27, 28, 31, 

34, 36, 39, 45).  

 

Signal processing 

Signal processing procedures differed extensively between studies over the years. The Welch group 

initially used basic triangulation to determine signal areas of 31P-peaks (5-7), whereas the Bologna 

group quantified phosphorus data using a user-interactive curve fitting program (8-10, 13-18, 24). 

Later 31P-MRS studies used scanner software (11, 19, 20, 34, 45), LCModel (23, 37, 45) or the 
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AMARES (30, 48) and/or QUEST (31) algorithm (jMRUI). Information regarding signal estimation was 

not reported in the remaining studies (27, 28, 38, 39, 49, 54). 

 

Quantification 

Relative quantification was performed by calculating the ratios between peaks and was conducted in 

approximately half of the studies (see Table 4). In 31P-MRS studies this involved in most cases the 

PCr/Pi ratio while in 1H-MRS studies metabolites were generally normalized to tCr, which is assumed 

to be relatively constant. However, changes in the tCr content have been observed in several 

conditions and one should be cautious when using tCr as an internal reference (see review in (46)).  

In the remaining studies attempts were made to perform 'absolute' quantification. In almost all 31P-

MRS studies in migraine (8-10, 13-15, 17, 18) metabolites were assessed by assuming a constant 

cytosolic ATP concentration of 3 mM (61), since no absolute data on ATP concentration in human 

brain of migraine patients exist. In Reyngoudt el al. (12), however, [ATP] was quantified, based on the 

fact that β–ATP is proportional to the total cellular ATP content (62, 63). Similarly, muscle ATP 

concent was assumed to be a constant 8 mM (15, 23). Dichgans et al. (37) and the more recent 

studies of Reyngoudt et al. (12, 30, 31) are the only 1H-MRS studies reporting 'absolute' metabolite 

values, and included also the incorporation of some additional correction factors (see Table 4).  

 

Functional paradigm 

Three different functional 1H-MRS studies used three different functional paradigms, as can be seen in 

Table 4 (28, 31, 34, 64). Stimulation duration varied from around 13-15 min. (28, 31) to 25 min. (34). In 

comparison, the studies of Mangia et al. mentioned earlier (58-60), performing functional 1H-MRS at 7 

T using a radial red/black checkerboard (8 Hz), observed a significant increase in Lac and Glu of 

approximately 20 % and 3%, respectively, following a stimulation of only 2 min. These Lac increases 

were reduced over time, implying an adaptation of Lac changes following visual stimulation.  

 

CONCLUSION 

 

Clearly, MRS studies in migraine have yielded disparate information on brain metabolism. The data 

regarding 31P-MRS in muscle is far more scarce, yet the results seem to be rather reproducible. The 
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variation found throughout these studies can be attributed to a number of reasons including 

heterogeneous migraine populations, migraine severity (attack frequency), medication history, time of 

measurement (ictal versus interictal), regions of interest, magnetic field strength, signal processing 

and/or quantification strategies. Sometimes important study details (attack frequency, age, gender, 

quantification steps,...) were not recorded and therefore it is not possible to determine the extent to 

which they may have affected the results.  

 

Nevertheless, some findings were consistent overall regardless of abovementioned variability, such as 

a lack of acidosis (no pH changes) and a disturbed energy metabolism, at least in a subgroup of 

patients, implying a mitochondrial component in migraine pathophysiology. Moreover, in several 

studies a correlation between the extent of the energy disturbance and the intensity of the clinical 

phenotype was apparent. ATP was found to be reduced in the occipital lobe of MwoA patients, 

however, ATP remains to be measured in MwA patients. Additional evidence supporting a disturbed 

energy metabolism in migraine, comes from pharmacological studies showing the effects of metabolic 

enhancers, such as riboflavin and coenzyme Q10 (both with a well defined role in mitochondrial 

membrane generation of ATP), in migraine prophylaxis (65-68). It is worthy of note that the therapeutic 

response to riboflavin was associated with specific mitochondrial DNA haplogroups (69). Less 

consistent but still possibly congruent with the disturbed energy metabolism is an observed Lac 

increase in the occipital cortex of several migraine subtypes (i.e. MwA, migraine with prolonged aura), 

however, potential Lac changes remain to be confirmed in a larger homogeneous population of both 

MwA and MwoA patients, preferably at higher field strength (i.e. 7 T). An increased Glu content was 

not found at all, despite its potential correlation with well-defined missense mutations found in FHM 

patients causing a hyperexcitable cortex, and therefore Glu should also be investigated at higher field 

strengths. Table 5 displays the major interictal (occipital) MRS findings in common forms of migraine 

(MwoA and MwA) and hemiplegic migraine.  

 

We would like to stress that the depletion of brain high-energy phosphates reflects an imbalance 

between ATP production and ATP use in migraine patients,  but we do not know whether is due to a 

primary mitochondrial dysfunction or secondary to alterations in brain excitability. The 31P-MRS 

muscle studies support the former hypothesis. It is interesting to speculate that abnormalities are more 
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apparent in the brain because it is in fact under constant activation. Only when duly exercised, in fact, 

muscle energetics were similarly abnormal in migraine patients. In general, migraine can be 

considered a 'threshold disorder' or a 'biobehavioural disorder' (70), implying that an intrinsic metabolic 

defect may render the brain more susceptible to various factors triggering an attack. Triggering factors 

would act by increasing the metabolic demand or hampering ATP production, and when a certain 

threshold is reached in an organ which is rather near its maximum capabilities, such as the brain, they 

would then induce a metabolic crisis responsible for the headache attack. 

      

Potential future research may comprise further robust, quantitative and multinuclear brain MRS 

studies in migraine, including patients with a single phenotype who experience a well-defined number 

of attacks and are not using prophylaxis, compared to a gender- and age-matched control group. 

Another possible next step could be the absolute quantification of muscle phosphorus metabolites, 

especially ATP, in migraine patients, since [ATP] was assumed to be constant (i.e. 8 mM) in the 

muscle of migraine patients and controls in previous 31P-MRS studies. Finally, 13carbon-MRS could 

provide further insight in possible Lac and Glu dynamics in migraine pathophysiology.   

 

Acknowledgements  

The authors wish to thank Leslie Vlerick and Marjan Acou for critically reviewing the manuscript. 

 



  19   

 

Figure 1:  Brain 31P (A) and 1H -spectrum (B). Several 1H-metabolites are difficult to quantify, e.g. Glu + 
Gln (difficult to differentiate, small peaks, close to NAA), GABA (very small peak right to NAA), Lac 
(low concentration, resonates at same frequency as lipids such as subcutaneous fat). From the 31P-
spectrum, pHi can be calculated from the frequency difference between Pi and PCr, and [Mg2+] can be 
calculated from the frequency difference between PCr and β-ATP. Some metabolites show several 
resonance peaks in the spectrum originating from different proton or phosphorus nuclei, such as tCr 
(i.e. tCr1 and tCr2) and ATP (i.e. α-ATP, β-ATP and γ-ATP). (PME = phosphomonoesters, PDE = 
phosphodiesters).  
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Study (reference number) Migraine type (sample size ) Brain region(s) Results a 

Welch et al. 1988 (6)b,c MwoA (12), MwA (8) 
fronto(temporal), 
(parieto)occipital no changes 

Welch et al. 1989 (5)b MwoA (12), MwA (8) 
fronto(temporal), 
(parieto)occipital 

PCr/Pi ↓, Pi/TP ↓ 

Ramadan et al. 1989 (7)b MwoA (11), MwA (8) 
fronto(temporal), 
(parieto)occipital 

[Mg2+] ↓ 

Barbiroli et al. 1990 (16) MwpA (4), MS (4) occipital PCr/Pi ↓, PCr/ATP ↓ 
Bresolin et al. 1991 (18) MS (1) occipital PCr/ATP ↓, Pi/ATP ↑, [ADP] ↑, pH ↑ 

Sacquegna et al. 1992 (17) MwpA (1) occipital PCr/Pi ↓, [PCr] ↓, PCr/ATP ↓, [Pi] ↑ 

Barbiroli et al. 1992 (13) MwA (12)d occipital 
[PCr] ↓, [Pi] ↑, pH ↓, [ADP] ↑, PP ↓, v/vmax 

↑ 
Montagna et al. 1994 (8) MwoA (22) occipital [PCr] ↓, [ADP] ↑, PP ↓, v/vmax ↑ 
Montagna et al. 1995 (9) MwoA (22), MwA (18), other (15) occipital [PCr] ↓, [ADP] ↑, PP ↓, v/vmax ↑ 
Uncini et al. 1995 (15) FHM (2), MwoA (3) occipital [PCr] ↓, [Pi] ↑, [ADP] ↑, PP ↓, v/vmax ↑ 

Lodi et al. 1997 (14) MwA (7), MwpA (3), BM (5) occipital 
[PCr] ↓, [Pi] ↑, pH ↓, [ADP] ↑, PP ↓, v/vmax 

↑, [Mg2+] ↓ 

Lodi et al. 2001 (10) 
MwoA (21), MwAe (37), MwpA 

(13), MS (7) 
occipital [Mg2+] ↓ 

Boska et al. 2002 (11) MwoA (19), MwA (19), FHM (8) anterior, occipital [PCr] ↓, [Mg2+] ↓, [PDE] ↑ 
Schulz et al. 2007 (19) MwA (21) temporoparietal PCr/Pi ↓, Pi/ATP ↑ 

Schulz et al. 2009 (20) MwpA (9), MS (5) 
frontotemporal, 

parietal 
PCr/Pi ↓ 

Reyngoudt et al. 2011 (12) MwoA (19)  occipital [PCr] ↓, [ATP] ↓, PP ↓ 
MwoA, migraine without aura; MwA, migraine with aura; MwpA, migraine with prolonged aura; MS; migrainous stroke; BM, basilar-type migraine; FHM, familial hemiplegic 
migraine; other: MS and MwpA; PCr, phosphocreatine; Pi, inorganic phosphate; ATP, adenosine triphosphate; ADP, adenosine diphosphate; PP, phosphorylation potential; 
v/vmax, rate of ATP synthesis; TP, total phosphorus signal; PDE, phosphodiesters; Mg2+, magnesium; ↑, increased; ↓, decreased. 
a P < 0.05 
b This study was performed both ictally and interictally. 
c Only pH was measured in this study. 
d 4/12 patients suffered from MwoA as well. 
e MwA patients included typical aura and BM. 
 

Table 1: Overview of brain 31P-MRS studies in migraine patients: migraine types, brain regions and results. 
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Study (reference number) Migraine type (sample size ) Brain region(s) Results a 
Watanabe et al. 1996 (27) MwA, other (6) occipital Lac/NAA ↑ 

Macri et al. 2003 [(48) MwA (8) cerebellum mIns/tCr ↓, Cho/tCr ↓ 
Sandor et al. 2005 (28)b MwA (5), MwAplus (5) occipital Lac/NAA ↑ 

Dichgans et al. 2005 (37) FHM (15) 
cerebellum, 

occipital, parietal Glu ↓, NAA ↓, mIns ↑ 

Sarchielli et al. 2005 (34)c MwoA (22), MwA (22) occipital NAA/tCr ↓ 
Jacob et al. 2006 (38) SHM (1) temporoparietal NAA/tCr ↓, mIns/tCr ↓ 
Wang et al. 2006 (54) CM (16) hypothalamus no changes 
Schulz et al. 2007 (19) MwA (21) basal ganglia no changes 

Gu et al. 2008 (36) MwoA (20) thalamus NAA/tCr ↓ 
Prescot et al. 2009 (45) Mw(o)A (10) ACC, insula no changes 

Grimaldi et. 2010 (23) FHM2 (4) 
(parieto-)occipital, 

ventricles 
Lac ↑ 

Chawalparit et al. 2010 (49) MwpAd (1) occipital no changes 
Toldo et al. 2010 (39) SHM (1) occipital NAA/tCr ↓ 

Reyngoudt et al. 2010 (30) MwoA (22) occipital no changes 
Reyngoudt et al. 2011a (31)e MwoA (20) occipital no changes 

MwoA, migraine without aura; MwA, migraine with aura; MwpA, migraine with prolonged aura; MS; migrainous stroke; FHM(2), familial hemiplegic migraine (type 2); SHM, 
sporadic hemiplegic migraine; CM, chronic migraine; other: MS and MwpA; MwAplus: MwA with symptoms of paresthesia/paresis/dysphasia; Lac, lactate; NAA, N-
acetylaspartate; mIns, myo-inositol;  Cho, choline; tCr, total creatine; Glu, glutamate; ↑, increased; ↓, decreased. 
a P < 0.05 
b Visual stimulation was performed by projection of a blue/yellow flickering checkerboard (8 Hz). 
c Visual stimulation was performed by projection of a flashing red light (14 Hz). 
d This patient suffered actually from migrainous headache with a series of long-lasting visual aura. 
e Visual stimulation was performed by projection of a black/white flickering checkerboard (8 Hz). 
 

Table 2: Overview of brain 1H-MRS studies in migraine patients: migraine types, brain regions and results. 
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Study (reference number) Patients Controls 

 
Migraine type 
(sample size) F/M 

Age  
(mean ± 
standard 
deviation) 

Attack frequency P φ (inter)ictal n F/M Age 

Welch et al. 1988 (6),             
Welch et al. 1989 (5) 

MwoA (12),           
MwA (8) 

12/0, 
6/2 

37.2 ± 12.0, 
37.1 ± 13.2 

- Y ictal (11/20), 
inter (9/20) 

27 18/9 45.1 ± 17.6 

Ramadan et al. 1989 (7) MwoA (11),           
MwA (8) 

11/0, 
6/2 

34.3 ± 9.7, 
37.1 ± 13.2 - Y ictal (10/19), 

inter (9/19) 25 15/10 43.4 ± 18.2 

Barbiroli et al. 1990 (16) MwpA (4),             
MS (4) 

-,      - 31.3 ± 15.6, 
34.5 ± 4.0 

2 ± 1 (/month) N interictal 15 15/0 18-44 

Bresolin et al. 1991(18) MS (1) 1/0 40 1.5 (/month) N interictal 14 - - 
Sacquegna et al. 1992 (17) MwpA (1) 0/1 17 2-4 (/year) - interictal 8 0/8 17-21 

Barbiroli et al. 1992 (13) MwA (12) 10/2 30.6 ± 9.0 1-24 (/year)a N interictal 14 14/0 18-50 
Montagna et al. 1994 (8) MwoA (22) 19/3 33.7 ± 9.8 3.6 ± 1.8 (/month) N interictal 18 - 33.7 ± 9.8 
Montagna et al. 1995 (9) Mw/oA (55) - - - N interictal 50 - - 
Uncini et al. 1995 (15) FHM,MwoA (5) 3/2 26.0 ± 12.7 - - interictal 50 28/22 16-50 

Watanabe et al. 1996 (27) MwA,other (6) 5/1 31.0 ± 9.5 1-12 (/year)a - interictal 6 4/2 30.0 ± 4.7 

Lodi et al. 1997 (14) 
MwA (7),                
MwpA (3),              

BM (5) 

5/2, 
0/3, 
1/4 

13.1 ± 2.2,     
13.6 ± 1.3,        
12.4 ± 2.4 

3.8 ± 1.7 (/month) N interictal 12b,        
15b 

5/7, 
6/9 

12.9 ± 1.9,         
13.1 ± 2.1 

Lodi et al. 1997 (24) 
MwoA (23), MwA 
(22), MwpA (11), 

MS (7) 
- 16 to 61 - N interictal 49 - 16 to 63 

Lodi et al. 2001(10) 

MwoA (21),         
MwA (37),             

MwpA (13),           
MS (7) 

19/2, 
21/16, 
8/5, 
7/0 

32.0 ± 2.0,            
23.0 ± 2.0,             
25.0 ± 3.0,              
38.0 ± 3.0 

- N interictal 36 - 36.0 ± 3.0 

Boska et al. 2002 (11) 
MwoA (19),           
MwA (19),              
FHM (8) 

17/2, 
15/4, 
5/3 

35.7 ± 9.5,           
40.9 ± 8.4,           
39.3 ± 4.1 

- N interictal 40 27/13 37.5 ± 11.3 

Macri et al. 2003 (48) MwA (8) 6/2 28.0 ± 11.0 - - interictal 7 3/4 28.0 ± 9.0 

Sandor et al. 2005 (28)b MwA (5),               
MwAplus (5) 

4/1, 
5/0 

37.5 ± 11.4,        
26.5 ± 14.0 

3.5 ± 2.1 (/month) - interictal 11 5/6 29.9 ± 6.6 

Dichgans et al. 2005 (37) FHM (15) 9/6 37.1 ± 12.4 1-72 (/year)a - interictal 17 9/8 22-54 

Sarchielli et al. 2005 (34)c MwoA (22),          
22 (22) 

15/7, 
14/8 

37.2 ± 5.1,                
34.5 ± 4.9 1-40 (/year)a N interictal 10 5/5 33.3 ± 6.4 

Jacob et al. 2006 (38) SHM (1) 1/0 33 - N ictal 0 n/a n/a 
Wang et al. 2006 (54) CM (16) 12/4 42.3 ± 10.9  - - - 21 8/13 36.1 ± 9.0 
Schulz et al. 2007 (19) MwA (21) 12/9 42.0 ± 11.0 1->12 (/year)a - interictal 16 8/8 39.0 ± 15.0 

Gu et al. 2008 (36) MwoA (20) 11/9 37.3 ± 12.3 2.3 ± 1.6 (/month) N interictal 14 8/6 20-62 
Prescot et al. 2009 (45) Mw/oA (10) 7/3 43.3 ± 3.3 3.3 ± 1.2 (/month) Y interictal 8 - - 

Schulz et al. 2009 (20) MwpA (9),           
MS (5) 

5/4, 
2/3 

41.2 ± 9.5,    
46.6 ± 16.2 

1->12 (/year)a - interictal 14 - - 

Grimaldi et. 2010 (23) FHM2 (4) 4/0 35.0 ± 15.0 2.5 ± 0.7 (/year) - interictal 10 10/0 34.0 ± 10.0 
Chawalparit et al. 2010 (49) MwpA (1)d 1/0 17 - N interictal 0 n/a n/a 

Toldo et al. 2010 (39) SHM (1) 1/0 8 1 (/year) N interictal 0 n/a n/a 
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Reyngoudt et al. 2010 (30) MwoA (22) 21/1 33.3 ± 12.2 3.4 ± 1.1 (/month) N interictal 26 15/10 27.6 ± 12.0 
Reyngoudt et al. 2011 (12) MwoA (19) 18/1 32.3 ± 12.1 3.6 ± 1.1 (/month) N interictal 26 15/11 27.6 ± 10.9 

Reyngoudt et al. 2011a 
(31) 

MwoA (20) 17/3 31.9 ± 9.1 3.6 ± 1.1 (/month) N interictal 20 17/3 31.9 ± 10.3 

MwoA, migraine without aura; MwA, migraine with aura; MwpA, migraine with prolonged aura; MS; migrainous stroke; BM, basilar-type migraine;  FHM(2), familial hemiplegic 
migraine (type 2); SHM, sporadic hemiplegic migraine; CM, chronic migraine; MwAplus: MwA with symptoms of paresthesia/paresis/dysphasia; other: MS and MwpA; n, 
number of volunteers; F/M, female/male ratio; Pφ, prophylaxis; Y, yes, N, no;  ‘-‘, information is lacking; n/a, not applicable. a Heterogeneous data: both MwA and MwoA 
attacks; b 12 subjects for brain, 15 subjects for muscle.  
 

Table 3: Demographic and patient information of MRS studies in migraine. 
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Study  B0 (vendor) coil MR-
sequence TR/TE (s/ms)  Quantification ATP 

(mM)a corrections 

Welch et al. 1988 (6), 
Welch et al. 1989 (5) 

1.89 (Bruker) surface - - relative - - 

Ramadan et al. 1989 (7) 1.89 (Bruker) surface DRESS - absolute - - 
Barbiroli et al. 1990 (16) 1.5 (GE) surface DRESS 5/- relative - - 
Bresolin et al. 1991 (18) 1.5 (GE) surface DRESS 5/- relative 3.0 - 

Sacquegna et al. 1992 (17) 1.5 (GE) surface DRESS 5/- relative, absolute 3.0 - 
Barbiroli et al. 1992 (13) 1.5 (GE) surface DRESS 5/- absolute 3.0 - 
Montagna et al. 1994 (8) 1.5 (GE) surface DRESS 5/- absolute 3.0 - 
Montagna et al. 1995 (9) 1.5 (GE) surface DRESS 5/- absolute 3.0 - 
Uncini et al. 1995 (15) 1.5 (GE) surface DRESS 5/- absolute 3.0/8.0 - 

Watanabe et al. 1996 (27) 1.5 (GE) surface PRESS 1.5/270 relative n/a - 
Lodi et al. 1997 (14) 1.5 (Siemens) surface DRESS 5/- absolute 3.0 - 
Lodi et al. 1997 (24)  1.5 (GE) surface DRESS 5/- relative, absolute 8.2 - 
Lodi et al. 2001 (10) 1.5 (GE) surface DRESS 5/- absolute 3.0 - 

Boska et al. 2002 (11) 3 (Magnex) volume MRSI 1/- absolute 3.0 - 
Macri et al. 2003 (48) 1.5 (GE) volume PRESS 1.5/30 relative n/a - 

Sandor et al. 2005 (28)b 1.5 (Philips) volume MRSI 1.5/288 relative n/a - 
Dichgans et al. 2005 (37) 1.5 (GE) - PRESS 2/35 absolute (LCModel) n/a segment. 
Sarchielli et al. 2005 (34)c 1.5 (GE) volume PRESS 2/144 relative n/a - 

Jacob et al. 2006 (38) 1.5 (GE) - PRESS 1.5/35 relative n/a - 
Wang et al. 2006 (54) 1.5 (GE) surface PRESS 1.5/144 relative n/a - 

Schulz et al. 2007 (19) 2 (Bruker) 
volume, 
surface 

PRESS,    
MRSI 

1.5/135 (1H), 
2.5/- (31P) 

relative (jMRUI) - - 

Gu et al. 2008 (36) 3 (GE) volume MRSI 1/144 relative n/a segment. 
Prescot et al. 2009 (45) 4 (Varian) volume 2D-PRESS 2/30-260 relative (LCModel) n/a - 
Schulz et al. 2009 (20) 2 (Bruker) surface PRESS 1.5/135 relative (jMRUI) - - 

Grimaldi et. 2010 (23) 1.5 (GE) 
volume, 
surface 

PRESS,     
DRESS 

4/35 (1H),   
5/- (31P) 

relative (LCModel, 
jMRUI) 

8.0 segment. 

Chawalparit et al. 2010 (49) 1.5 (Philips) - svs - - n/a - 
Toldo et al. 2010 (39) 1.5 (Philips) - PRESS 2/299 relative n/a - 

Reyngoudt et al. 2010 (30)  3 (Siemens) volume PRESS 2/30 
relative, absolute 

(jMRUI) 
- CSF,…  

Reyngoudt et al. 2011 (12) 3 (Siemens) volume CSI-FID 4/2.3 absolute (Siemens) meas.  

Reyngoudt et al. 2011a (31) 3 (Siemens) volume PRESS 2/288 
relative, absolute 

(jMRUI) n/a CSF,… 
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B0, magnetic field strength (in T); TR, repetition time (in s); TE, echo time (in ms); DRESS, depth-resolved surface coil spectroscopy; (2D-)PRESS, (2D-) point-resolved 
spectroscopy; svs, undefined single voxel spectroscopy measurement; MRSI, magnetic resonance spectroscopy imaging; CSI-FID, chemical shift imaging free induction decay; 
ATP, adenosine triphosphate;  ‘-‘, information is lacking; n/a, not applicable; segment., brain segmentation; meas., measured. 
a Assumed ATP concentrations: in brain: 3.0 mM; in muscle: 8.0 mM. 

 
Table 4: Methodological parameters of MRS studies in migraine. 
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Migraine subtype  ATP PCr PP Lac 
MwoA ↓ (12) ↓ (5, 8, 9, 11, 12) ↓ (8, 12) = (30, 31) 
MwA ? ↓ (5, 9, 11, 13, 14) ↓ (9, 13, 14) ↑ (27, 28) 

S/FHM ? ↓ (14, 15) ↓ (15) ? 
MwoA, migraine without aura; MwA, migraine with aura; S/FHM, sporadic and  familial hemiplegic migraine;  
ATP, adenosine triphosphate; PCr, phosphocreatine; PP, phosphorylation potential; Lac, lactate 

 
Table 5: Synthesis of major interictal brain MRS findings in migraine. 
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