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Abstract

We consider a multi-agent clustering model where each agent belongs to a multi-dimensional

space. We investigate its long term behaviour and we prove emergence of clustering behaviour in

the sense that the velocities of the agents approach asymptotic values, independently of the initial

conditions; agents with equal asymptotic velocities are said to belong to the same cluster. We

propose a set of relations governing these asymptotic velocities. These results are compared with

results obtained earlier for the model with agents belonging to a one-dimensional space, and are

then explored for the case of an infinite number of agents. For the particular case of a spherically

symmetric configuration of an infinite number of agents a rigorous analysis of the relations gov-

erning the asymptotic velocities is possible, assuming that a continuity property established for

the finite case remains true for the infinite case. This leads to a characterization of the onset of

cluster formation in terms of the evolution of the cluster size with varying coupling strength. A

remarkable point is that the cluster formation process depends critically on the dimension of the

agent state space; considering the cluster size as an order parameter, the cluster formation in the

one-dimensional case may be seen as a second-order phase transition, while the multi-dimensional

case is associated with a first-order phase transition. We provide bounds for the critical coupling

strength at the onset of the cluster formation, and we illustrate the results with two examples in

three dimensions.
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I. INTRODUCTION

Clustering is a phenomenon that may be observed in a variety of systems, such as animal

swarms [? ? ? ? ], opinion formation processes [? ? ? ? ], and systems of coupled oscillators

(e.g. pacemaker cells in the heart) [? ? ]. Cohesion of a single cluster [? ? ? ] as well as the

emergence of multiple clusters have been studied [? ? ? ? ? ]. Depending on the specifics of

the model, transitions between the different phases may be first-order [? ] or second-order [?

]. First-order phase transitions may also appear by choosing appropriate model parameters

in systems that are usually characterized by a second-order phase transition [? ? ].

Most of these models are analyzed either by simulations, or by a combination of simula-

tions and analytical results of a local nature. In [? ? ] we have introduced a model with

a behavior similar to the clustering behavior of models of coupled oscillators such as the

Kuramoto model [? ], but with an increased potential for analytical results concerning the

long term behaviour of the solutions. The model consists of a system of mutually attracting,

non-identical agents evolving in a one-dimensional state space. Each agent has a natural

velocity, and is attracted to other agents by saturating interactions, i.e. the interaction

between two agents converges to a constant value with increasing distance. The long term

behavior depends on the coupling strength. When the coupling strength equals zero, all

agents move at their natural velocities. For small values of the coupling strength several

clusters arise, each characterized by the same asymptotic velocity for its members. For high

values, distances between agents remain bounded, and all agents are contained in a single

cluster. Our main results [? ? ? ? ] include a complete characterization of the clustering

structure as it emerges with increasing time, and a complete description of the clustering

formation process as a function of the coupling strength.

The model that we have introduced may be relevant for applications not related to coupled

oscillators, as we have argued in [? ] for compartmental systems and in [? ] for swarming

and opinion formation. The model, of which a multi-dimensional version is featured in the

present paper has some distinguishing characteristics such as the range of interaction which

is of a nonlocal nature, while the network representing the interaction is of a general nature.

This and other aspects are detailed and discussed in [? ] in a biological context of swarming

or herding.

When relating the model to swarming or opinion formation, one wonders to what extent
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the behavior of the model is limited by the restriction that agents are only able to move in one

dimension. Swarms of animals obviously may have two or three dimensions at their disposal.

Also the topic of opinion formation is rarely one-dimensional; it involves different interrelated

aspects: e.g. conceding on one point may result in an uncompromising disposition with

respect to other points.

In the present paper we focus on the multi-dimensional case: the agents belong to a

Euclidean space of arbitrary dimension. As will become clear in the following sections,

extensions to the multi-dimensional case of the results obtained for the one-dimensional case

are not readily available –if at all possible. However, we are able to obtain a set of relations

governing the asymptotic velocities of the agents; this allows us to introduce a cluster as

a set of agents with the same asymptotic velocity. These relations are then explored for

the case of an infinite number of agents. For the particular case of a spherically symmetric

configuration of an infinite number of agents, a rigorous analysis of the relations governing

the asymptotic velocities is possible, assuming that a continuity property established for the

finite case remains true for the infinite case.

For more information and alternative models, see [? ] which also discusses the transfor-

mation of individual-based models into continuum models for the density of organisms, a

topic we embarked on in [? ] for the case of one-dimensional agents, and which is further

explored in section ??. See also [? ] for a discussion of macroscopic mathematical models

for collective motion derived from a microscopic description. Our model, for the case of

an infinite number of agents may be viewed as a Lagrangian representation of a continuous

model; such models have been studied elsewhere, see e.g. [? ] and for a case of nonlocal

interactions, see [? ]. Other rigorous results for the multi-dimensional case exist in relation

to the Cucker-Smale model ([? ]) and for an infinite version, see [? ].

In the next section we introduce the multi-dimensional model, and in section ?? we re-

view some results from [? ? ] concerning the one-dimensional model. Section ?? deals

with the general model; we show that the velocities of the agents approach constant val-

ues, independently of the initial conditions. These asymptotic velocities define the different

clusters. In section ?? we show that for an infinite number of agents with a spherically sym-

metric distribution of the natural velocities in at least two dimensions, the onset of cluster

formation is akin to a first-order phase transition, as opposed to the second-order phase

transition appearing in the one-dimensional case. We derive a lower and an upper bound for
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the critical value of the coupling strength, and we consider some examples corresponding to

the three-dimensional case.

II. THE MODEL

The general model is described by

ẋi(t) = bi +K

N∑

j=1

γj∇Vij(xj(t)− xi(t)), for all i in {1, . . . , N}, (1)

where K ≥ 0, γj > 0, N > 1, xi(t), bi ∈ R
P , and ∇Vij is the gradient of Vij , with Vij :

R
P → R assumed to be convex and twice differentiable, and Vji(y) = Vij(−y) for all y in

R
P (i, j ∈ {1, . . . , N}). (Notice that this implies that ∇Vii(0) = 0 for all i in {1, . . . , N}.)

As a special case we will consider the choice

Vij(y) =

∫ ‖y‖

0

fij(ξ)dξ,

for all y in R
P , for all i, j in {1, . . . , N}, where the differentiable functions fij : R

+ → R
+

are non-decreasing with fij(0) = 0, and satisfy

fij = fji, and lim
ξ→+∞

fij(ξ) = Fij ,

for all i and j in {1, . . . , N}, for some symmetric matrix F ∈ R
N×N . We will say that fij

saturates at the value Fij. The resulting system is described by

ẋi(t) = bi +K

N∑

j=1

γjfij(‖xj(t)− xi(t)‖)exj(t)−xi(t), for all i in {1, . . . , N}, (2)

with

ey ,
y

‖y‖
, for all y in R

P \ {0}; e0 , 0.

III. PRELIMINARY RESULTS

In this section we review results related to the model (??) for the case P = 1: each agent

belongs to a one-dimensional space (xi(t) ∈ R, for all i in {1, . . . , N}). For details, see [? ?

].
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A. Some notation

For n ∈ N denote by In the set {1, . . . , n} (I0 , ∅) and let G = (G1, . . . , GM) be an

ordered set partition of IN . Each set Gk gathers the indices of the agents belonging to one

cluster in a sense to be described soon. Let G<
k be a shorthand notation for

⋃
k′<k Gk′, and

similarly set G>
k ,

⋃
k′>k Gk′.

Set

ṽ(G−, G0, G+) ,
1∑

i∈G0
γi

∑

i∈G0

γi


bi +K

∑

j∈G+

γjFij −K
∑

j∈G−

γjFij


 ,

for all G−, G0, G+ ⊂ IN with G0 non-empty. Notice that this value corresponds to the

weighted average velocity over a group of agents G0, interacting with groups G− and G+,

and with the interactions replaced by their saturation values.

We consider the following definition of clustering behavior of a solution x of (??) with

P = 1 with respect to an ordered set partition G:

• The distances between agents in the same cluster remain bounded (i.e. |xi(t)− xj(t)|

is bounded for all i, j ∈ Gk, for any k ∈ IM , for t ≥ 0).

• For any D > 0 there exists a time after which the distances between agents in different

clusters are and remain at least D.

• The agents are ordered by their membership to a cluster: k < l ⇒ xi(t) < xj(t),

∀ i ∈ Gk, ∀ j ∈ Gl, ∀ t ≥ T , for some T > 0.

Remark 1. For convenience, the definition of clustering behavior includes the order of the

agents. For P > 1 it is not clear how to order clusters or agents in an appropriate way, and

later on we will consider unordered set partitions for the cluster structure of solutions of the

model (??) in arbitrary dimensions.

B. Results

The following theorems are drawn from [? ]. (In Theorem ?? the matrix F is restricted

to be symmetric since this is required by the model (??); this restriction was not required

for the model investigated in [? ].) As for Theorem ?? we also point to some peculiarities

when thinking about an extension to the multi-dimensional agent case.
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Theorem 1. Consider the following inequalities

ṽ(G<
k , Gk, G

>
k ) < ṽ(G<

k+1, Gk+1, G
>
k+1), for all k in IM−1, (3a)

ṽ(G<
k ∪Gk,1, Gk,2, G

>
k ) < ṽ(G<

k , Gk,1, G
>
k ∪Gk,2),

for all partitions {Gk,1, Gk,2} of Gk,

for all k in IM .

(3b)

Denote by (??’), resp. (??’), the inequalities (??), resp. (??), in which the strict inequalities

are replaced by non-strict inequalities. Denote by (??) the inequalities (??) together with

(??), and by (??’) the inequalities (??’) together with (??’). Then the conditions (??), resp.

(??’), are sufficient, resp. necessary, for clustering behavior with respect to G of all solutions

of the system (??) with P = 1.

The conditions (??) and (??’) are related to the property that the distances between

different clusters grow unbounded, while (??) and (??’) express that for any partition of a

cluster into two subsets, the two components cannot separate and therefore the distances

between agents belonging to this cluster remain bounded. Notice that separate conditions

are not sufficient to draw conclusions about the behavior of one or two individual clusters:

the complete set of conditions (??) should be considered.

Theorem 2. For every b ∈ R
N and every symmetric matrix F ∈ (R+)N×N , there exists

a partition of R+ in a finite number of intervals, such that each interval corresponds to a

unique ordered set partition G of IN , for which (??) holds for all K in the interior of this

interval.

When the coupling strength K varies and one of the corresponding inequalities (??)

is no longer satisfied, the cluster structure will change. Depending on whether one of the

inequalities (??) or (??) is violated, either two clusters will merge and form a new cluster, or

one cluster will split into two clusters. In case multiple inequalities turn simultaneously into

an equality for a particular value of K, multiple clusters will be affected, but this transition

is not robust: in general, a perturbation in the other model parameters (bi, γi, or Fij) will

split up the transition in several ‘elementary’ transitions, taking place at different values

for K; for each elementary transition a cluster either splits into two new clusters or a new

cluster is formed by merging two clusters. Compare this to the case P > 1 where there may

be robust transitions involving more than two clusters as was illustrated in [? ]. In this
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case small perturbations in the model parameters bi, γi, or Fij only result in a shift for the

transition value for K and for the resulting asymptotic velocities; the same clusters will be

involved in the transition. This is illustrated in Fig. ??, where for specific examples — with

all-to-all coupling, i.e. fij is independent of i and j, equal weights γi, and the parameters bi

chosen arbitrarily — the evolution of the asymptotic velocities vi of the agents (horizontal

axis/plane) are shown (see also Theorems ?? and ??, stating that the velocities of the agents

indeed converge to asymptotic values) with varying coupling strength K (vertical axis) for

both P = 1 and P = 2. For P = 1, each transition with increasing K corresponds to merging

two clusters, while for P = 2 there is a transition corresponding to merging 6 clusters, even

though the parameter values bi were chosen arbitrarily.
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(a)P = 1
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(b)P = 2

Figure 1. Comparison of the one-dimensional case ?? with the two-dimensional case ?? for the

evolution of the asymptotic velocities vi of the agents (horizontal axis/plane) with varying coupling

strength K(vertical axis). Different colors are for emphasis: they correspond to different clusters

of agents. In the one-dimensional case each transition only affects 2 clusters, whereas the two-

dimensional case exhibits a transition involving 6 clusters.

Theorem 3. Let x be a solution of (??) with P = 1 and with cluster structure G =

(G1, . . . , GM), and assume that all functions fij are increasing in R
+. For each k ∈ IM , if

i, j ∈ Gk, then

lim
t→+∞

(xi(t)− xj(t)) exists and is independent of x(0),

lim
t→+∞

ẋi(t) exists and equals ṽ(G<
k , Gk, G

>
k ).
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In other words, within a cluster all differences between xi-values will approach constants,

which are independent of the initial condition, and the velocities of the agents will approach

the asymptotic average cluster velocity.

IV. MULTI-DIMENSIONAL AGENTS

A. Clustering behavior

As mentioned before, the notion of clustering behavior defined in the previous section

cannot simply be extended to the multi-dimensional case: the ordering of the clusters will

be dropped in the definition. Furthermore, we will distinguish between distance clustering

behavior and velocity clustering behavior.

1. Distance clustering behavior

A solution x of (??) exhibits distance clustering behavior with respect to the (unordered)

set partition G if the following conditions are satisfied (we retain the defining conditions of

the case P = 1, but omit the ordering condition):

• The distances between agents in the same cluster remain bounded (i.e. ‖xi(t)− xj(t)‖

is bounded for all i, j ∈ Gk, for any Gk ∈ G, for t ≥ 0).

• For any D > 0 there exists a time after which the distances between agents in different

clusters are and remain at least D.

We have not succeeded in proving a theorem analogous to Theorem ??, mainly because

the expressions defining the cluster velocities for a given cluster structure (see e.g. Eq. (??)

later on) are much harder to deal with for the case P > 1. However, we have derived general

analytical results about the asymptotic behavior of solutions of the system (??) for P > 1,

which relate to the notion of asymptotic velocity clustering behavior, to be introduced next.

Our results for P > 1, when compared to the second result of Theorem ??, lack an explicit

formula for the asymptotic velocities but do not require the a priori assumption of clustering

behavior. The proof of the first result of Theorem (??) is easily extended to the case P > 1

if one assumes that the solution x exhibits distance clustering behavior. However, since we

8



have no proof ensuring distance clustering behavior, we will not elaborate on this and we

will mainly focus on asymptotic velocity clustering.

2. Velocity clustering behavior

A solution x of (??) is said to exhibit asymptotic velocity clustering behavior with respect

to a set partition H of IN if limt→+∞ ẋi(t) exists for all i in IN , and all agents in the same set

in H have the same limit value, while agents from different sets have different limit values.

We will show below (see Theorem ??) that each velocity ẋi(t) converges for t → +∞,

and as a result any solution x of (??) exhibits asymptotic velocity clustering behavior with

respect to some partition H . The results formulated in the previous section for the case

P = 1 indicate that the solutions of the system (??) (and probably also those of (??)) almost

always exhibit distance clustering behavior with respect to the same cluster structure as the

asymptotic velocity cluster structure, and only for some non-generic parameter values may

these cluster structures be different (or may there be no distance clustering behavior).

Even though we do not prove the occurrence of distance clustering behavior, it is easily

verified that if a solution x of (??) exhibits distance clustering behavior with respect to a

partition G, then it follows that G is a refinement of the asymptotic velocity cluster structure

H , i.e. ∀Gk ∈ G : ∃Hl ∈ H,Gk ⊂ Hl, since a bounded distance between two agents implies

that they cannot have different asymptotic velocities. As mentioned before, in general G

will be equal to H .

Remark 2. Some systems, such as the Kuramoto model [? ? ], are believed to also ex-

hibit distance clustering behavior, but without convergence of the velocities for t → +∞.

A more general notion of average velocity clustering behavior, characterized by the limit

values limt→+∞
xi(t)
t

may therefore be introduced to include these systems. One can verify

that if limt→+∞ ẋi(t) exists, then limt→+∞
xi(t)
t

also exists and both limit values are equal,

and therefore asymptotic velocity clustering behavior implies average velocity clustering be-

havior. For the remainder of this paper we will only consider asymptotic velocity clustering

behavior (in addition to distance clustering behavior), which we will refer to as ‘velocity

clustering behavior’.
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B. Asymptotic velocities

We will show that the velocities of the agents converge to limit values, obtained as the

solution of a minimization problem. Write (??) as

ẋ(t) = F(x(t)),

for all t in R, with

F :
(
R

P
)N

→
(
R

P
)N

: x 7→ F(x) = (F1(x), . . . ,FN(x)) ,

defined by

Fi(x) , bi +K
∑

j∈IN

γj∇Vij(xj − xi),

for all x in (RP )N , and for any v ∈ (RP )N consider the function

Vv : (R
P )N → R : x 7→ Vv(x) , −

∑

i∈IN

γiv
T
i xi +

K

2

∑

i,j∈IN

γiγjVij(xj − xi).

The derivative of Vv with respect to xi ∈ R
P (i.e. the gradient with respect to xi) can be

calculated as

∂Vv

∂xi
(x) = −γivi −K

∑

j∈IN

γiγj∇Vij(xj − xi)

= −γi (vi − bi + Fi(x)) ,

for all x in (RP )N .

Remark 3. When we pick v = b, then for a solution x of (??), ∂Vb

∂xi
(x(t)) = −γiẋi(t), for all

t in R, for all i in IN , and as a result, Vb is a gradient function for the system (??).

The time-derivative of Vv along a solution x of (??) satisfies

d(Vv ◦ x)

dt
(t) = −

∑

i∈IN

γi (vi − bi + Fi(x(t)))
T Fi(x(t)),

which may be rewritten as

=
1

2

∑

i∈IN

γi
(
‖vi − bi‖

2 − ‖Fi(x(t))‖
2 − ‖vi − bi + Fi(x(t))‖

2) ,
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for all t in R. Introducing the function

Q : (RP )N → R : x 7→ Q(x) ,
∑

i∈IN

γi ‖xi‖
2 ,

which defines the square of a norm of a vector in (RP )N :

∀x ∈ (RP )N : ‖x‖ ,
√

Q(x),

we may write

d(Vv ◦ x)

dt
(t) =

1

2

(
‖v − b‖2 − ‖F(x(t))‖2 − ‖v − b+ F(x(t))‖2

)

=
1

2
(Q (v − b)−Q (F(x(t)))−Q (v − b+ F(x(t)))) . (4)

We may therefore pick any v such that Q(v−b) ≤ infx∈(RP )N Q (F(x)) and obtain a function

Vv that does not increase along solutions of (??). However, since solutions of (??) may not

be bounded, a direct application of Lyapunov theory is not possible.

Moreover, if Q(v− b) < infx∈(RP )N Q (F(x)), the derivative d(Vv◦x)
dt

(t) will not converge to

zero. In order to obtain a function Vv that is non-increasing along solutions of (??) while

its time-derivative may converge to zero, we need to consider values v ∈
(
R

P
)N

for which

Q(v − b) = infx∈(RP )N Q (F(x)).

More specifically we will consider the function Vb−v̄ where v̄ is defined as the value for

v in im(F) (i.e. v belongs to the closure in
(
R

P
)N

of the image of F) minimizing Q(v).

Because F may be considered as the gradient of the convex function Vb, the interior of

im(F) = F
(
(RP )N

)
(and therefore also its closure) is a convex set (see [? ]). Since the

function Q is strictly convex and radially unbounded, it follows that v̄ is unique as the

minimizer of Q over the set im(F).

Remark 4. Notice that since both Q and im(F) vary continuously with the model parame-

ters, v̄ is also continuous in the model parameters.

Although Vb−v̄(x) may not be bounded from below, we will show in Theorem ?? that for

large ‖x‖, it decreases slower than linearly in ‖x‖; this together with (??) will allow us to

conclude that limt→+∞ ẋ(t) = v̄.

First we show that also Q is non-increasing along solutions of (??). We denote by Ψij

the Hessian matrix of Vij: (Ψij)mn =
∂2Vij

∂ym∂yn
, for all i, j in IN and m,n in IP . Then the
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time-derivative of Q ◦ F along a solution x of (??) satisfies

d(Q ◦ F ◦ x)

dt
(t) = 2

∑

i,j∈IN

γiγjFi(x(t))
TKΨij(xj(t)− xi(t)) (ẋj(t)− ẋi(t))

= −K
∑

i,j∈IN

γiγj (ẋj(t)− ẋi(t))
T Ψij(xj(t)− xi(t)) (ẋj(t)− ẋi(t))

≤ 0,

for all t in R, since the matrices Ψij(y) are all positive semi-definite because of the convexity

of the functions Vij. (AlthoughQ◦F is bounded from below since it is non-negative, and may

therefore be considered as a Lyapunov function, Lyapunov theory does not apply directly

since a solution x may — and generally will — be unbounded.)

As a result, for any solution x of (??), ‖ẋ(t)‖ is non-increasing in t, and as we will show

in Theorem ?? it converges to ‖v̄‖ = minv∈im(F) ‖v‖ as t → +∞. The proof will be based on

the non-increasing behavior of Vb−v̄ and Q ◦F along solutions of (??), and on the behavior

of Vb−v̄(x) for large values of ‖x‖.

Theorem 4. Any solution x of (??) satisfies

lim
t→+∞

ẋ(t) = v̄.

Proof. By (??) the time-derivative of the function Vb−v̄ along a solution x of (??) equals

d(Vb−v̄ ◦ x)

dt
(t) =

1

2
(Q(v̄)−Q(ẋ(t))−Q(v̄ − ẋ(t)))

≤ 0,

for all t in R, since Q(v̄) ≤ Q(ẋ(t)) because of the definition of v̄.

As noticed before, Lyapunov theory does not apply, but we will still be able to show that

lim sup
t→+∞

d(Vb−v̄ ◦ x)

dt
(t) = 0. (5)

It then follows that

lim sup
t→+∞

(Q(v̄)−Q(ẋ(t))) = 0.

Since Q(ẋ(t)) is non-increasing in t, limt→+∞Q(ẋ(t)) = Q(v̄), from which we conclude

that limt→+∞ ẋ(t) = v̄, since otherwise there would exist a (positive) limit point w̄ of ẋ

different from v̄ (since ‖ẋ(t)‖ is non-increasing in t, it remains bounded) with Q(w̄) = Q(v̄),

contradicting the uniqueness of v̄ as the minimizer of Q over im(F).
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We will now prove (??). Assume that

lim sup
t→+∞

d(Vb−v̄ ◦ x)

dt
(t) = −ǫ, for some ǫ > 0.

Then

lim sup
t→+∞

Vb−v̄(x(t))

t
≤ −ǫ,

and thus limt→+∞ Vb−v̄(x(t)) = −∞ implying that limt→+∞ ‖x(t)‖ = +∞. Since Q ◦ F ◦ x

is non-increasing, ‖ẋ(t)‖ is bounded for t ≥ 0 by C , ‖ẋ(0)‖, and lim supt→+∞
‖x(t)‖

t
≤ C.

It follows that

lim sup
t→+∞

Vb−v̄(x(t))

‖x(t)‖
≤ −

ǫ

C
. (6)

Consider x̄n ∈ (RP )N (n ∈ N) with limn→∞F(x̄n) = v̄. Because of the convexity of Vb−v̄,

the graph of Vb−v̄ is bounded from below by the tangent hyperplane in x̄n:

Vb−v̄(x) ≥ Vb−v̄(x̄
n) +

∑

i∈IN

γi(xi − x̄n
i )

T (v̄i − Fi(x̄
n))

≥ Vb−v̄(x̄
n)− ‖x− x̄n‖ ‖v̄ −F(x̄n)‖ ,

for all x in (RP )N . Consequently, since a solution x of (??) satisfies limt→+∞ ‖x(t)‖ = +∞,

lim sup
t→+∞

Vb−v̄(x(t))

‖x(t)‖
≥ −‖v̄ −F(x̄n)‖ ,

and for n sufficiently large we obtain a contradiction with (??).

We conclude that lim supt→+∞
d(Vb−v̄◦x)

dt
(t) = 0, and that limt→+∞ ẋi(t) = v̄i, for all i in

IN .

Considering the limit t → +∞ in the special case (??), and taking into account that

lim
t→+∞

exj(t)−xi(t) = lim
t→+∞

xj(t)

t
− xi(t)

t∥∥∥xj(t)

t
− xi(t)

t

∥∥∥
= ev̄j−v̄i

whenever v̄i 6= v̄j (i, j ∈ IN ), we may calculate the weighted average of (??) over the velocity

clusters Hk to obtain that

v̄i =
1∑

l∈Hk
γl

∑

l∈Hk

γl

(
bl +K

∑

j∈IN

γjFljev̄j−v̄l

)
, (7)

for all i in Hk, for all k ∈ IM . (Recall that e0 = 0 by definition.) The existence of velocities

v̄i satisfying these equations may be considered as the equivalent of (??) for P > 1, and it
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immediately follows that (??) is a necessary condition for velocity clustering behavior with

respect to H .

The equivalent of (??) would be the absence of a solution for v̄ to (??) for any refinement

H̃ of H with H̃ 6= H . Unlike the partitions in only two subsets considered in the conditions

(??), any refinement of H has to be taken into consideration. This is illustrated in [? ],

where we showed that even for generic parameter values a cluster may split into three subsets

when decreasing the coupling strength K, without an intermediate range for K where two

clusters exist. For these parameter values there will be a solution to (??) with respect to a

partition into three subsets, but there may be no solutions with respect to partitions into

two subsets.

C. Independence of the initial condition

Theorem ?? implies that the asymptotic velocities (and therefore also the velocity clus-

ters) are independent of the initial condition. In this section we show that for solutions of

(??) exhibiting distance clustering behavior, the distance cluster structure is also indepen-

dent of the initial condition. This follows from similar arguments as in [? ? ]; we consider

two solutions x∗ and x and we show that the function Q ◦ (x− x∗) is non-increasing. First

notice that for any a, b ∈ R
P and i, j ∈ IN ,

(a− b)T (∇Vij(a)−∇Vij(b))

= (a− b)T
∫ 1

0

dtΨij(b+ t(a− b))(a− b)

≥ 0 (8)

(because Ψij is positive semi-definite), and therefore

d (Q ◦ (x− x∗))

dt
(t) = 2K

∑

i,j∈IN

γiγj(xi(t)− x∗
i (t))

T

×
(
∇Vij(xj(t)− xi(t))−∇Vij(x

∗
j (t)− x∗

i (t))
)

= −K
∑

i,j∈IN

(xj(t)− xi(t)− x∗
j (t) + x∗

i (t))
T

×
(
∇Vij(xj(t)− xi(t))−∇Vij(x

∗
j (t)− x∗

i (t))
)

≤ 0.
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Consequently Q(x(t) − x∗(t)) and ‖xi(t)− x∗
i (t)‖ (i ∈ IN) remain bounded when t → +∞,

and therefore distance clustering behavior of x∗ implies distance clustering behavior of x

with respect to the same cluster structure.

D. Convexity of the clusters for all-to-all coupling

In this section we restrict the interaction structure to all-to-all coupling, i.e. we assume

that the functions Vij are all equal to a function denoted by V0, which is convex and satisfies

V0(−y) = V0(y), for all y in R
P , and which we assume to be radially unbounded. (Notice

that this implies that ∇V0(0) = 0.)

We consider a solution exhibiting distance or velocity clustering behavior with respect

to a given cluster structure, and for an agent with a natural velocity which is a convex

combination of natural velocities of agents belonging to a common cluster, we show that

this agent also belongs to this cluster. This property does not hold when there is no all-to-all

coupling (see e.g. [? , section 5(b)] for an example with P = 1). For distance clustering

behavior we follow a similar reasoning as in [? ], where this property was shown for the

system (??); for velocity clustering behavior the proof requires some modifications.

In section ?? we investigate a bound for the asymptotic velocity difference for a velocity

cluster and an agent not belonging to this velocity cluster, and therefore having a natural

velocity that is not in the convex hull of the natural velocities of the agents in the cluster.

1. Convexity of the distance clusters

Assume the solution x of (??) exhibits distance clustering behavior with respect to G =

{G1, . . . , GM}, with bm =
∑

j∈Gk
µjbj , for some k ∈ IM , m ∈ IN , µ ∈ [0, 1]N with µj = 0 if

j /∈ Gk, µm = 0, and
∑

j∈IN µj =
∑

j∈Gk
µj = 1. We will show that this convexity property

implies that m ∈ Gk. Consider the function W , defined by

W : R → R : t 7→ W (t) ,
1

2

∥∥∥∥∥xm(t)−
∑

j∈Gk

µjxj(t)

∥∥∥∥∥

2

.
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Then

dW

dt
(t) =

(
xm(t)−

∑

j∈Gk

µjxj(t)

)T (
Fm(x(t))−

∑

l∈Gk

µlFl(x(t))

)

=
∑

l∈Gk

µl (xm(t)− xl(t))
T (Fm(x(t))−Fl(x(t)))

+
∑

j∈Gk

∑

l∈Gk

µjµl (xl(t)− xj(t))
T (Fm(x(t))− Fl(x(t))) .

In the second term ‖Fm(x(t))−Fl(x(t))‖ is bounded by some constant C0 since ‖F(x(t))‖ =
√

Q(F(x(t))) is non-increasing in t. In the first term we rewrite

(xm(t)− xl(t))
T (Fm(x(t))− Fl(x(t))) =

∑

n∈IN

(xm(t)− xn(t) + xn(t)− xl(t))

×Kγn (∇V0(xn(t)− xm(t))−∇V0(xn(t)− xl(t))) , (9)

and we apply the property (??) for n 6= m and n 6= l, resulting in

dW

dt
(t) ≤ −K

∑

l∈Gk

µl(γm + γl)(xm(t)− xl(t))
T∇V0(xm(t)− xl(t))

+ C0

∑

j∈Gk

∑

l∈Gk

µjµl ‖xl(t)− xj(t)‖ .

Since (using the convexity of V0)

yT∇V0(y) =
∂(V0(ty))

∂t

∣∣∣∣
t=1

≥ V0(y)− V0(0),

for all y in R
P , we obtain that

dW

dt
(t) ≤ −K

∑

l∈Gk

µl(γm + γl)V0(xm(t)− xl(t)) + C1

+ C0

∑

j∈Gk

∑

l∈Gk

µjµl ‖xl(t)− xj(t)‖ ,

where C1 , K
∑

l∈Gk
µl(γm + γl)V0(0).

Because of the distance clustering behavior ‖xl(t)− xj(t)‖ (with j, l ∈ Gk) is bounded,

and since V0 is radially unbounded it follows that for some δ > 0 we can find a constant D

such that, if W (t) > D, then (taking into account that Gk is a distance cluster) dW
dt

(t) < −δ,

implying that W (t) ≤ D for t sufficiently large and therefore m ∈ Gk.
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2. Convexity of the velocity clusters

We denote the velocity cluster structure by H = {H1, . . . , HM}, and similarly as in the

previous section, we assume that bm =
∑

j∈Hk
µjbj , for some k ∈ IM , m ∈ IN , µ ∈ [0, 1]N

with µj = 0 if j /∈ Hk, µm = 0, and
∑

j∈IN µj =
∑

j∈Hk
µj = 1. We will show that m ∈ Hk,

using the function W , now defined by

W : R → R : t 7→ W (t) ,
1

2

∥∥∥∥∥xm(t)−
∑

j∈Hk

µjxj(t)

∥∥∥∥∥

2

.

Repeating the reasoning in the previous section, but applying the property (??) for all n in

(??), we obtain

dW

dt
(t) ≤ C0

∑

j∈Hk

∑

l∈Hk

µjµl ‖xl(t)− xj(t)‖ .

Since the velocity clustering behavior implies that limt→+∞
‖xl(t)−xj (t)‖

t
= 0 for j, l in Hk,

it follows that for any ǫ > 0 we can find a constant T such that ‖xl(t)− xj(t)‖ ≤ ǫt for all

t > T , and for all j, l in Hk, and therefore

dW

dt
(t) ≤ C0ǫt, for all t > T,

resulting in

W (t) ≤ C2 +
C0

2
ǫt2, for all t > T,

for some C2 ∈ R, and
∥∥∥∥∥v̄m −

∑

j∈Hk

µj v̄j

∥∥∥∥∥ = lim
t→+∞

√
2W (t)

t
≤
√

C0ǫ.

Since this propery holds for all ǫ > 0, we conclude that v̄m = v̄j with j ∈ Hk, and therefore

that m ∈ Hk.

3. Upper bound for asymptotic velocity differences

We consider again a solution x of (??) with all-to-all coupling, and with the velocity

cluster structure of x denoted by H = {H1, . . . , HM}. If agent m ∈ IN does not belong

to the cluster Hk, then it follows from the previous section that bm does not belong to the

convex hull of the natural velocities of the agents belonging Hk. In order to provide a bound
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for the asymptotic velocity difference ‖v̄m − v̄j‖ with j ∈ Hk, we first prove the following

lemma.

Lemma 1. Let x be a solution of the system (??) with Vij = V0 for all i, j in IN for some

convex function V0. Set limt→+∞ ẋ(t) = v̄. (See Theorem ??.) Then

‖v̄i − v̄j‖ ≤ ‖bi − bj‖

for all i, j in IN .

Proof. Consider the function

W : R → R : t 7→ W (t) ,
1

2
‖xi(t)− xj(t)‖

2 .

Then

dW

dt
(t) = (xi(t)− xj(t))

T

(
bi − bj

+K
∑

n∈IN

γn (∇V0(xn(t)− xi(t))−∇V0(xn(t)− xj(t)))

)

= (xi(t)− xj(t))
T (bi − bj)

+K
∑

n∈IN

γn (xi(t)− xn(t) + xn(t)− xj(t))
T

× (∇V0(xn(t)− xi(t))−∇V0(xn(t)− xj(t)))

≤ ‖xi(t)− xj(t)‖ ‖bi − bj‖ ,

using the property (??). This results in

d (‖xi(t)− xj(t)‖)

dt
≤ ‖bi − bj‖ ,

and therefore

‖v̄i − v̄j‖ = lim
t→+∞

‖xi(t)− xj(t)‖

t
≤ ‖bi − bj‖ .

This result implies that ‖v̄m − v̄j‖, with j ∈ Hk, is upper bounded by minj∈Hk
‖bm − bj‖.

However, we may provide a stronger bound by considering a ‘virtual agent’: we may add

an extra agent N + 1 to the system with γN+1 → 0, since for γN+1 = 0 this agent will not

influence the behavior of the other agents. Choosing bN+1 in the convex hull of the natural
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velocities of the agents in Hk, it follows that N + 1 ∈ Hk and v̄N+1 = v̄j (j ∈ Hk), as shown

in the previous section. As a consequence, if j ∈ Hk, then

‖v̄m − v̄j‖ = ‖v̄m − v̄N+1‖ ≤ min
bN+1∈CHk

‖bm − bN+1‖ ,

where CHk denotes the convex hull of the natural velocities of the agents in Hk. In other

words, ‖v̄m − v̄j‖ is bounded by the distance of bm to the set CHk.

V. SPHERICAL SYMMETRY WITH AN INFINITE NUMBER OF AGENTS

We consider (??) with all-to-all coupling, with all weights γi set equal to 1, and with all

the interaction functions fij equal to some f , and thus also having a common limit value

denoted by F0. Furthermore we assume that the number of agents is infinite and consider a

Lagrangian representation of the continuum limit of (??) with the natural velocities b ∈ R
P

drawn from a distribution with a continuous probability density function g : RP → R. We

propose that the dynamics are governed by the following partial differential equation:

∂x

∂t
(b, t) = b+

∫

RP

g(b′)f (‖x(b′, t)− x(b, t)‖) db′,

for x(b, t) ∈ R
P , b ∈ R

P and t in R. This setup has been introduced and explored before,

for the case P = 1 in [? ], to which the reader is referred for details.

We will present an in-depth study of the velocity clustering behavior of this system

based on a continuous version of equation (??) established earlier for the finite case. (For

convenience we may omit the ‘velocity’ qualification, when referring to clusters or clustering

behavior.) We will assume that Lemma ?? can be extended to infinite N . As a consequence,

agents with equal natural velocities b belong to the same cluster; a cluster may then be

represented by the region in R
P of the b-values of its agents. In this section the term

‘cluster’ has the same meaning as before, with the proviso that it is reserved for groups of

agents for which this region for the b-values has a non-zero P -dimensional volume; this is a

natural adaptation since we are working with an uncountable number of agents.

It turns out that a rigorous study of a continuous version of equation (??) is not trivial,

even under the assumption of all-to-all coupling. We will therefore introduce a symmetry

condition on the density g. Let g(b) depend on ‖b‖ only (i.e. g(b) = gr(‖b‖), for all b in

R
P , for some function gr : R

+ → R). Also without loss of generality, consider a spherically
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symmetric initial condition with x(b, 0) = α(‖b‖)b for some function α : R
+ → R (i.e.

x(b, 0) is parallel with b, with ‖x(b, 0)‖ only depending on ‖b‖); the spherical symmetry will

be maintained in the dynamics and therefore the velocities ẋ(b, t) will only have a radial

component (parallel with b). As a consequence the asymptotic velocities v̄(b) also have

only a radial component, with magnitude denoted by v̄r(‖b‖). Since ẋi(t) − ẋj(t) = bi − bj

whenever xi(t) = xj(t), it follows that v̄r is non-decreasing. Since Lemma ?? is assumed to

be true for infinite N , v̄r is also continuous. By the spherical symmetry (and taking into

account the restriction imposed on the use of the term ‘cluster’), by the radial phase portrait

of the asymptotic velocities (having different directions on different radii), and by the non-

decreasing evolution of v̄r it follows that for P > 1 at most one cluster can be present: the

cluster is associated with asymptotic velocity zero and contains all agents with b-values in

a ball B(0, β) with radius β centered at the origin of RP . (If this cluster does not exist we

set β , 0.) Interactions with agents outside this cluster are saturated (reaching their limit

value F0), as are the mutual interactions among agents (with different natural velocities)

outside the cluster; from (??) it follows that the velocity function v̄ satisfies

v̄(b) = b+KF0

∫

RP

db′g(b′)ev̄(b′)−v̄(b), for all b in R
P \B(0, β), (10)

and v̄(b) = 0 for all b in B(0, β).

A. Cluster characterization

Consider the limit ‖b‖ → β in (??). By continuity of v̄r, v̄(b) → 0 (since v̄r(β) = 0) and

the interaction with agents outside the cluster will cancel because of the spherical symmetry:

lim
‖b‖→β

∫

RP \B(0,β)

db′g(b′)ev̄(b′)−v̄(b) =

∫

RP \B(0,β)

db′g(b′)ev̄(b′) = 0.

Since we are approaching the edge of the cluster from the outside, the interaction with the

agents inside the cluster is saturated and aligned with 0− v̄(b) = −v̄(b):

lim
‖b‖→β

∫

B(0,β)

db′g(b′)ev̄(b′)−v̄(b) = − lim
‖b‖→β

eṽ(b)

∫

B(0,β)

db′g(b′).

It follows that

0 = β −KF0

∫

B(0,β)

db′g(b′). (11)
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This equation always has the solution β = 0, which is relevant for the clustering behavior for

sufficiently small values of K. For K larger than some critical value Kℓ, there are also non-

zero solutions for β. However, (??) only constitutes a necessary condition, and the existence

of a non-zero solution for β does not imply the existence of a cluster, as (??) only expresses

the equilibrium between the natural velocity and the maximal centripetal attraction for

an agent at the edge of the cluster, without considering agents inside the cluster. On the

other hand, if there is a cluster, then it is (not necessarily uniquely) determined by the non-

zero solution(s) for β of (??). Therefore Kℓ only establishes a lower bound for the critical

coupling strength Kc at the onset of the cluster formation.

B. Phase transition

Equation (??) equates two terms related to opposite actions. While β represents the

magnitude of the natural velocity of an agent at the edge of the cluster — and therefore its

tendency to move away from the cluster —, the term KF0

∫
B(0,β)

db′g(b′) corresponds to the

maximal attraction that the entire cluster may exert on this agent.

For small values of β, Eq. (??) can be approximated by

β ≈ KF0g(0)VPβ
P , (12)

where VP denotes the volume of a P -dimensional ball with radius one. This approximation

is reminiscent of classical descriptions of nucleation in thermodynamical phase transitions [?

, p. 192]. E.g. the homogeneous nucleation of the condensed phase in supersaturated vapor

is driven by a decrease in Gibb’s free energy resulting from the substitution of vapor with

liquid phase — proportional to the volume of the liquid phase — while being counteracted

by an increase in free energy associated with the creation of an interface between vapor and

liquid — proportional to the surface area of the liquid phase. For the free energy related

to a ball of liquid with radius R, the two terms involved are proportional to R3 and R2

respectively, and their derivatives with respect to R (proportional to R2 and R respectively)

may be considered as two counteracting forces. At the value of R where the Gibb’s free

energy is maximal, these forces are equal, leading to an unstable equilibrium. Above the

corresponding critical radius the nucleus will grow further without requiring extra energy.

Although the dynamics of (??) and the mechanism inducing cluster formation may not
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be comparable to the nucleation process in thermodynamical systems, the behavior of both

terms in (??) for small values of β will affect the cluster formation in a similar way, with

a transition similar to second-order or first-order phase transitions depending on whether

P = 1 or P > 1.

1. P = 1

The case P = 1 has been investigated in [? ]. If gr is decreasing in R
+, then a typical

graph of the cluster size
∫
B(0,β)

db′g(b′) in terms of β is shown in Fig. ??, and it follows

that Kc = Kℓ = 1/(2F0g(0)). The cluster size grows continuously (but not differentiably)

from 0 on with increasing K, according to (??) (see Fig. ??). If the cluster size is taken as

an order parameter, its graph in terms of K shows that the cluster appears according to a

second-order phase transition.

If gr is not decreasing everywhere in R
+, then there are at least two local maxima of g,

and two clusters will arise at K = 1/(2F0max(g)) as is discussed in [? ].

2. P > 1

For P > 1 a typical graph of the cluster size as a function of β is shown in Fig. ??.

There will be a minimum size for the cluster (as can also be inferred from (??)), resulting

in a discontinuity for β (and therefore also for the cluster size) in terms of K, similar to

the discontinuities observed in first-order phase transitions (see Fig. ??). (In contrast with

the nucleation process in thermodynamical systems, the cluster growth will be limited for

fixed K because the second term in Eq. (??) contains higher order terms not present in the

approximation (??), and the cluster size will be equal to the largest solution of (??).)

Remark 5. A similar discontinuity of the cluster size as a function of K may also occur for

P = 1 if the density function is constant in an interval with non-zero length, but this is a

non-generic situation (see also [? ]).
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Figure 2. Comparison of the one-dimensional case with the multi-dimensional case for the evolution

of the cluster size for typical choices of the (unimodal) density function g. The upper row shows

the cluster size in terms of β; the lower row shows the evolution of the cluster size in terms of the

coupling strength K when solving (??) (the part of the graph corresponding to the clusters in the

dynamical system is shown with a solid line). The left column corresponds to P = 1, the right

column to P = 3. (For P = 3, the density function is taken equal to g1 in section ??.)

C. Bounds for the critical coupling strength

The value Kℓ (i.e. the infimum of all K-values for which (??) has a non-zero solution for

β) constitutes a lower bound for Kc. It satisfies

1 = KℓF0max
r∈R+

0

∫
B(0,r)

dbg(b)

r
.
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An upper bound for Kc can be derived as follows.

In the integral in (??) we can first perform an integration over hyperspheres with radius

r′, and then integrate over r′. With AP denoting the P − 1-dimensional surface area of a

unit hypersphere in R
P , this leads to

v̄r(r) = r −KF0

∫ +∞

0

dr′AP r
′P−1gr(r

′)ΦP

(
v̄r(r)

v̄r(r′)

)
, for all r in [β,+∞), (13)

where ΦP

(
v̄r(r)
v̄r(r′)

)
represents the attraction of agents on a sphere (centered at the origin)

with radius v̄r(r
′)t (with t tending to +∞) on an agent v̄r(r)t away from the origin. It can

be written as

ΦP (ξ) ,
AP−1

AP

∫ π

0

dα (sinα)P−2 ξ − cosα√
ξ2 − 2ξ cosα + 1

, for all ξ in R
+,

where AP satisfies

AP = AP−1

∫ π

0

dα (sinα)P−2 ,

with A1 = 2. The function ΦP is increasing (the derivative of the integrand to ξ is positive

for almost all α in [0, π]) and satisfies ΦP (0) = 0 and limξ→+∞ΦP (ξ) = 1. Since v̄r is

non-decreasing, it follows that ΦP

(
v̄r(r)
v̄r(r′)

)
is non-increasing in r′, and using (??) we derive

that

v̄r(r) ≤ r −KF0

∫ r

0

dr′AP r
′P−1gr(r

′)ΦP (1),

= r − ΦP (1)KF0

∫

B(0,r)

dbg(b),

for all r in [β,+∞), and thus, since if K = Kc then β = 0,

r − ΦP (1)KcF0

∫

B(0,r)

dbg(b) ≥ 0, for all r in R
+.

Together with the previously derived lower bound for Kc, we can conclude that

1 ≤ KcF0max
r∈R+

0

∫
B(0,r)

dbg(b)

r
≤

1

ΦP (1)
, (14)

with

ΦP (1) =

∫ π

0
dα (sinα)P−2 sin α

2∫ π

0
dα (sinα)P−2

.

The bounds on Kc remain non-trivial for P → +∞, since limP→+∞ΦP (1) =
1√
2
. This can

be verified by noticing that for large values of P , the main contribution to the integrals in

the expression for ΦP (1) stems from integration over a small interval about π
2
.
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Remark 6. The upper bound is reached for a density function g of the form

g(b) =
1

APCP−1
δ(‖b‖ − C),

for some C > 0, where δ represents the (one-dimensional) Dirac distribution. This distri-

bution is obviously not continuous. As we will illustrate below for P = 3, there may exist

continuous distributions for which the lower bound is attained.

D. Example: P = 3

The function Φ3 may be written in explicit form as follows:

Φ3(ξ) =
1

2

∫ 1

−1

du
ξ − u√

ξ2 − 2ξu+ 1
(u = cosα)

=
1

2

∫ ξ+1

|ξ−1|
dz

ξ2 − 1 + z2

2ξ2
(z =

√
ξ2 − 2ξu+ 1)

=
1

4ξ2

(
(ξ2 − 1) (ξ + 1− |ξ − 1|) +

1

3

(
(ξ + 1)3 − |ξ − 1|3

))

=





2
3
ξ, for ξ in [0, 1];

1− 1
3ξ2

, for ξ in [1,+∞).

Substituting this expression in (??) results in

v̄r(r) = r −KF0

∫ r

0

dr′4πr′2gr(r
′)

(
1−

v̄r(r
′)2

3v̄r(r)2

)

−KF0

∫ +∞

r

dr′
8πr′2

3
gr(r

′)
v̄r(r)

v̄r(r′)
,

for all r in [β,+∞). Dividing by v̄r(r) and taking the derivative with respect to r leads to

0 =
1

v̄r(r)
−

r dv̄r
dr
(r)

v̄r(r)2
+

dv̄r
dr
(r)

v̄r(r)2
KF0

∫ r

0

dr′4πr′2gr(r
′)−

KF0

v̄r(r)
4πr2gr(r)

− 3
dv̄r
dr
(r)

v̄r(r)4
KF0

∫ r

0

dr′
4

3
πr′2gr(r

′)v̄r(r
′)2 +

KF0

v̄r(r)

4

3
πr2gr(r) +

KF0

v̄r(r)

8πr2

3
gr(r),

or

0 =
1

v̄r(r)
−

r dv̄r
dr
(r)

v̄r(r)2
+

dv̄r
dr
(r)

v̄r(r)2
KF0

∫ r

0

dr′4πr′2gr(r
′)

−
dv̄r
dr
(r)

v̄r(r)4
KF0

∫ r

0

dr′4πr′2gr(r
′)v̄r(r

′)2.
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Multiplying with v̄r(r)4

dv̄r
dr

(r)
and again taking the derivative to r, we obtain

0 = 3v̄r(r)
2 −

v̄r(r)
3 d2v̄r
dr2

(r)
(
dv̄r
dr
(r)
)2 − v̄r(r)

2 − 2rv̄r(r)
dv̄r
dr

(r)

+ 2v̄r(r)
dv̄r
dr

(r)KF0

∫ r

0

dr′4πr′2gr(r
′) + v̄r(r)

2KF04πr
2gr(r)−KF04πr

2gr(r)v̄r(r)
2,

or
v̄r(r)
dv̄r
dr
(r)

−
v̄r(r)

2 d2v̄r
dr2

(r)

2
(
dv̄r
dr
(r)
)3 = U(r),

where

U(r) , r −KF0

∫ r

0

dr′4πr′2gr(r
′),

for all r in R
+. Setting χ , v̄r

dv̄r
dr

, it follows that

dχ

dr
=

2U − χ

χ
.

From the definition of χ we derive that

v̄r(r) = v̄r(r0) exp

(∫ r

r0

dr′

χ(r′)

)
,

with r0 ∈ [β,+∞). Since v̄r is non-negative and non-decreasing, with v̄r(β) = 0, it follows

that χ is also non-negative, with limr→β χ(r) = 0. To investigate the existence of a cluster

we can therefore consider a solution S of the system

ṙ(t) = χ(t), (15a)

χ̇(t) = 2U(r(t))− χ(t), (15b)

with an initial condition (r1, χ1) ∈
(
R

+
0

)2
near (0, 0). (Since the origin is a saddle point

with the unstable manifold along the direction (1, 1), the exact value of the initial condition

is unimportant, as long as (r1, χ1) is small enough.) If the solution for χ remains positive

(notice that r then also remains positive), then the corresponding v̄r solves (??) with β = 0,

and there will not be any cluster. If χ(t) = 0 for some t > 0, then there is a cluster of which

the size is determined by Eq. (??), or equivalently U(β) = 0. To calculate v̄r in [β,+∞) one

may consider an appropriate solution of (??) starting near (β, 0).

As a first illustration we consider the density function g1 defined by

g1(b) =
3

4π(1 + ‖b‖3)2
, for all b in R

P ,
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such that ∫ r

0

dr′4πr′2gr(r
′) =

r3

1 + r3
, for all r in R

+.

Since

sup
r∈R+

0

∫ r

0
dr′4πr′2gr(r

′)

r
=

41/3

3
,

and Φ3(1) =
2
3
, the inequalities (??) result in

3

22/3
≤ KcF0 ≤

9

25/3
,

or, numerically approximated,

1.8899 ≤ KcF0 ≤ 2.8348.

A simulation of S corresponding to KF0 = 1.897 is shown in Fig. ??, together with the

graph of the relation χ = U(r). As the trajectory almost touches the r-axis at r ≈ 1.34

(which constitutes the largest solution of U(r) = 0), we can conclude that this value of K

is still below, but very near to, Kc. Notice that there is no cluster in this case, even though

Eq. (??) has non-zero solutions for β.

In a second illustration we consider the density function g2 defined by

∫

B(0,r)

g2(b)db = min{r3, r/C, 1}, for all r in R
+,

for some C > 1. We will show that for C sufficiently large the lower bound in (??) is

attained. (The corresponding density function g2 is not continuous, but we assume that the

results formulated below are still valid. Furthermore, one may approximate g2 by a contin-

uous distribution for which the lower bound in (??) is also attained, but the corresponding

expression for the density function may be more complex.) The lower bound in (??) leads

to

KcF0 ≥ C.

For KF0 = C the function U satisfies

U(r) = 0, for all r in [ 1√
C
, C],

and a solution of the system (??) with r(t) ∈ [ 1√
C
, C] then satisfies

χ̇(t)

ṙ(t)
= −1.
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Figure 3. The trajectory of S is shown (solid line), together with the graph of the function U

(dashed line) for the density function g1, and with KF0 = 1.897.

Since
dχ

dr
≤

2r − χ

χ
,

the first part of S (more specifically, the part for which r(t) ≤ 1√
C
) is bounded by the

solution of
dχ

dr
=

2r − χ

χ

starting near the origin, which corresponds to χ = r, it follows that for C sufficiently large

and KF0 = C, S will cross the r-axis somewhere between 1√
C

and C, and thus there is a

cluster for this value of K, implying that KcF0 ≤ C, and therefore KcF0 = C. Figure ??

shows a similar picture as Fig. ??, but for the density function g2 and with KF0 = C =

1.2985. Although this value of K is still smaller than Kc (as can be concluded from Fig. ??)

and thus in this case KcF0 > C, KcF0 is very near to C, and simulations indicate that for

slightly larger values of C the equality KcF0 = C holds.
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Figure 4. The trajectory of S is shown (solid line), together with the graph of the function U

(dashed line) for the density function g2, and with KF0 = C = 1.2985.

VI. CONCLUSION

We have considered a multi-dimensional multi-agent clustering model for which the be-

havior of the agents is determined by non-identical natural velocities and interactions that

may be represented as gradients of convex functions. We have shown that the velocities of

the agents converge to limit values, constituting the solution to a minimization problem.

The agents organize themselves into clusters, which may be defined by either bounded dis-

tances between the agents, or by a common asymptotic velocity. The definitions coincide

for generic values of the parameters, and for both definitions the clustering behavior is inde-

pendent of the initial conditions. If the interaction is all-to-all and identical for each pair of

agents, then it is shown that the clusters are convex with respect to the natural velocities.

We have investigated the continuum limit of the model based on continuous versions

of results obtained and presented in Section ?? for the finite number of agents case. As-
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suming spherical symmetry, and we have compared the emergence of a cluster for the one-

dimensional case with the higher-dimensional case. For the one-dimensional case the onset

of cluster formation is similar to a second-order phase transition; in higher dimensions there

is a minimal size for the cluster, and its emergence is akin to a first-order phase transition.

Furthermore, we have provided bounds for the critical coupling strength at the onset of the

cluster formation, and we have illustrated our results with two examples in three dimensions.
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