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Abstract. In this paper, the theory of the spinor Fourier transform in-
troduced in [Batard, T., Berthier, M., Saint-Jean, C., Clifford-Fourier
Transform for Color Image Processing, Geometric Algebra Computing
for Engineering and Computer Science (E. Bayro-Corrochano and G.
Scheuermann Eds.), Springer Verlag, London, 2010, pp. 135-161] is fur-
ther developed. While in the original paper, the transform was deter-
mined for vector-valued functions only, it now will be extended to func-
tions taking values in the entire Clifford algebra. Next, two bases are
determined under which this Fourier transform is diagonalizable. A main
stumbling block for further applications, in particular concerning filter
design in the Fourier domain, is the lack of a proper convolution theo-
rem. This problem will be tackled in the final section of this paper.
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1. Introduction

During the last years, there has been an increased interest in hypercomplex
Fourier transforms and their applications in various aspects of signal process-
ing. The main idea behind these applications is the representation of a signal
(say, a color image) as an element of a suitable Clifford algebra. Success-
ful developments of the hypercomplex approach can be found in the work of
Sangwine (e.g. [15]). Examples of Fourier transforms for which eigenfunctions
are used to construct them, can be found in e.g. [1, 2, 3, 4, 11, 12, 13]. The
main issue that hinders further development of applications is the lack of a
suitable convolution theorem for such hypercomplex Fourier transforms. This
paper however, is based on another generalization of Fourier transforms. In
[7, 8, 9], a spinor Fourier transform was developed, that is suitable for color
image spectral analysis. In this work, a color image is considered to be a
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vector-valued function. As the link with group representations is often im-
portant when dealing with Fourier transforms, the spinor Fourier transform
was constructed using group morphisms from R2 to Spin(4). In fact, this
transform can also be compared to the general geometric Fourier transform
introduced by Bujack, Scheuermann and Hitzer in [5]. Unfortunately, the re-
striction to vector-valued functions obliges us to tackle this transform in a
different way.

In this paper, we build further upon the theory of this spinor Fourier
transform. We have 3 large aims.

A1: An extension of the domain of the spinor Fourier transform from vector-
valued functions to functions taking values in the entire Clifford algebra.

A2: Construction of two bases of eigenfunctions, diagonalizing the spinor
Fourier transform.

A3: Defining a convolution product for the spinor Fourier transform.

Before getting to these goals, we introduce the used notations in Section
2. Here, we also briefly recapitulate the construction of the spinor Fourier
transform, done in [7], as we will define it slightly differently from the orig-
inal article for calculational ease. The morphisms from R2 to Spin(4) are
constructed, and it is proven that they are characterized by four real num-
bers and a special type of bivector. As these morphisms are important in our
construction, the properties of these bivectors are crucial as well. In Section
3, we explain these properties and describe this set of special bivectors in
detail.

In Section 4, we are finally able to define our spinor Fourier transform
for vector-valued functions and we come to aim A1, a suitable extension to
general Clifford-valued functions. In this section, some calculation rules are
also developed, that are useful for reaching our second goal A2, determining
two sets of functions which diagonalize the spinor Fourier transform in Section
5.

Finally, this brings us to the last section of this article, the determination
of a convolution product (A3). We base our ideas on those of Mustard [18]
which have also been used in e.g. [4].

2. The set-up

Before we explain the construction of the spinor Fourier transform (SFT),
let us introduce some notations that will be used (see e.g. [14, 17]). The
m-dimensional real space is denoted by Rm, with standard orthogonal ba-
sis (e1, . . . , em). The real Clifford algebra Rm,0 over Rm is governed by the
relations eiej + ejei = 2δij for all 1 ≤ i, j ≤ m. We will denote a vector
(x1, . . . , xm) in Rm by x. Within the Clifford algebra, the set of k-vectors is
defined as

R(k)
m,0 = spanR{ei1 · · · eik : 1 ≤ i1 < · · · < ik ≤ m}.
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The subspace of Rm,0 of 2-vectors (also called bivectors) that square to −1

is denoted by S(2)m,0. The pseudoscalar e1e2e3e4 in R4,0 is denoted by I.
We will regularly speak about unit bivectors, so we need these objects to be
well-defined. In order to do this, we will use the Clifford inner product.

Definition 1. The conjugation a 7→ a is defined on the basis elements eA =
ei1 . . . eih , i1 < . . . < ih by means of

eA = (−1)heih . . . ei1 = (−1)
h(h+1)

2 eA,

and it is then linearly extended:

(aAeA + aBeB) = aAeA + aBeB ,

for all aA, aB ∈ R.

With this knowledge, we can define the Clifford inner product as follows:

Definition 2. For two Clifford numbers a, b ∈ Rm,0, we define the Clifford
inner product 〈·, ·〉 as follows:

〈a, b〉 = [ab]0,

where [ab]0 is the scalar part of the product ab.

Remark 1. The Clifford inner product of two bivectors A,B ∈ R(2)
m,0, with

A =
∑
i<j aijeij and B =

∑
i<j bijeij is then given by

〈A,B〉 =
∑
i<j

aijbij .

The Clifford inner product for vectors corresponds to the standard Euclidean
inner product.

From this definition, we can obtain a norm on Rm,0:

Definition 3. For any a =
∑
A aAeA ∈ Rm,0, the Clifford norm | · | is defined

as follows:

|a| =
√
〈a, a〉 =

√
[aa]0 =

√∑
A

a2A.

The exact definition of a unit bivector is then the following:

Definition 4. A bivector A in R(2)
m,0 is a unit bivector if |A| = 1. We will

denote the space of unit bivectors in R(2)
m,0 with S(2)m,0.

Remark 2. Note that the space of unit bivectors S(2)m,0 is in general different

from the space S(2)m,0 of bivectors that square to −1. This will be proven in
Section 3.

In order to construct the SFT, we make use of group morphisms. As we
will make slightly different assumptions then the original article, we briefly
repeat the construction procedure of the SFT. First of all, we have the fol-
lowing result which was proven in [7].
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Proposition 1. The differentiable group morphisms from R2 to Spin(3) are
given by

ϕ̃ : (x1, x2) 7→ e(x1y1+x2y2)B

where B is an element of S(2)3,0, the set of unit bivectors in R3,0, and y1, y2 ∈ R.

It can easily be shown that every τ in Spin(4) is of the form

τ = u+ Iv = (a+ be1e2 + ce2e3 + de3e1) + I(a′ + b′e1e2 + c′e2e3 + d′e3e1),

where the following relations hold:

uū+ vv̄ = 1, uv̄ + vū = 0.

The morphism χ: Spin(4) → Spin(3)× Spin(3) with

χ(u+ Iv) = (u+ v, u− v)

is an isomorphism, with inverse: χ−1(a, b) = a+b
2 + I a−b2 .

Proposition 2. The differentiable group morphisms from R2 to Spin(4) are

the morphisms φ̃ of the form

φ̃ : (x1, x2)→ e
1
4 [x1(y1+z1)+x2(y2+z2)][B+C+I(B−C)]

× e 1
4 [x1(y1−z1)+x2(y2−z2)][B−C+I(B+C)]

with y1, y2, z1, z2 ∈ R and B,C ∈ S(2)3,0.

The proof can be found in [7]. Proposition 2 is a more convenient form
to describe group morphisms from R2 to Spin(4). We can write the expression
more elegantly by defining the bivector D ∈ R4,0:

D =
1

2
(B + C + I(B − C)). (1)

Also, we have that

ID =
1

2
(B − C + I(B + C))

Thus, the morphisms φ̃ are parametrized by four real numbers y1, y2, z1, z2
and one bivector D ∈ R(2)

4,0, so φ̃ may be written as

φ̃ = e
1
2 [(x1(y1+z1)+x2(y2+z2))D]e

1
2 [(x1(y1−z1)+x2(y2−z2))ID]

At the moment, the properties of the bivectors D = 1
2 (B + C + I(B − C))

are not clear. This will be the topic of the next section.

3. Some remarks on bivectors

First of all, we will prove that the space of unit bivectors S(2)m,0 is in general

not equal to the space S(2)m,0 of bivectors that square to −1. Let us define the
exterior product or wedge product of two vectors:
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Definition 5. The wedge product of two vectors a =
∑m
j=1 aiei and b =∑m

j=1 biei in Rm,0 is defined as

a ∧ b =
∑
i<j

eiej(aibj − ajbi) =
1

2
(ab− ba)

Definition 6. Any bivector that can be written as the wedge product of two
vectors is called a blade.

In this section, the aim is to prove the following proposition

Proposition 3. The space S(2)4,0 in R(2)
4,0 coincides with the space of bivectors of

type 1
2 (B +C + I(B −C)), where B,C ∈ S(2)3,0. Moreover, S(2)4,0 ⊂ S(2)4,0. S(2)4,0 is

also exactly the set of unit blades in R(2)
4,0.

From e.g. [14], we know that bivectors in R(2)
4,0 can always be written as

the sum of at most two blades, thus we can group bivectors in R(2)
4,0 in two

categories:

• Type 1: bivectors that can be written as a blade: a ∧ b
• Type 2: bivectors of the form a ∧ b+ c ∧ d, the sum of two blades, that

cannot be written as a single blade.

Bivectors in R(2)
3,0 on the other hand are always of Type 1. We have the

following lemmas:

Lemma 1. A blade a ∧ b ∈ R(2)
m,0 always squares to a negative real number.

Proof. Without loss of generality, we may assume that a and b are orthogonal
vectors. Then

(a ∧ b)2 = abab = −a2b2 = −|a|2|b|2,
which finishes the proof. �

Corollary 1. If a and b are orthogonal unit vectors in R(2)
m,0, then a∧b ∈ S(2)m,0.

Corollary 2. We have that S(2)3,0 = S(2)3,0 .

Opposite to Lemma 1, we have

Lemma 2. A Type 2 bivector b1∧b2 +b3∧b4 ∈ R(2)
4,0 never squares to a scalar.

Proof. Without any loss of generality, we may assume that {b1, b2, b3, b4} is
an orthogonal basis of R4. We then have that

(b1 ∧ b2 + b3 ∧ b4)2

= (b1 ∧ b2)2 + (b3 ∧ b4)2 + (b1 ∧ b2)(b3 ∧ b4) + (b3 ∧ b4)(b1 ∧ b2)

= −|b1|2|b2|2 − |b3|2|b4|2 + 2b1 ∧ b2 ∧ b3 ∧ b4.
The last term is a 4-vector, and can therefore never be scalar. �

Lemma 3. The bivector D defined in (1) is an element of S(2)4,0 .
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Proof. Making use of the facts that I2 = 1, B2 = C2 = −1 and B and C
commute with the pseudoscalar I, a straightforward calculation gives us that
D2 = −1. �

From these two lemmas, we find that the set of bivectors of the form
1
2 (B +C + I(B−C)), where B and C are unit bivectors in R(2)

3,0, must all be
of Type 1, due to Lemma 2 and Lemma 3. However, we still need to prove
that both sets are actually equal.

Lemma 4. Any bivector A ∈ R(2)
4,0 can be written in a unique way as D+ IF ,

with D,F ∈ R(2)
3,0, and I the pseudoscalar in R4,0.

Proof. Any bivector A in R4,0 is of the form

A = a12e1e2 + a13e1e3 + a14e1e4 + a23e2e3 + a24e2e4 + a34e3e4.

Since D ∈ R(2)
3,0 cannot contain any term with e4, it must hold that D and F

are given by

D = a12e1e2 + a13e1e3 + a23e2e3

and

F = −a34e1e2 + a24e1e3 − a14e2e3.
Each coefficient aij corresponds to a different basis-bivector, making this
decomposition unique. �

Note that the lemma above gives the explicit isomorphism between so(4)
and so(3) × so(3), or equivalently su(2) × su(2). Regarding the special type
of bivectors that are used in this article, namely the ones of the form 1

2 (B +
C + I(B − C)), we also have the following lemma.

Lemma 5. Any unit bivector D+IF in R(2)
4,0, with D,F ∈ R(2)

3,0 can be written

as 1
2 (B + C + I(B − C)) with B,C ∈ R(2)

3,0. Moreover, B and C themselves

are unit bivectors if and only if 〈D,F 〉 = 0.

Proof. The first part of the lemma is fairly easy to see, by simply setting
B = D + F and C = D − F , or equivalently D = B+C

2 and F = B−C
2 . Now,

suppose

D = d1e2e3 + d2e1e3 + d3e1e2

and

F = f1e2e3 + f2e1e3 + f3e1e2.

Then D + IF is a unit bivector if

|D + IF |2 = d21 + d22 + d23 + f21 + f22 + f23 = 1.

The norms of B and C are given by

|B|2 = (d1 + f1)2 + (d2 + f2)2 + (d3 + f3)2 = 1 + 2(d1f1 + d2f2 + d3f3)

and

|C|2 = (d1 − f1)2 + (d2 − f2)2 + (d3 − f3)2 = 1− 2(d1f1 + d2f2 + d3f3)
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Both expressions equal 1 if and only if d1f1 + d2f2 + d3f3 = 0. This proves
the lemma. �

The previous lemma also shows that there exist unit bivectors in R(2)
4,0

for which B and C cannot be chosen unit. For instance, take F + IF , for any

F ∈ R(2)
3,0, with f21 + f22 + f23 = 1

2 .

Lemma 6. For any blade (not necessarily unit) a ∧ b = D + IF ∈ R(2)
4,0, we

have that 〈D,F 〉 = 0.

Proof. Set

a = a1e1 + a2e2 + a3e3 + a4e4

and

b = b1e1 + b2e2 + b3e3 + b4e4.

Then we have that

D =
1

2
((a1b2 − a2b1)e1e2 + (a1b3 − a3b1)e1e3 + (a2b3 − a3b2)e2e3)

and

F =
1

2
(−(a3b4 − a4b3)e1e2 + (a2b4 − a4b2)e1e3 − (a1b4 − a4b1)e2e3).

If we calculate the inner product of these two bivectors, we notice that this
always equals 0. �

These last two lemmas finish the proof of Proposition 3.

4. Properties of the spinor Fourier transform

With the knowledge of the previous section, we can define the SFT for vector-
valued functions. The idea is to define it as

F̃(f(x)) =
1

2π

∫
R2

φ̃(x)f(x)φ̃(−x)dx.

Definition 7. Let f : R2 → R(1)
4,0 be a vector-valued function in the Schwartz

space S(R2,R)⊗R4,0. The SFT is then defined as follows for each D ∈ S(2)4,0 :

F̃D(f) =
1

2π

∫
R2

e
1
2 [(x1(y1+z1)+x2(y2+z2))D]e

1
2 [(x1(y1−z1)+x2(y2−z2))ID]f(x1, x2)

× e− 1
2 [(x1(y1+z1)+x2(y2+z2))D]e−

1
2 [(x1(y1−z1)+x2(y2−z2))ID]dx1dx2.

Throughout this paper, we restrict ourselves to the specific case of z1 = z2 = 0:

FD(f) =
1

2π

∫
R2

e
1
2 (x1y1+x2y2)De

1
2 (x1y1+x2y2)IDf(x1, x2)

× e− 1
2 (x1y1+x2y2)De−

1
2 (x1y1+x2y2)IDdx1dx2.
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Remark 3. Note that this definition only makes sense for vector valued func-
tions. if f is, say, scalar, then the transform reduces to the integral of f .
The normalization factor is different from the one in [7], but it will prove
to be more convenient in our further calculations. We will look at this last,
simplified definition a bit closer and determine how it acts on a function f .
In order for the SFT to be well-defined, we assume from now on that f is an
element of the Schwartz space S(R2,R4,0) := S(R2,R)⊗ R4,0.

Recall aim A1 of this paper, finding a way to generalize the SFT to
functions taking values in the entire Clifford algebra. Therefore, we introduce

the following notations. For each f ∈ S(R2,R(k)
m,0), set

f+ =
1

2
(f −DfD) and f− =

1

2
(f +DfD).

Let [·, ·] be the commutator and {·, ·} the anticommutator. If k is odd, we
have the relations

[D, f+] = 0, {D, f−} = 0, {ID, f+} = 0 and [ID, f−] = 0.
(2)

On the other hand, if k is even, we get

[D, f+] = 0, {D, f−} = 0, [ID, f+] = 0 and {ID, f−} = 0.
(3)

These relations can easily be calculated using the properties that D2 =
(ID)2 = −1, where I is again the pseudoscalar defined in Section 2. This
pseudoscalar (anti-)commutes with f±, depending on the parity of k. Obvi-
ously, we have that f = f+ + f−. Consequently, the SFT for vector-valued
functions can be rewritten as

FD(f) = FD(f+) + FD(f−)

=
1

2π

∫
R2

e(x1y1+x2y2)IDf+(x1, x2)dx1dx2

+
1

2π

∫
R2

e(x1y1+x2y2)Df−(x1, x2)dx1dx2.

The latter expression does not trivialize when applying to R4,0-valued func-
tions, so we can use it to extend the SFT to the entire Clifford algebra.

Definition 8. For any function f ∈ S(R2,R4,0), and any bivector D ∈ S(2)4,0 ,
we define the SFT FD as

FD(f) =
1

2π

∫
R2

e(x1y1+x2y2)IDf+(x1, x2)dx1dx2

+
1

2π

∫
R2

e(x1y1+x2y2)Df−(x1, x2)dx1dx2.

Notice that eiI = −Iei, hence the pseudoscalar I commutes with all
bivectors D. Furthermore, we have that

e(x1y1+x2y2)D =

∞∑
k=0

(x1y1 + x2y2)kDk

k!
.
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The derivative with respect to x1 then equals

∂x1
e(x1y1+x2y2)D = y1De

(x1y1+x2y2)D.

This means we can derive the exponential function as we would expect to.
Set g = g+ + g−, where

g+ := e(x1y1+x2y2)IDf+ and g− := e(x1y1+x2y2)Df−.

Then, since D and ID commute,

∂x1g = y1IDg
+ + y1Dg

− + e(x1y1+x2y2)ID∂x1f
+ + e(x1y1+x2y2)D∂x1

f−.

Provided f is a function in the Schwartz space, we get

0 =

∫
R2

∂x1gdx1dx2 = y1IDFD(f+) + y1DFD(f−) + FD(∂x1f)

or
FD(∂x1f) = −y1

(
IDFD(f+) +DFD(f−)

)
.

Analogously,

FD(∂x2
f) = −y2

(
IDFD(f+) +DFD(f−)

)
.

We also have that

∂y1g
+ = IDx1g

+ and ∂y1g
− = Dx1g

−

or after multiplication with ID and D respectively,

x1g
+ = −ID∂y1g+ and x1g

− = −D∂y1g−.
Integrating over x1 and x2 and adding both equations yields

FD(x1f) = −ID∂y1
(
FD(f+)

)
−D∂y1

(
FD(f−)

)
. (4)

Analogously one obtains

FD(x2f) = −ID∂y2
(
FD(f+)

)
−D∂y2

(
FD(f−)

)
. (5)

Since FD acts independently on f+ and f−, we get from the above equations

FD
(
∂2x1

f
)

= −y21FD(f) and FD
(
∂2x2

f
)

= −y22FD(f). (6)

Analogously we find from the dual formulas that

FD
(
x21f

)
= −∂2y1FD(f) and FD

(
x22f

)
= −∂2y2FD(f). (7)

Let us introduce the notations |x|2 = x21 + x22 and ∆x = ∂2x1
+ ∂2x2

for any
vector x, and similar notations for y. Taking the sum of the equations in (6)
gives us the Fourier transform of ∆xf .

FD
(
∆xf

)
= −|y|2FD(f). (8)

Similar calculations with (7) also give us the dual formula

FD
(
|x|2f

)
= −∆yFD(f). (9)

Also, we have the relations

FD ((x1 − ∂x1
)f) = ID(y1 − ∂y1)FD(f+) +D(y1 − ∂y1)FD(f−)

FD ((x2 − ∂x2)f) = ID(y2 − ∂y2)FD(f+) +D(y2 − ∂y2)FD(f−),
(10)
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which will be useful in the next section.

5. Eigenfunctions for the spinor Fourier transform

In this section, we tackle aim A2, finding two bases of eigenfunctions for the
SFT. We start with the cartesian basis.

5.1. The cartesian basis

It is well-known that the space of Schwartz functions S(R) has a basis formed
by the 1-dimensional Hermite functions, defined as follows (see [20]):

Definition 9. The one-dimensional Hermite functions are defined as follows,
for k ∈ N

ψk(x) = (x− ∂x)ke−x
2/2 = Hk(x)e−x

2/2.

Then a basis for S(R2)⊗ R4,0 is given by the functions

ψk,l(x1, x2) = ψk(x1)ψl(x2),

for all k, l ∈ N, with coefficients in R4,0. The next step in our reasoning is to
determine the Fourier transforms of these basis functions. First note that for
each real number c, we have

ecD = 1 +
cD

1!
+
c2D2

2!
+
c3D3

3!
+ · · ·

=

(
1− c2

2!
+
c4

4!
− · · ·

)
+D

(
c

1!
− c3

3!
+
c5

5!
− · · ·

)
= cos(c) +D sin(c).

For each element a = a+ + a− ∈ R4,0, we have

FD(aψ0,0) =
1

2π

∫
R2

(cos(x1y1+x2y2)+ID sin(x1y1+x2y2))a+e−
x2
1
2 e−

x2
2
2 dx1dx2

+
1

2π

∫
R2

(cos(x1y1 + x2y2) +D sin(x1y1 + x2y2))a−e−
x2
1
2 e−

x2
2
2 dx1dx2.

We calculate the first integral:

1

2π

∫
R2

(cos(x1y1 + x2y2) + ID sin(x1y1 + x2y2))a+e−
x2
1
2 e−

x2
2
2 dx1dx2

=
1

2π

∫
R2

((cos(x1y1) cos(x2y2)− sin(x1y1) sin(x2y2))

+ID(sin(x1y1) cos(x2y2)− cos(x1y1) sin(x2y2))) a+e−
x2
1
2 e−

x2
2
2 dx1dx2.

The sine function is an odd function, so only the first term remains. This
equals

1

2π

∫ +∞

−∞
cos(x1y1)e−

x2
1
2

(∫ +∞

−∞
cos(x2y2)e−

x2
2
2 a+dx2

)
dx1

=
1

2π

√
2πe−

y2
1
2

√
2πe−

y2
2
2 a+ = a+ψ0,0.
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Similar calculations can be done for the second integral, resulting in the
equality

FD(aψ0,0) = aψ0,0.

In general, we get that

FD(aψk,l) = FD(a+ψk,l) + FD(a−ψk,l)

= FD
(

(x1 − ∂x1
)k(x2 − ∂x2

)la+e−
x2
1
2 e−

x2
2
2

)
+FD

(
(x1 − ∂x1

)k(x2 − ∂x2
)la−e−

x2
1
2 e−

x2
2
2

)
.

Using formula (10) repeatedly, we find that

FD(aψk,l(x1, x2)) = (ID)k+la+ψk,l(y1, y2) + (D)k+la−ψk,l(y1, y2).

We can summarize our results in the following proposition.

Proposition 4. The SFT acts on the cartesian basis elements ψk,l as

FD(aψk,l(x1, x2)) = (ID)k+la+ψk,l(y1, y2) + (D)k+la−ψk,l(y1, y2).

where a ∈ R4,0.

Since D2 = (ID)2 = −1, this means that we have 4 possible situations:

• k + l = 0 mod 4:

FD(aψk,l) = aψk,l

• k + l = 1 mod 4:

FD(aψk,l) = IDa+ψk,l +Da−ψk,l

• k + l = 2 mod 4:

FD(aψk,l) = −aψk,l
• k + l = 3 mod 4:

FD(aψk,l) = −IDa+ψk,l −Da−ψk,l.

It follows that

F2
D(aψk,l) = (−1)k+laψk,l and F4

D (aψk,l) = aψk,l.

This shows that applying the SFT four times equals the identity, as is also the
case for the classical FT. Now it also becomes easy to formulate the inversion
theorem for the SFT.

Theorem 1. The inverse of the SFT is given by

F−1D (f) =
1

2π

∫
R2

e−(x1y1+x2y2)IDf+(x1, x2)dx1dx2

+
1

2π

∫
R2

e−(x1y1+x2y2)Df−(x1, x2)dx1dx2.
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Proof. A straightforward calculation gives us that

F−1D (FD(f−))

=
1

4π2

∫
R2

∫
R2

e−(u1y1+u2y2)De(x1y1+x2y2)Df−(x1, x2)dx1dx2dy1dy2

=
1

4π2

∫
R2

∫
R2

e((x1−u1)y1+(x2−u2)y2)Df−(x1, x2)dx1dx2dy1dy2

=
1

4π2

∫
R2

∫
R2

(cos((x1 − u1)y1) cos((x2 − u2)y2)f−(x1, x2)dx1dx2dy1dy2

=

∫
R2

δ(u1 − x1)δ(u2 − x2)f−(x1, x2)dx1dx2

= f−(u1, u2)

Analogously, we find that

F−1D (FD(f+)) = f+(u1, u2).

�

5.2. The spherical basis

We also take a look at a second basis for S(R2)⊗ R4,0. Define the functions
ψj,k,` by

ψj,k,` := L
m
2 +k−1
j (|x|2)H

(`)
k e−|x|

2/2 (11)

where j, k ∈ N, {H(`)
k ∈ Hk : ` = 1, . . . ,dimHk} is a basis for the space

Hk = Pk ∩ ker ∆x of solid spherical harmonics of degree k, and Lαj are the
Laguerre polynomials. The set {ψj,k,`} forms a basis of S(Rm), see e.g. [10].
This reduces in our situation (m = 2) to

ψj,k,` := Lkj (x21 + x22)H
(`)
k e−(x

2
1+x

2
2)/2 (12)

where j, k ∈ N, {H(`)
k ∈ Hk : ` = 1 or 2} is a basis for the, now 2 dimensional,

spaceHk. Taking coefficients in R4,0, this set forms a basis (as a right module)
for S(R2)⊗ R4,0.
Computing the SFT of the spherical basis is a bit more involved than in
the case of the cartesian basis. First of all, it would in principle be possible
to expand the spherical basis into the cartesian basis, and use the result of
the previous section. However, the change of basis is quite involved (see e.g.
[16]). Therefore, we follow a different strategy, based again on an explicit
computation. To that aim, we will need the following derivation formula

Hk(∂x1
, ∂x2

)e−(x
2
1+x

2
2)/2 = (−1)kHk(x1, x2)e−(x

2
1+x

2
2)/2, ∀Hk ∈ Hk (13)

which is well-known (see e.g. [19]) and holds in arbitrary dimension. We will
however only need the two-dimensional version.

Proposition 5. The SFT acts on the spherical basis {ψj,k,`} as

FD(aψj,k,`) = (−1)j
(
(D)ka− + (ID)ka+

)
ψj,k,`

when k > 0 and where a ∈ R4,0.
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Proof. We first deal with the case of ψ0,k,`. Notice that H
(`)
k can be expanded

as

H
(`)
k =

k∑
p=0

αkpx
k−p
1 xp2

for suitably chosen constants αkp ∈ R. This expansion allows us to compute
the SFT as

FD(a+ψ0,k,`) =
1

2π

∫
R2

e(x1y1+x2y2)IDa+ψ0,k,`(x1, x2)dx1dx2

=
1

2π

k∑
p=0

αkp

∫
R2

e(x1y1+x2y2)IDa+xk−p1 xp2e
−(x2

1+x
2
2)/2dx1dx2

=

k∑
p=0

αkpFD
(
a+xk−p1 xp2e

−(x2
1+x

2
2)/2
)
.

Using (4) and (5) we subsequently obtain

FD
(
a+xk−p1 xp2e

−(x2
1+x

2
2)/2
)

= (−ID)k∂k−py1 ∂py2FD
(
a+e−(x

2
1+x

2
2)/2
)

= (−ID)k∂k−py1 ∂py2a
+e−(y

2
1+y

2
2)/2.

Consequently, using (13) we find

FD
(
a+ψ0,k,`

)
=

k∑
p=0

αkpFD
(
axk−p1 xp2e

−(x2
1+x

2
2)/2
)

=

k∑
p=0

αkp(−1)k(ID)k∂k−py1 ∂py2a
+e−(y

2
1+y

2
2)/2

=

k∑
p=0

αkp(ID)ky1
k−py2

pa+e−(y
2
1+y

2
2)/2

= (ID)ka+ψ0,k,`.

Analogously, we get

FD
(
a−ψ0,k,`

)
= (D)ka−ψ0,k,`

Following [10], we observe that

ψj,k,` = Lkj (x21 + x22)H
(`)
k e−|x|

2/2

= cj,k,`

(
∆x + |x|2 − 1

2
[∆x, |x|2]

)j
H

(`)
k e−(x

2+y2)/2
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where cj,k,` is a real constant and ∆x = ∂2x1
+ ∂2x2

. Hence, using formulas (8)
and (9) we may compute

FD(a+ψj,k,`) = cj,k,`FD

((
∆x + |x|2 − 1

2
[∆x, |x|2]

)j
a+ψ0,k,`

)

= (−1)jcj,k,`

(
∆y + |y|2 − 1

2
[∆y, |y|2]

)j
FD

(
a+ψ0,k,`

)
= (−1)j(ID)ka+ψ0,k,`.

Analogously, we have that

FD(a−ψj,k,`) = (−1)j(D)ka−ψ0,k,`.

Combining both results then completes the proof. �

Since D2 = −1, this means that we have again 4 possible situations:

• k = 0 mod 4:
FD(aψj,k,l) = (−1)jaψj,k,l

• k = 1 mod 4:

FD(aψj,k,l) = (−1)j(IDa+ +Da−)ψj,k,l

• k = 2 mod 4:
FD(aψj,k,l) = (−1)j+1aψj,k,l

• k = 3 mod 4:

FD(aψj,k,l) = (−1)j+1(IDa+ +Da−)ψj,k,l

Remark 4. The previous result is quite interesting: it shows that both the
cartesian and the spherical basis are well-behaved under the SFT. This is
rather surprising, as in all the other examples of hypercomplex Fourier trans-
forms (see e.g. [4]), the transform is only diagonalized by one basis and not
by both.

6. Mustard convolution product

In this section, we take a look at a possible convolution product for the
SFT. The definition is based on the observation that in the classical case,
the following interaction between the convolution and the Fourier transform
holds:

F(f ∗ g) = (2π)m/2F(f)F(g).

In order to keep this property, we define the Mustard convolution product as

f ◦ g = 2πF−1D (FD(f)FD(g)) ,

a technique that was also used in [4, 18].

Remark 5. Remark that aim A3, the realization of a convolution product is
the main reason for aim A1 of this article. With the original definition of the
SFT, the above definition of Mustard convolution product is not possible as
the product of two vector-valued functions is no longer vector-valued.
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In this section, we will explicitly calculate what this convolution product
looks like. We have that

f ◦ g = 2πF−1D
(
FD(f+)FD(g+) + FD(f+)FD(g−)

+FD(f−)FD(g+) + FD(f−)FD(g−)
)
. (14)

Because the SFT is defined as a piecewise action, we have to develop a multi-
plication table. Take two R4,0-valued functions, f = f++f− and g = g++g−.
We have four possible combinations.

f+g+ =
1

4
(f −DfD)(g −DgD)

=
1

4
(fg −DfgD − fDgD −DfDg)

= (fg)+ − (DfDg)+

f−g− =
1

4
(f +DfD)(g +DgD)

=
1

4
(fg −DfgD + fDgD +DfDg)

= (fg)+ + (DfDg)+

f+g− =
1

4
(f −DfD)(g +DgD)

=
1

4
(fg +DfgD + fDgD −DfDg)

= (fg)− + (fDgD)−

f−g+ =
1

4
(f +DfD)(g −DgD)

=
1

4
(fg +DfgD − fDgD +DfDg)

= (fg)− + (DfDg)−

Hence, symbolically, we get a multiplication table of the form

+ −
+ + −
− − +

which we can use to determine how F−1D acts on the product in (14).

Remark 6. In the following calculations, we will make use of the (anti-
)commutation relations (2) and (3). That is why, for the remainder of this
section, we split a R4,0-valued function f = fo+fe, whereby fo (resp. fe) is the
sum of the k-vectors where k is odd (resp. even). One can easily calculate that
for any f , (fo)

+ = (f+)o, (fe)
+ = (f+)e, (fo)

− = (f−)o and (fe)
− = (f−)e,

so without loss of generality, we can decompose f = f+e + f+o + f−e + f−o .
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If fo is a k-vector with k odd, we get that

f+o ◦ g+ = 2πF−1D
(
FD(f+o )FD(g+)

)
=

1

2π
F−1D

(∫
R2

e(x1y1+x2y2)IDf+o (x)dx

∫
R2

e(u1y1+u2y2)IDg+(u)du

)
=

1

4π2

∫
R6

e−(y1v1+y2v2)IDe(x1y1+x2y2)IDe−(u1y1+u2y2)IDf+o (x)g+(u)dxdydu

=
1

4π2

∫
R6

e(y1(x1−u1−v1)+y2(x2−u2−v2))IDf+o (x)g+(u)dxdydu

=

∫
R4

δ(u1 + v1 − x1)δ(u2 + v2 − x2)f+o (x)g+(u)dxdu

=

∫
R2

f+o (u+ v)g+(u)du.

Similarly, if fe is a k-vector with k even, we get

f+e ◦ g+ =

∫
R2

f+e (−u+ v)g+(u)du.

For any f and g, we get that

f+ ◦ g− = 2πF−1D
(
FD(f+)FD(g−)

)
=

1

4π2

∫
R6

e−(y1v1+y2v2)De(x1y1+x2y2)IDe(u1y1+u2y2)Df+(x)g−(u)dxdydu

=
1

4π2

∫
R6

e(y1(u1−v1)+y2(u2−v2))De(x1y1+x2y2)IDf+(x)g−(u)dxdydu

=
1 + I

2

∫
R4

δ(−u1 + v1 − x1)δ(−u2 + v2 − x2)f+(x)g−(u)dxdu

+
1− I

2

∫
R4

δ(u1 − v1 − x1)δ(u2 − v2 − x2)f+(x)g−(u)dxdu

=
1 + I

2

∫
R2

f+(−u+ v)g−(u)du+
1− I

2

∫
R2

f+(u− v)g−(u)du,

where we used the fact that

e(y1(u1−v1)+y2(u2−v2))De(x1y1+x2y2)ID

= (cos(y1(u1 − v1) + y2(u2 − v2)) +D sin(y1(u1 − v1) + y2(u2 − v2)))

×(cos(x1y1 + x2y2) + ID sin(x1y1 + x2y2))

which reduces to

cos(y1(u1 − v1 + x1) + y2(u2 − v2 + x2))

(
1 + I

2

)
+ cos(y1(u1 − v1 − x1) + y2(u2 − v2 − x2))

(
1− I

2

)
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under the integral. This can be proven by using classical trigonometric for-
mulas. Next, for any f and g, we get that

f− ◦ g− = 2πF−1D
(
FD(f−)FD(g−)

)
=

1

4π2

∫
R6

e−(y1v1+y2v2)IDe(x1y1+x2y2)De−(u1y1+u2y2)Df−(x)g−(u)dxdydu

=
1

4π2

∫
R6

e−(y1v1+y2v2)IDe(y1(x1−u1)+y2(x2−u2))Df−(x)g−(u)dxdydu

=
1 + I

2

∫
R4

δ(v1 + u1 − x1)δ(v2 + u2 − x2)f−(x)g−(u)dxdu

+
1− I

2

∫
R4

δ(v1 − u1 + x1)δ(v2 − u2 + x2)f−(x)g−(u)dxdu

=
1 + I

2

∫
R2

f+(u+ v)g−(u)du+
1− I

2

∫
R2

f−(u− v)g−(u)du,

For the last part, we have to make a difference between fo being a sum of
k-vectors with k odd and fe being a sum k-vectors with k even. In the odd
case, we have

f−o ◦ g+ = 2πF−1D
(
FD(f−o )FD(g+)

)
=

1

4π2

∫
R6

e−(y1v1+y2v2)De(x1y1+x2y2)Df−o (x)e(u1y1+u2y2)IDg+(u)dxdydu

=
1

4π2

∫
R6

e(y1(x1−v1)+y2(x2−v2))De(u1y1+u2y2)IDf−o (x)g+(u)dxdydu

=
1 + I

2

∫
R4

δ(−u1 + v1 − x1)δ(−u2 + v2 − x2)f−o (x)g+(u)dxdu

+
1− I

2

∫
R4

δ(−u1 − v1 + x1)δ(−u2 − v2 + x2)f−o (x)g+(u)dxdu

=
1 + I

2

∫
R2

f−o (−u+ v)g+(u)du+
1− I

2

∫
R2

f−o (u+ v)g+(u)du.

In the even case, we get

f−e ◦ g+ =
1 + I

2

∫
R2

f−e (u+ v)g+(u)du+
1− I

2

∫
R2

f−e (−u+ v)g+(u)du.

Thus, in total, we can formulate our results in a theorem.
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Theorem 2. For any two R4,0-valued functions f and g, the Mustard convo-
lution can be calculated as

f ◦ g =

∫
R2

f+o (u+ v)g+(u)du+

∫
R2

f+e (−u+ v)g+(u)du

+
1 + I

2

∫
R2

f+(−u+ v)g−(u)du+
1− I

2

∫
R2

f+(u− v)g−(u)du

+
1 + I

2

∫
R2

f−(u+ v)g−(u)du+
1− I

2

∫
R2

f−(u− v)g−(u)du

+
1 + I

2

∫
R2

f−o (−u+ v)g+(u)du+
1− I

2

∫
R2

f−o (u+ v)g+(u)du

+
1 + I

2

∫
R2

f−e (u+ v)g+(u)du+
1− I

2

∫
R2

f−e (−u+ v)g+(u)du.

7. Conclusion

In this article we have defined the spinor Fourier transform for functions
taking values in the Clifford algebra R4,0. Also, two bases of eigenfunctions
were determined for this transform. Finally, a convolution product was estab-
lished, based on the idea of Mustard in [18]. We expect that this convolution
product will find many applications in color image processing.
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