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Abstract

Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global
economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed
contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in
broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of
3,000 to 4,000 mg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 2062.6% to 4763.0%
(P,0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P,0.001) and
decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage,
respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary
proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in
total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB
toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the
European maximum guidance level of 5,000 mg/kg feed, is a predisposing factor for the development of necrotic enteritis in
broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal
protein availability, which may stimulate growth and toxin production of Clostridium perfringens.
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Introduction

Worldwide, necrotic enteritis (NE) leads to important produc-

tion losses, increased feed consumption and mortality rates, and a

reduced welfare of broiler chickens [1–4]. The causative agent of

NE is Clostridium perfringens, a Gram-positive spore forming

bacterium which occurs ubiquitously in the environment, in feed

and in the gastrointestinal tract of animals and humans [5,6]. It

has been suggested that alpha toxin production is an essential

virulence factor in the pathogenesis of NE [7], but recently it was

established that only strains producing NetB toxin, a b-pore-

forming toxin, are capable of inducing NE in broiler chickens

under specific conditions that predispose to the disease [8,9].

Acute NE is characterized by a sudden increase in mortality,

often without premonitory symptoms. Nowadays, the subclinical

form is becoming more prevalent, and is mainly characterized by

intestinal mucosal damage without clinical signs or mortality. This

leads to a decreased digestion and absorption of nutrients, a

reduced weight gain and an impaired feed conversion rate [4,8].
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Notwithstanding the role of C. perfringens in poultry produc-

tion losses, the mere presence of virulent strains in the intestinal

tract of broilers, or even the inoculation of chickens with high

doses of these strains, does not always lead to the development of

NE. Predisposing factors including dietary, husbandry and

immune factors [7,10,11], are required to reproduce the disease

[12–14]. The best-known predisposing factor is mucosal damage

caused by coccidial pathogens [13,15], which could provide C.
perfringens with essential nutrients and thus stimulate massive

overgrowth [16,17]. C. perfringens is lacking many genes of the

orthologous enzymes required for amino acid biosynthesis, among

others for arginine, phenylalanine, tryptophan, tyrosine, histidine,

leucine, isoleucine, valine, glutamate, lysine, methionine, serine

and threonine. Therefore, C. perfringens growth is restricted in an

environment where the amino acid supply is limited [16,18,19].

The mycotoxin deoxynivalenol (DON) is one of the most

common contaminants in poultry feed worldwide. DON is a type

B trichothecene produced by among others Fusarium (F.)
graminearum and F. culmorum. Recent data on global mycotoxin

occurrence showed that 59% of 5,819 samples of animal feed

tested positive for the presence of DON. The average contami-

nation level was 1,104 mg DON/kg feed, with a maximum

observed level of 49,307 mg/kg [20]. The European maximum

guidance level for poultry feed is set at 5,000 mg/kg feed [21].

Poultry is considered rather tolerant to DON. It has been

suggested that concentrations higher than 5,000 mg/kg feed are

necessary to negatively influence the growth performance of

broilers [22,23]. This mycotoxin acts as an inhibitor of the protein

synthesis at the ribosomal level whereby rapidly proliferating cells

in tissues with high protein turnover rates, such as the immune

system and small intestine, are most affected [23]. Accordingly,

DON negatively influences small intestinal epithelial cell integrity

and morphology [24–29]. As a consequence of the negative effect

of DON on the gastro-intestinal epithelial cells, feeding DON-

contaminated diets can lead to greater susceptibility to enteric

infections [27]. Only few studies have investigated the interaction
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Figure 1. Lesion scores of individual broiler chickens chal-
lenged with C. perfringens. Chickens were fed either a control or
DON-contaminated diet and subsequently challenged with C. perfrin-
gens strain 56. The solid bars represent the average lesion score in each
group. Error bars represent SEM. Intestinal lesions in the small intestine
(duodenum to ileum) were scored as previously described [7]; 0 no
gross lesions; 2 small focal necrosis or ulceration (one to five foci); 3
focal necrosis or ulceration (six to 15 foci); 4 focal necrosis or ulceration
(16 or more foci); 5 patches of necrosis 2 to 3 cm long; 6 diffuse
necrosis typical field cases. The score 1 used for congested intestinal
mucosa was not applied here because of difficulties in scoring this
characteristic objectively, and due to the lack of scientific documen-
tation of an association between ‘‘congested intestinal mucosa’’ and
necrotic enteritis. Birds with lesion scores of 2 or more were classified as
NE positive.
doi:10.1371/journal.pone.0108775.g001
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between DON and enteric pathogens. In pigs, it has been shown

in an intestinal ileal loop model that co-exposure to DON and

Salmonella Typhimurium potentiates the inflammatory response

in the gut [30]. In vitro, intestinal porcine epithelial cells (IPEC-1)

show an increased translocation of a septicemic Escherichia coli
(O75:K95) after DON exposure [26]. It is hitherto unclear

whether the intestinal epithelial damage caused by contamination

levels of DON below 5,000 mg/kg in feed, may act as an

additional predisposing factor in broiler NE. We hypothesized that

this intestinal damage may lead to higher protein availability for

clostridial proliferation in the small intestine.

The objectives of this study were to examine whether DON at

concentrations in the feed below the EU maximum guidance level

predisposes for NE in broilers, and to gain insights in the

mechanisms responsible for this interaction. Therefore, the effects

of DON on the intestinal epithelial barrier function and on

intestinal protein availability for clostridial proliferation were

evaluated. Also, the direct effect of DON on in vitro bacterial

proliferation, alpha toxin production and netB transcription was

studied.

Materials and Methods

Deoxynivalenol
For the in vitro assessment of the impact of DON on growth

and toxin production of C. perfringens, a DON stock solution of

2000 mg/mL (Fermentek, Jerusalem, Israel) was prepared in

anhydrous methanol and stored at 220uC. Next, serial dilutions

of DON were prepared in tryptone glucose yeast (TGY) broth

medium.

For the animal trials, DON was produced in vitro from cultures

of F. graminearum in accordance to the protocol described by

Altpeter et al. [31] (Romer Labs, Tulln, Austria), and was mixed

into the experimental feed.

Bacterial strains
C. perfringens strain 56 has been used previously to induce NE

in an in vivo model in broilers [6,32]. Originally this strain was

isolated from the gut of a broiler chicken with severe NE lesions,

and characterized as a netB toxin positive type A strain (no b2 or

enterotoxin genes) as well as a producer of moderate amounts of

alpha toxin in vitro [33].

In addition to strain 56, a netB toxin negative strain (C.
perfringens strain 6 [33]) was included as negative control for

in vitro netB transcription measurement.

Birds and housing. Non-vaccinated Ross 308 broilers were

used that were obtained as one-day-old chicks from a commercial

hatchery. Each group consisted of approximately equal numbers

of males and females. All treatment groups were housed in the

same room, in cages of 1.44 m2, on a litter floor. All cages were

separated by solid walls to prevent direct contact between birds

from different treatment groups. Before each trial, the cages were

decontaminated with peracetic acid and hydrogen peroxide

(Hygiasept vaporizer climasept; SARL Hygiasept, Sevrey, France)

and a commercial anticoccidial disinfectant (Bi-OO-Cyst Coccid-

ial Disinfectant; Biolink, York, United Kingdom).

Figure 2. Protein concentration in intestinal content is
significantly increased in duodenum of chickens fed a DON-
contaminated diet. Percentage crude protein per dry matter of the
intestinal content was determined by the Kjeldahl method. Results are
presented as the mean protein level of 27 samples per group per
intestinal segment. Error bars represent SD. (*) significantly different (P,
0.05) within one intestinal segment.
doi:10.1371/journal.pone.0108775.g002

Table 2. Effect of DON on villus height and crypt depth measurements.

control diet DON diet P

mid-duodenum

villus height (mm) 2,175626.8 2,010652.9 0.014 (*)

crypt depth (mm) 14364.7 15469.1 0.269

villus to crypt ratio 1660.5 1361.0 0.073

mid-jejunum

villus height (mm) 894672.6 792661.6 0.303

crypt depth (mm) 178612.3 15066.4 0.052

villus to crypt ratio 560.3 560.4 0.978

mid-ileum

villus height (mm) 711663.8 689623.6 0.748

crypt depth (mm) 153610.6 14466.7 0.456

villus to crypt ratio 560.2 560.3 0.487

Analysis was based on 9 animals per treatment, and the mean of 5 to 15 measurements per segment per animal was calculated; data are presented as weighted mean
6 SEM.
(*)significantly different (P,0.05).
doi:10.1371/journal.pone.0108775.t002

Deoxynivalenol Predisposes for Necrotic Enteritis in Broiler Chickens
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Chickens had ad libitum access to drinking water and feed and

were subjected to a 23 h/1 h light/darkness programme. The

animals were not fasted before euthanasia. The environmental

temperature was adjusted to the changing needs of the animals

according to their age (week 1:35uC, week 2:30uC, week 3:25uC).

Feed. All birds were given a starter diet during the first eight

days of the experiment, and subsequently a grower diet until the

end of the trial. The diet was wheat:rye (43%:7.5%) based, with

soybean meal as the main protein source during the first 16 days.

From day 17 onwards, the same grower diet was used with the

exception that fishmeal (30%) was added as protein source instead

of soybean meal. Further details of the feed composition were as

previously described [32].

In the exposed groups, an artificially DON contaminated diet

was fed from day 1 onward. The contaminated feed was produced

by adding DON to a control diet. To test for DON concentrations

in the feed, samples were taken at three different locations in the

batch and subsequently pooled. All diets were analysed for the

content of DON and other mycotoxins with a validated multi-

mycotoxin liquid chromatography-tandem mass spectrometry

method (LC-MS/MS) [34]. The levels of DON in the different

batches of control feed was below the limit of quantification. The

DON contamination level in the different batches of contaminated

feed varied between 2,8846800 mg/kg and 4,38461,300 mg/kg

feed. All other mycotoxins tested were either absent or present in

low concentrations. Table S1 shows the different mycotoxins

tested, their limit of detection (LOD) and limit of quantification

(LOQ) and their concentration in the different feeds.

Animal experiment 1: C. perfringens experimental

infection study. The trial was performed following an adapted

protocol based on a previously described experimental infection

model, with the modification that no coccidial challenge was

administered [32]. In the trial, 360 chicks were divided into 4

experimental groups, each group consisting of 3 cages of 30 chicks.

The experimental groups are described in Table 1 One group was

experimentally infected with C. perfringens and received a control

diet. A second group was experimentally infected with C.
perfringens and received a DON contaminated diet, while a third

group was fed a DON contaminated feed but did not receive C.
perfringens. A fourth group was a negative control (no C.
perfringens and control feed). Gumboro vaccine (Nobilis Gum-

boro D78, MSD Animal Health, Brussels, Belgium) was admin-

istered in the drinking water on day 16 to all birds. Experimental

infection with C. perfringens consisted of oral inoculation of the

birds with 4.108 cfu of C. perfringens strain 56 at days 17, 18, 19

and 20. The bacteria for the animal experiment were cultured

anaerobically overnight in brain heart infusion broth (BHI, Oxoid,

Basingstoke, UK) supplemented with 0.375% glucose at 37uC.

The actual number of bacteria/mL was assessed by plating tenfold

dilutions on Columbia agar (Oxoid) with 5% sheep blood,

incubated anaerobically overnight at 37uC. Birds that were not

infected with C. perfringens received a sham inoculation with BHI

broth.

Figure 3. No impact of DON on in vitro growth of C. perfringens. C. perfringens strains 6 (a) and 56 (b) were grown in TGY broth medium
containing 0, 0.2, 2 or 20 mg DON/mL. Samples were taken at 0, 2, 3, 4, 5, 6, 7, 8 and 24 h after inoculation with an overnight culture of C. perfringens.
The number of colony forming units (cfu) per mL was determined by bacterial plating of 10-fold dilutions. Results are presented as the mean cfu/mL.
There is no significant difference between the different test conditions.
doi:10.1371/journal.pone.0108775.g003

Figure 4. NetB toxin transcription is not influenced by DON.
Transcription level of netB toxin was analysed by qRT-PCR of C.
perfringens strain 56 RNA samples collected from in vitro culture
material in the mid (after 3 h incubation) and late logarithmic (after
6 h incubation) growth phase. C. perfringens strain 56 was grown in
absence or presence (0.2, 2, 20 mg/mL) of DON. The results for the netB
gene transcription were normalized to the rpoA gene transcription.
Results are presented as the mean value of three biological replicates.
Error bars represent SD. There is no significant difference between the
different test conditions.
doi:10.1371/journal.pone.0108775.g004

Deoxynivalenol Predisposes for Necrotic Enteritis in Broiler Chickens
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On days 21, 22 and 23, each day one third of each group was

euthanized and the birds were immediately submitted to necropsy.

Single-blind macroscopic NE lesion scoring of the small intestine

(duodenum to ileum) was performed as previously described by

Keyburn et al. [7]. Birds with lesion scores of 2 or more were

classified as NE positive.

In addition, contents of three small intestinal segments of 27

birds per group of the third (DON, no C. perfringens) and fourth

(negative control) experimental group were collected and stored at

220uC until further use for protein analysis. The three segments

were duodenum, jejunum and ileum. The duodenum was defined

as the segment encompassing the duodenal loop, whereas the

jejunum was defined as the segment between the end of the

duodenal loop and Meckels diverticulum. The ileum comprised

the distal segment starting at Meckels diverticulum and ending at

the ileo-cecal junction.

Contents of these three segments were used to determine

intestinal nitrogen (N) concentration by the Kjeldahl method used

for feeding stuffs (ISO2005). Percentage crude protein per dry

matter of the intestinal content was calculated from Kjeldahl N

values, using 6.25 as conversion factor to protein level.

The bodyweight (BW) of 30 identified chickens per experimen-

tal group was measured at day 1, 7, 14 and at the day of

euthanasia. Bodyweight gain was determined as the differences in

BW divided by the period of time. The presence of coccidiosis was

excluded by faecal oocyst count and macroscopic coccidiosis lesion

scoring of the intestines [35].

Animal experiment 2: Effect of DON on villus height and

transepithelial electrical resistance. Eighteen birds were

divided into 2 experimental groups, each group consisting of 3

cages of 3 chicks. One group was fed a control diet, and the other

group was fed a DON-contaminated diet. All birds received

Gumboro vaccine on day 16 and they all received a sham

inoculation with blank BHI broth on day 17, 18, 19 and 20. On

day 21, immediately after euthanasia of the animals, 1 cm samples

from the mid-duodenum, mid-jejunum and mid-ileum were

collected for evaluation of the intestinal morphology. These

samples were fixed in neutral-buffered formalin, and processed

afterwards using standard protocols for hematoxylin and eosin

staining of paraffin sections. Villus height and crypt depth were

measured using a light microscope with Leica LAS software (Leica

Microsystems, Diegem, Belgium). The average of 5 to 15

measurements per segment per animal was calculated.

The remainder of the mid-duodenal segment was immersed into

oxygenated (O2/CO2, 95/5%) Krebs Henseleit buffer solution

(Sigma-Aldrich) of pH 7.4. Before opening the intestinal segment,

the underlying serosal layer was stripped off. Segments were

opened along the mesenteric border and rinsed with buffer

solution. Per chicken, three duodenal segments of 2 cm in length

were cut and each mounted in an Ussing chamber (Mussler

Scientific Instruments, Aachen, Germany). Epithelial sheets had

an exposed surface area of 0.28 cm2. Mucosal and serosal

compartments were simultaneously filled with 7 mL Krebs

Henseleit buffer. Four Ag/AgCl electrodes were connected to

each chamber by 3M KCl-agar bridges. The electrodes were

coupled to an external six-channel microcomputer controlled

voltage/current clamp. After an equilibration period of 30

minutes, the transepithelial potential difference (PD, mV) and

transepithelial electrical resistance (Rt - TEER, V.cm2) were

monitored as measures of tissue viability and integrity, respective-

ly, with the tissue unclamped in open circuit mode. Current (Isc,

mA/cm2) was calculated from Ohm’s law using the following

equation Isc = Pd/Rt [36].

The in vivo experimental protocols and care of the animals

were approved by the Ethical Committee of the Faculty of

Veterinary Medicine, Ghent University, Belgium (EC 2011/

169 EC 2012/074).

Figure 5. Deoxynivalenol predisposes for C. perfringens induced necrotic enteritis. DON decreased villus height and reduced transepithelial
electrical resistance (1), leading to a decreased absorption and digestion of dietary nutrients; and an increased intestinal barrier permeability,
respectively. Taken together with an increased intestinal protein level, these results suggest an impaired nutrient uptake (2) and leakage of plasma
amino acids (3) into the intestinal lumen, providing the necessary growth substrate for C. pefringens proliferation (4). Proliferation of virulent (netB
positive) C. perfringens induces necrotic enteritis (5).
doi:10.1371/journal.pone.0108775.g005
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In vitro study of the effect of DON on C. perfringens
growth, alpha toxin production and netB transcription

Following concentrations of DON were tested for its effect on C.
perfringens growth, alpha toxin production and netB transcrip-

tion: 0, 0.2, 2 or 20 mg DON/mL TGY medium.

C. perfringens strains 6 and 56 were grown for 24 h in TGY

broth medium. Subsequently, this bacterial culture was 1:1000

diluted in the different DON concentrations and incubated

anaerobically at 37uC. Clostridial growth curve was assessed by

bacterial plating of a ten-fold dilution series at 0, 2, 3, 4, 5, 6, 7, 8

and 24 h after inoculation. Ten-fold dilutions were made in

phosphate buffered saline (PBS) solution. Six droplets of 20 mL of

each dilution were plated on Columbia agar with 5% sheep blood.

After anaerobic incubation overnight at 37uC, the number of

colony forming units (cfu)/mL was determined by counting the

number of bacterial colonies for the appropriate dilution.

Quantitative detection of alpha toxin in the C. perfringens
(strain 56) culture supernatants was performed as previously

described by Gholamiandekhordi et al., using the Bio-X Alpha

Toxin Elisa Kit (Bio-X Diagnostics, Jemelle, Belgium) [33].

Positive (pure alpha toxin) and negative controls (incubation

buffer) were included. All tests were performed in triplicate with

two technical repeats in each experiment. Subsequently, the mean

optical density (OD) value was calculated relative to the positive

control value, which was set at 1.

The impact of DON on netB transcription was tested by qRT-

PCR [37]. The transcription levels of netB in the presence of

DON were compared to non-DON contaminated test conditions

normalized to the housekeeping gene rpoA, encoding RNA

polymerase subunit A. One mL of mid and late logarithmic

growth phase was collected for all test conditions, as described

above, from three biological replicates. Based on the growth curve,

mid and late logarithmic growth phase were defined after 3 h and

6 h incubation, respectively. Cells were collected by centrifugation

at 9,3006g for 5 min at 4uC. Total RNA was isolated using

RNAzol RT (Sigma-Aldrich, Bornem, Belgium) and 40 ng of

RNA was converted to cDNA with iScript cDNA Synthesis Kit

(Bio-rad, Nazareth Eke, Belgium) in accordance with the

manufacturer’s instructions. RT-qPCR was performed using

SYBR-green 2x master mix (Bioline, Brussels, Belgium) in a Bio-

Rad CFX-384 system. Each reaction was done in triplicate in a

12 mL total reaction mixture using 2 mL of the cDNA sample and

0.5 mM final qPCR primer concentration (Table S2). The q-PCR

conditions used were 1 cycle of 95uC for 10 min, followed by 40

cycles of 95uC for 30 s, 60uC for 30 s, and stepwise increase of the

temperature from 65u to 95uC (at 10s/0.5uC). Melting curve data

were analysed to confirm the specificity of the reaction. For

construction of the standard curve, the PCR product was

generated using the standard PCR primers listed in Table S2

and DNA from C. perfringens. After purification (MSB Spin

PCRapace, Stratec Molecular, Berlin, Germany) and determina-

tion of the DNA concentration with a Nanodrop ND 1000

spectrophotometer (Nanodrop Technologies, Wilmingtom, DE,

USA), the concentration of the linear dsDNA standard was

adjusted to 16108 to 16101 copies per mL with each step differing

by tenfold. The copy numbers of samples were determined by

reading off the standard series with the Ct values of the samples.

Statistical analyses
Statistical program SPSS version 21 was used for data analysis.

All in vitro and in vivo experiments were conducted in triplicate

with three repeats per experiment, unless otherwise noted. To

compare the number of NE positive birds (lesion score $2)

between different groups, binomial logistic regression was used.

Bodyweight gain was analysed by using an univariate general

linear model. Total protein levels, electrophysiological parameters,

villus height and crypt depth measurements, in vitro assessment of

clostridial growth and toxin production, were assessed by

independent t-test, after determination of normality and variance

of homogeneity. Significance level was set at 0.05.

Results

Animal experiments
DON significantly increases the number of chickens

affected by NE. The DON-contaminated diet led to a

significantly increased number of chickens with NE; i.e.

2062.6% of the chickens in the group inoculated with C.
perfringens and fed a control diet were positive for NE lesions,

while in the group inoculated with C. perfringens and fed a DON-

contaminated diet 4763.0% of the broilers were positive (P,

0.001) (Figure 1, Table 1). No animals with NE lesions were

detected in the groups without bacterial challenge. Lesion scores of

individual broiler chickens challenged with C. perfringens are

shown in Figure 1. In NE positive chickens the lesions were mainly

observed in the duodenum (2960.1% and 3160.1% of the NE

positive chickens in the control and DON group, respectively) and

jejunum (9460.1% and 9660.1%, respectively). In the ileum, only

one animal in the control group and no animals in the DON

group showed lesions (score 2). No statistically significant

differences were observed in BW gain between the different

groups (Table 1). No coccidia challenge was observed, since

Eimeria oocysts were absent in the excreta and no macroscopic

coccidiosis lesions were observed.

DON increases the intestinal protein concentration. The

total protein concentration in duodenal intestinal content was

significantly higher in chickens fed the DON contaminated diet

(P = 0.023). However, no effect of DON on the total protein

concentration in jejunal and ileal intestinal content was detected

(Figure 2).

DON reduces transepithelial electrical resistance in

duodenal segments. No difference was observed between the

control and the DON group for PD (22.760.14 and 2

2.360.13 mV, respectively) and Isc (7.060.38 and

6.460.36 mA/cm2, respectively), but TEER was significantly

lower (P,0.001) for DON fed birds (369.865.47 V.cm2)

compared with the control birds (392.264.72 V.cm2).

DON reduces duodenal villus height. Results as presented

in Table 2 show a significant shortening of the villi in the

duodenum for the DON group compared to the control group

(P = 0.014). A trend was observed for reduction in the villus height

to crypt depth ratio in the duodenum (P = 0.073) and for the crypt

depth in the jejunum in the DON group (P = 0.052).

In vitro experiment
No impact of DON on C. perfringens growth, alpha toxin

production and netB transcription. The results of the C.
perfringens growth assay showed no influence of 0, 0.2, 2 or 20 mg

DON/mL on the bacterial growth curve (Figure 3 a, b).

Quantification of alpha toxin also revealed no impact of these

concentrations of mycotoxin. The mean OD of the alpha toxin

detection, relative to the positive control value was 1.160.05,

1.160.01, 1.160.03 and 1.160.03 in the presence of 0, 0.2, 2 or

20 mg DON/mL, respectively. Measurement of the C. perfringens
transcription level of netB by qRT-PCR showed no influence of

DON (Figure 4).

Deoxynivalenol Predisposes for Necrotic Enteritis in Broiler Chickens

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e108775



Discussion

Our data demonstrate that the mycotoxin DON is a predis-

posing factor for the development of NE in broiler chickens.

Indeed, contamination of the diet with DON at concentrations

below the EU maximum guidance level of 5,000 mg/kg feed,

significantly increased the number of chickens affected with NE.

The distribution of NE lesions in the present infection study,

mainly in duodenum and jejunum, is similar as in a previously

described NE infection trial, where coccidiosis was included as

predisposing factor [32]. The proximal part of the intestinal tract is

the main absorption site for DON [22,28,38]. Proximal intestinal

epithelial cells are thus exposed to high concentrations of DON

following ingestion of DON-contaminated feed, and are as such

sensitive due to their high protein turnover [22,39,40]. DON

negatively affected the proximal part of the intestinal tract,

demonstrated by the significantly reduced villus height in the

duodenum. These results are in accordance with those observed

by Awad et al. [28], who tested a similar contamination level and

duration of exposure of DON. The decreased villus height will

compromise the effectiveness of nutrient absorption due to the

decreased absorption surface area [27]. Enterocytes must differ-

entiate during their migration along the crypt-villus axis to fully

express their digestive functions [41]. The sucrase and maltase

activities increase for example towards the villus tip in chicks [42].

As such, the negative impact of DON on the villus height can be

associated with an impaired nutrient digestion due to a reduced

number of differentiated epithelial cells [27].

DON also modulates the intestinal paracellular transport

leading to an increased passage of macromolecules and bacteria

[26]. The intestinal barrier function is maintained by intercellular

structures, including tight junctions, adherence junctions and

desmosomes [25,40]. The TEER is considered as an indicator of

the epithelial integrity and thus of the organization of tight

junctions. In accordance with literature [26,39], we demonstrated

a reduction of the TEER of the duodenal epithelium after DON

exposure. These toxic effects on epithelial cells contribute to an

increased protein availability in the intestinal lumen due to leakage

of plasma amino acids or proteins into the gut. Consequently, this

creates an environment that favors for massive overgrowth of C.
perfringens. Indeed, in this study, the total duodenal protein level

was increased. This could be caused by malabsorption, a negative

effect on nutrient digestion or plasma amino acid or protein

leakage in the intestine due to the altered intestinal barrier

integrity. Malabsorption and maldigestion was also suggested by

the decreased duodenal villus height. Furthermore, it has been

shown that DON selectively modulates the activities of different

intestinal transporter proteins for nutrients, and negatively

influences the sodium associated amino acid co-transport for

serine and proline, leading to an increased intestinal content of

these amino acids [39,43,44]. We propose a negative effect of

DON on the small intestinal mucosa that leads to malabsorption,

maldigestion and leakage of plasma amino acids or proteins into

the intestinal lumen, which provide the necessary growth substrate

for extensive proliferation of C. perfringens.
The in vitro growth of C. perfringens was not affected by

concentrations of DON up to 20 mg/mL. No influence on alpha

toxin production, and netB transcription was demonstrated. These

results suggest that the observed predisposing effect is due to the

toxic effect of DON on the animal host rather than its effect on the

bacterium itself.

In conclusion, as summarized in Figure 5, our results indicate

that the intake of DON contaminated feed at contamination levels

below the EU maximum guidance level, is a predisposing factor

for the development of necrotic enteritis in broiler chickens due to

the negative influence on the epithelial barrier, and to an increased

intestinal nutrient availability for clostridial proliferation. We

showed that DON has a cytotoxic effect on enterocytes, leading to

an altered intestinal barrier function, resulting in an increased

permeability of the intestinal wall. Additionally, the shortened

villus height could lead to a decreased absorption of dietary

proteins, resulting in an increased protein concentration in the

intestinal lumen. These mechanisms lead to an increased protein

content in the intestinal lumen, which is available for clostridial

proliferation resulting in the development of necrotic enteritis.
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