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2 DOBBELAERE ET AL.: ACCURATE 2.5-D BEM FOR CONDUCTIVE MEDIA

The solution of the time-harmonic Maxwell equations using a boundary3

element method, for 2-D geometries illuminated by arbitrary 3-D excitations,4

gives rise to numerical difficulties if highly conductive media are present. In5

particular, the interaction integrals arising in the method of moments involve6

kernels that strongly oscillate in space and, at the same time, decay expo-7

nentially. We present an accurate method to tackle these issues over a very8

broad conductivity range (from lossy dielectric to conductor skin-effect regime),9

for both magnetic and non-magnetic conductors. Important applications are10

the modal analysis of waveguides with non-perfect conductors, scattering prob-11

lems and shielding problems with enclosures with arbitrary permeability and12

conductivity and 3-D noise sources.13
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1. Introduction

Boundary element methods (BEMs) provide a powerful framework to solve the14

time-harmonic Maxwell equations numerically. If the problem domain consists of15

homogeneous material regions, a BEM generally requires fewer unknowns than a vol-16

umetric discretization technique. This paper considers two-dimensional geometries17

with conductive material regions, which can be magnetic, illuminated by arbitrary18

three-dimensional sources, leading to a so-called 2.5-D boundary element method.19

Important applications of this class of problems are propagation in uniform waveg-20

uides with non-perfect conductors [Coluccini et al., 2013; Tong et al., 2005; Dobbe-21

laere et al., 2013a], scattering problems [Murphy et al., 1991] and shielding problems22

[Dobbelaere et al., 2013b].23

Interaction integrals appearing in the method of moments (MoM), with the scalar24

Green’s function and its normal derivatives as kernels, are numerically challenging25

due to two specific and interplaying aspects. First, the kernels in good conductors are26

strongly oscillating and exponentially decaying in space, due to the large magnitude27

and imaginary part of the conductor’s wave number w.r.t. the free space wave number.28

Second, the kernels are singular, or nearly singular, in those regions of the integration29

domain where the test and basis functions’ supports overlap or lie close to each other,30

respectively. This behavior requires special care for an accurate numerical evaluation.31

Moreover, the combination of the two aspects, i.e. interaction integrals with both32

(nearly) singular and oscillating as well as exponentially damped integrands, poses33
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4 DOBBELAERE ET AL.: ACCURATE 2.5-D BEM FOR CONDUCTIVE MEDIA

further difficulties. In this paper we present an accurate method to handle both34

problems.35

A large amount of literature is available concerning the numerical evaluation of36

MoM interaction integrals in low-loss dielectric media. Integrals with singular or37

nearly singular integrands are usually evaluated with a singularity extraction [Wilton38

et al., 1984; Yla-Oijala and Taskinen, 2003; Graglia, 1993] or cancellation technique39

[Khayat and Wilton, 2005; Graglia and Lombardi , 2008; Polimeridis and Mosig , 2010].40

In 3-D, Chakraborty and Jandhyala [2004] use singularity cancellation with RWG41

basis functions [Rao et al., 1982] to evaluate the interaction integrals in conductive42

media more accurately. A good overview of the additional problems that arise in43

conductive media can be found in Peeters et al. [2012], together with a singularity44

cancellation technique for the three-dimensional case.45

To the authors’ best knowledge, no accurate method for handling interaction in-46

tegrals in conductive media for the 2.5-D case has been presented yet. This work47

proposes a new method specifically tailored to the properties of the 2.5-D Green’s48

function in conductive media. It is shown, both theoretically and through corrob-49

orating examples, that the method accurately evaluates interaction integrals for a50

wide range of electrical conductivities (low-loss dielectric to highly conductive) and51

frequencies, and allows media with arbitrary permeability. In addition to the earlier52

mentioned fields of application, the new method is highly relevant to the accurate53

analysis of state-of-the-art multiconductor transmission lines and enclosures.54

D R A F T May 5, 2014, 4:04pm D R A F T
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The structure of this paper is as follows: in Sections 2 and 3 we briefly outline the55

employed integral equations and the interaction integrals appearing in the MoM. The56

problems encountered in evaluating the integrals in conductive media are elaborated57

in Section 4, followed by our new method in Section 5. Finally, the numerical exam-58

ples in Section 6 testify to the accuracy and applicability of the method, and clearly59

demonstrate the advantages over existing methods. Conclusions are formulated in60

Section 7.61

2. Geometry and Boundary Integral Equations

Consider a 2-D geometry consisting of isotropic homogeneous material regions Ωi,62

with permittivity εi ∈ C, permeability µi ∈ C and boundary Ci (Fig. 1). Assume63

that all sources and fields have a common time and longitudinal dependence ej(ωt−βz)64

(β ∈ C), which is omitted for notational convenience. A general 3-D excitation can65

be expanded into sources of this kind via Fourier transformation in the z direction.66

The unknowns of the problem are the tangential electric and magnetic boundary67

fields, given by n̂×E× n̂ = Ett̂ +Ezẑ and n̂×H× n̂ = Htt̂ +Hzẑ, with Et and Ht68

the transverse tangential components, and Ez and Hz the longitudinal components.69

The following representation formulas hold [Olyslager et al., 1993], with E
(i)
t t̂ +E

(i)
z ẑ70

the incoming tangential electric field generated by sources in Ωi, r = xx̂ + yŷ, and71
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6 DOBBELAERE ET AL.: ACCURATE 2.5-D BEM FOR CONDUCTIVE MEDIA

γi =
√
ω2εiµi − β2:72

Ez(r) = E(i)
z (r) +

∮
Ci

[
Ez(r

′)
∂Gi(r|r′)
∂n′

−
(
jγ2i
ωεi

Ht(r
′)− β

ωεi

∂Hz(r
′)

∂t′

)
Gi(r|r′)

]
dc′, (1)

Et(r) = E
(i)
t (r) +

∮
Ci

[
jωµi
γ2i

Hz(r
′)
∂2Gi(r|r′)
∂n∂n′

− jβ

γ2i
Ez(r

′)
∂2Gi(r|r′)
∂t∂n′

+
jωµi
γ2i

(
jγ2i
ωµi

Et(r
′)− β

ωµi

∂Ez(r
′)

∂t′

)
∂Gi(r|r′)

∂n

+
jβ

γ2i

(
jγ2i
ωεi

Ht(r
′)− β

ωεi

∂Hz(r
′)

∂t′

)
∂Gi(r|r′)

∂t

]
dc′. (2)

Similar expressions for the magnetic field components are found with the duality73

substitutions E → H, H → −E, εi → µi and µi → εi in (1) and (2). With the choice74

Gi(r|r′) = j
4
H

(2)
0 (γi|r − r′|), the Green’s function satisfies the Sommerfeld radiation75

condition at infinity, provided the branch cuts of γi are chosen such that =γi ≤ 0.76

A system of coupled integral equations is obtained after imposing continuity of the77

tangential fields at the boundaries, yielding a 2.5-D version of the PMCHWT (Poggio-78

Miller-Chang-Harrington-Wu-Tsai) operator [Poggio and Miller , 1973; Chang and79

Harrington, 1977; Wu and Tsai , 1977]. A finite-dimensional linear system is obtained80

with the MoM.81

3. MoM Interaction Integrals

Before presenting our new theory from Section 4 onwards, we briefly recall which82

type of interaction integrals occur in the MoM of the 2.5-D PMCHWT boundary83

integral equation [Olyslager et al., 1993; Fostier et al., 2011]. The boundaries Ci are84

meshed into a union of segments Sj with length lj, separated by nodes rk (Fig. 2).85
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The transverse tangential components Et and Ht are expanded in terms of pulse86

functions pj(r), with support over segment Sj, whereas the longitudinal components87

Ez and Hz are expanded into triangular functions tk(r), with support over segments88

that share a node rk [Olyslager et al., 1993; Fostier et al., 2011]:89

pj(r) = 1 r ∈ Sj,
tk(r) = 1− |r− rk| l−1j r, rk ∈ Sj.

(3)

The continuity equations for Ez and Hz are tested with pulse functions, whereas90

the equations for Et and Ht are tested with triangular functions. To calculate the91

elements in the MoM system matrix, the interaction integrals (4)-(6) below need to92

be evaluated numerically for basis and test functions with support over segments93

that have Ωi as a neighboring medium. This can easily be seen by inspecting (1) and94

(2). The tangential derivatives of the Green’s function can be transferred to the test95

function using integration by parts such that only three types of interaction integrals96

remain:97

I
(1)
jk =

∫
Ci

pj(r)dc

∫
Ci

Gi(r|r′) pk(r′)dc′, (4)

I
(2)
jk =

∫
Ci

pj(r)dc

∫
Ci

∂Gi(r|r′)
∂n′

tk(r
′)dc′, (5)

I
(3)
jk =

∫
Ci

tj(r)dc

∫
Ci

∂2Gi(r|r′)
∂n∂n′

tk(r
′)dc′. (6)

4. Difficulties in Conductive Media

Consider a conductive region Ω, with conductivity σ, complex permittivity ε =98

ε0 − j σ
ω

and permeability µ. The transversal wave number γ can be written as a99

function of the skin depth δ =
√

2/(ωµσ) for moderate to high conductivity values,100
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8 DOBBELAERE ET AL.: ACCURATE 2.5-D BEM FOR CONDUCTIVE MEDIA

as follows:101

γ =
√
ω2µ(ε0 − jσ/ω)− β2 (7)

≈
σ�ωε0

1− j
δ

. (8)

The particular form of this wave number is responsible for the difficulties that arise102

in evaluating the interaction integrals (4)-(6) in a highly conductive medium. The103

Green’s function in the conductor reduces to j
4
H

(2)
0 ((1− j)r/δ), with r = |r − r′|,104

while its normal derivatives are expressible in terms of the zeroth, first and second105

order Hankel functions of the second kind (see appendix A). For large |γr|, the106

Hankel function of the second kind and order ν behaves as [Watson, 1995]107

H(2)
ν (γr) ∼

(
2

πγr

) 1
2

e−jγr+j
π
4
(2ν+1) (| arg γr| < π). (9)

In a highly conductive medium, the large imaginary part of the wave number causes108

a strong exponential decay of the Green’s function and its derivatives. Moreover,109

the wavelength λ = 2πδ is small w.r.t. the free space wavelength, which leads to110

a spatially strong oscillation of the Green’s function and its derivatives. If Sj is a111

segment on the interface between the conductive region Ω and a dielectric region112

Ωd, it is sufficient to choose the segment length to be a fraction of the wavelength113

λd in the dielectric, say lj = λd
10

= 2π
10ω
√
εdµd

, in order to capture the varying field114

behavior at the interface. This is because the tangential fields at the interface can115

only vary at a pace on the order of λd in the dielectric and remain continuous at116

the interface (there are no surface currents). Typically δ � lj and accordingly a117

lot of oscillations occur along one segment and standard quadrature techniques fail118
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to correctly evaluate the interaction integrals in the conductive region. Choosing119

lj = λ
10

(with λ corresponding to the wavelength in the conductor) to try to tackle120

this problem is unnecessary to capture the field behavior and would lead to a very121

large increase of the number of unknowns.122

5. Accurate Evaluation of MoM Interaction Integrals

This section proposes a new method to accurately evaluate the MoM interaction123

integrals in conductive media, with a relatively low quadrature order. The method124

reduces to the traditional approach in Fostier et al. [2011] for σ � ωε0 (low-loss125

dielectric case), and is therefore applicable to arbitrary conductivities σ ∈ [0,∞[, as126

shown in this section and corroborated by the numerical examples in Section 6.127

5.1. Cutoff Distance

The key to accurately integrate the strongly oscillating and exponentially decay-128

ing integrands in conductive media, for a fixed number of quadrature points, is to129

distribute those points over the integration domain where the Green’s function has130

a non-negligible value. Because the magnitude of the Green’s function decays ex-131

ponentially in a good conductor, it can be approximated as j
4
H

(2)
0 (γr)H(rcut − r),132

neglecting its tail, with H the Heaviside step function and rcut the cutoff distance.133

The cutoff distance is the distance above which the asymptotic Green’s function134

(using (9)) becomes smaller in magnitude than a threshold ∆cut. It can be written135

in terms of the principal branch of the Lambert W function, denoted W(z).136
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10 DOBBELAERE ET AL.: ACCURATE 2.5-D BEM FOR CONDUCTIVE MEDIA

Definition 1 (Cutoff distance rcut).

rcut = − 1

2=γ
W
(
−4=γ
π∆2

cut|γ|

)
≈

σ�ωε0

δ

2
W

(
2
√

2

π∆2
cut

)
(10)

An upper bound on the Green’s function itself is given in Theorem 5.1. For sufficiently137

small ∆cut, the asymptotic expansion (9) is a good approximation and C ≈ 1.138

Theorem 5.1. For r ≥ rcut the following inequality holds: |G(r)| ≤ C∆cute
(r−rcut)=γ

139

with C = 1 + 1
8|γ|rcut .140

Proof. Note that H
(2)
0 (z) =

√
2
πz
e−j(z−

π
4 )
(

1− θ2(z)
8jz

)
, with |θ2(z)| < 1 if =z < 0141

[Gradshteyn and Ryzhik , 2007]. For r ≥ rcut, this leads to142 ∣∣∣∣j4H(2)
0 (γr)

∣∣∣∣ ≤ 1

4

√
2

π|γ|rcut
ercut=γe(r−rcut)=γ

(
1 +

1

8|γ|rcut

)
(11)

= C∆cute
(r−rcut)=γ, (12)

where the last step follows from Definition 1.143

To illustrate the use of the cutoff distance in the calculation of the interaction144

integrals, consider I
(1)
jk in a conductive medium:145

I
(1)
jk ≈

∫
Sj

pj(r)dc

∫
Sk

G(r|r′)H(rcut − |r− r′|)pk(r′)dc′. (13)

The boundaries of the test integral over test segment Sj follow from the intersection146

of Sj with the set of points that are closer than the cutoff distance from the source147

segment Sk (region Υk in Fig. 3). Because Υk is convex, either Sj ∩ Υk = ∅148

(no interaction) or Sj ∩ Υk is a subsegment (AB in Fig. 3). For each test point149

r ∈ (Sj ∩Υk), the basis integration interval is a subsegment of Sk (CD in Fig. 4).150

In this way, interactions between points that are separated further than rcut are

neglected and the quadrature points are distributed over the region where the in-
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tegrand is non-negligible, which alleviates the problem of the exponential damp-

ing of the integrand. At the same time, the number of oscillations of the inte-

grands in the interaction integrals is small, independent of the conductivity, allow-

ing a relatively low quadrature order. To show this, consider an interface between

free space (wavelength λ0) and a conductive region (conductivity σ, wave number

γ =
√
ω2µ0(ε0 − jσ/ω)− β2), with boundary segment length equal to l = λ0/10.

The integrands of the interaction integrals (4)-(6) can be expressed in terms of Han-

kel functions of the second kind, as shown in (15). For σ � ωε0, it is evident from

(10) that rcut ∼ δ, implying that the number of oscillations of H
(2)
η (γr) in r ∈ [0, rcut]

is bounded for high conductivities. For σ � ωε0, rcut > l and the number of oscilla-

tions of H
(2)
η (γr) for r ∈ [0, l] in a dielectric region is also bounded. A measure for

the maximum number of oscillations of the integrands is given by

Z = max
σ∈[0,∞[

β∈[0,ω√ε0µ0]
η∈{0,1,2}
P∈{<,=}

z(PH(2)
η (γr), [0,min(rcut, l)]), (14)

where z(f(r),A) denotes the number of zero-crossings of f(r) in r ∈ A. It can151

be easily verified that Z = 2, 4 and 6 if ∆cut = 10−3, 10−6 and 10−9, respectively,152

which shows that the number of oscillations increases if a higher accuracy is required153

(larger rcut), but remains small, allowing a low quadrature order, independent of σ.154

In conclusion, the cutoff distance alleviates both problems of exponentially damped155

and highly oscillatory kernels in conductive media. This approach is an extension of156

the traditional method in Fostier et al. [2011], to accurately evaluate the interaction157

integrals in media with arbitrary conductivity.158
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12 DOBBELAERE ET AL.: ACCURATE 2.5-D BEM FOR CONDUCTIVE MEDIA

5.2. Singularity Extraction

The three types of interaction integrals (4)-(6) can be written as159

I
(l)
jk =

∫
Ci

w
(l)
j (r)

∫
Ci

b
(l)
k (r′)H(rcut − r)

2∑
η=0

f (l)
η (r, r′)H(2)

η (γr)dc′ dc. (15)

The test and basis functions are given by160

w
(1)
j (r) = w

(2)
j (r) = pj(r), (16)

w
(3)
j (r) = tj(r), (17)

b
(1)
k (r′) = pk(r

′), (18)

b
(2)
k (r′) = b

(3)
k (r′) = tk(r

′). (19)

As shown in appendix A, the functions f
(l)
η (r, r′) that are not identically zero are161

given by162

f
(1)
0 =

j

4
, (20)

f
(2)
1 =

jγ

4
(n̂′ · r̂), (21)

f
(3)
0 =

jγ2

8
(n̂ · n̂′), (22)

f
(3)
2 =

jγ2

8

(
n̂ · n̂′ − 2(n̂ · r̂)(n̂′ · r̂)

)
. (23)

If the test and basis functions’ supports overlap or lie next to each other, the inte-163

grands in (15) have a singularity in the integration domain. We employ a singularity164

extraction technique with an extracted singular part that is also limited by the cutoff165

distance, given by166

I
(l)
jk,sing =

∫
Ci

w
(l)
j (r)

∫
Ci

b
(l)
k (r′)H(rcut − r)

2∑
η=0

f (l)
η (r, r′)Sη(γr)dc′ dc. (24)
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The functions Sη are given by167

S0(γr) = −2j

π
log r, (25)

S1(γr) =
2j

πγr
, (26)

S2(γr) =
4j

πγ2r2
. (27)

The integrals of the limited singular parts are known in closed-form. For example,168

the self-patch term of the first type is given by169

I
(1)
jj,sing = − j

π
a((4lj − 2a) log a− 4lj + a), (28)

with a = min(rcut, lj).170

6. Numerical Results

Plane wave scattering at a conductive cylinder is used to validate the accuracy of171

the proposed method as a function of the accuracy parameter ∆cut, for a wide range172

of electrical conductivities in the general case of oblique incidence (β 6= 0), and to173

compare it with existing methods. The next examples are practically relevant shield-174

ing problems, in which a conductive and (non-)magnetic enclosure with apertures is175

used to shield the interior from the fields generated by an exterior electric current176

source. The new method is able to accurately calculate the shielding performance177

over a broad frequency range, and outperforms existing methods in terms of accuracy178

and simulation time.179
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6.1. Scattering at a Conductive Cylinder

To validate the accuracy of the proposed 2.5-D BEM for conductive media and180

compare it with existing numerical methods, we consider the problem of plane wave181

scattering at a conductive cylinder (diameter d, finite conductivity σ and permittivity182

ε0− jσ/ω), embedded in free space (Fig. 5). An analytical expression of the solution183

can be obtained via separation of variables [Van Bladel , 2007]. The accuracy of the184

proposed method is compared with the traditional method without cutoff distance,185

and with a surface impedance approximation, over a wide conductivity range, from186

the low-loss dielectric (ωε0 � σ) to the conductive region (ωε0 � σ).187

The numerically obtained radar cross section (RCS), denoted Sn(φ), is compared188

with the analytical solution, denoted Sa(φ). The relative error between these cross189

sections is defined by190

E =

√∑K
k=1 |Sn(φk)− Sa(φk)|2∑K

k=1 |Sa(φk)|2
, (29)

with φk = 2πk/K and K = 100. Figures 6-7 show the relative error as a function of191

the skin depth for the two polarizations (VV and VH) of oblique plane wave incidence192

(α = 45◦). The skin depth δ =
√

2/(ωµ0σ) ranges from 10−5 m to 10 m, covering193

the region between a good conductor with conductivity σ = 107 S/m and a low-loss194

dielectric with relative dielectric constant 1− 5 · 10−4j. Observe that, in general, the195

error decreases if the accuracy threshold ∆cut becomes smaller. The relative error196

saturates around five significant digits for small and large skin depths, but this lower197

bound is determined mostly by the boundary meshing of the circular cross section198

into straight segments. The asymptotic value for the cutoff distance in (10), in case of199
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high conductivity, is shown in the legend. For rcut > d, no interactions are neglected,200

and the numerical solution becomes independent of ∆cut, as can be seen for high δ/d201

values.202

The inability of the traditional method without cutoff distance (i.e. the proposed203

method with rcut =∞) to accurately evaluate the interaction integrals in conductive204

media, for a fixed quadrature order and constant number of boundary segments,205

is clearly demonstrated in Fig. 7. The problems mentioned in Section 4, i.e. the206

exponential decay combined with strong oscillation of the integrands, render the207

traditional method inaccurate or useless for low values of δ/d. The proposed method208

focuses the quadrature points in the region where the integrands are non-negligible,209

by introducing the cutoff distance (10) and a singularity extraction with limited210

extracted part, which in turn limits the number of oscillations. This leads to a near211

constant accuracy over the considered conductivity range (if enough oscillations are212

taken into account, i.e. for sufficiently low ∆cut). For rcut > d, or equivalently for213

high δ/d values, our new method reduces to the traditional one, and the numerical214

solution is the same for both methods.215

Another approach to incorporate good conductors in a BEM is the use of a surface216

impedance approximation, by imposing the condition E × n̂ = Zs(n̂ × H × n̂) on217

the conductor boundary, with Zs = (1 + j)
√

ωµ0
2σ

and n̂ the outward normal to the218

conductive region. Figures 6-7 show that this is a good approximation for low values219

of δ/d, i.e. in the conductor skin-effect regime (note that the error does not saturate220

around 100 dB because the analytical solution with surface impedance approximation221
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16 DOBBELAERE ET AL.: ACCURATE 2.5-D BEM FOR CONDUCTIVE MEDIA

is considered). It is apparent from Fig. 7 that the proposed method (with ∆cut =222

10−9) outperforms the surface impedance approximation and traditional method in223

terms of accuracy, in the transition region between low-loss dielectric and skin-effect224

regime.225

6.2. Slotted Coaxial Shield

In this example, we investigate the shielding performance of a coaxial enclosure with226

one or two slots at angles α1 and α2 (Fig. 8). The coaxial enclosure is illuminated227

by an electric line current I0δ(r − r0)ẑ (hence β = 0), which induces an unwanted228

noise current I1 in the enclosed copper signal conductor. Remark that, in addition229

to our MoM integral equation technique, scattering at a concentrically loaded cylin-230

drical shield with n − 1 apertures can be solved by reducing an n-series problem231

to an equivalent Riemann-Hilbert problem [Ziolkowski , 1985; Ziolkowski and Grant ,232

1987]. A similar radial mode matching technique has been employed for multi-slotted233

shields with finite thickness [Lee et al., 2012]. We consider three enclosure materials:234

copper (σ = 5.8 · 107 S/m, µr = 1), a magnetic conductor with the same skin depth235

(σ = 5.8 ·104 S/m, µr = 1000), and a perfect electric conductor (σ =∞). The config-236

urations with one and two slots are described by α1 = 90◦ and (α1, α2) = (60◦, 120◦),237

respectively.238

Figure 9 shows the relative noise current amplitude |I1/I0| of the copper and perfect239

electric conducting (PEC) enclosure, over a broad frequency range (from 100 Hz to240

1 GHz). Observe that the analytical solution for the closed coaxial enclosure (no241

slots) coincides with the numerical solution. At low frequencies, there is leakage242
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through the copper enclosure, as the skin depth is comparable to the thickness, and243

the presence of slots does not deteriorate the shielding performance significantly. At244

high frequencies, the predominant leakage mechanism is diffraction of the fields at245

the slots, and the copper and PEC shields exhibit the same behavior. For the given246

position of the slots and line current, the noise current for two slots is about 15 dB247

higher than for one slot.248

Figure 10 shows the relative noise current amplitude for the magnetic conducting249

enclosure. For the configuration without slots, the numerical and analytical solution250

coincide. Compared to the copper enclosure, at low frequencies, the presence of slots251

now has a larger influence. This is due to a different shielding mechanism in the252

magnetic conductor, adding to the effect of the conductivity. If µr > 1, the magnetic253

induction produced by the source is diverted into the enclosure, then shunted within254

the material in a direction nearly parallel to its surface, and finally released back into255

free space [Celozzi et al., 2008]. The presence of slots disturbs the flux shunting, and256

negatively affects the shielding performance.257

It is interesting to compare our new method with the traditional method (rcut =∞)258

in terms of accuracy and simulation time. Fig. 11 shows the calculated shielding259

performance as a function of the quadrature order Q, for the copper shield with two260

slots. For ∆cut = 10−9, the new method already converges to the solution for Q = 10,261

compared to Q = 80 for the traditional method. For the same quadrature order Q =262

10, the traditional method fails to accurately predict the shielding performance, due263

to the problems mentioned in Section 4. Evidently, the need for a smaller quadrature264
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order to obtain the same accuracy leads to a decrease in simulation time (Table265

1). Even for the same quadrature order (Q = 10), our method is faster than the266

traditional method because interactions between segments separated by at least the267

cutoff distance are not taken into account.268

6.3. Cable Tray Shield

The geometry of a metal cable tray with polygonal cross section (Fig. 12) is similar269

to the previous example, but arguably more interesting from a practical perspective.270

In this case, no closed-form analytical solution is available for the closed cable tray271

(g = 0). The enclosure is illuminated by an electric line current I0δ(r− r0)ẑ (hence272

β = 0), which induces unwanted noise currents Ii in the three copper signal conduc-273

tors. Figure 13 shows the relative current magnitude |I2/I0| in the middle conductor,274

for an open and closed cable tray (aperture length g = 5.5 mm and g = 0, respec-275

tively). We consider three enclosure materials: copper (σ = 5.8 · 107 S/m, µr = 1), a276

magnetic conductor with the same skin depth (σ = 5.8 · 104 S/m, µr = 1000), and a277

perfect electric conductor (σ =∞).278

At low frequencies (up to 105 Hz), we notice that the influence of the apertures279

can be neglected, as the open and closed cable tray yield approximately the same280

shielding performance, for both copper and the magnetic conductor. In this region,281

the skin depth is comparable to the thickness, allowing the fields to penetrate the282

enclosure. At high frequencies, the copper and perfectly conducting open cable tray283

behave in the same way, indicating that diffraction of the fields through the aperture284
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is the predominant leakage mechanism. Observe that the magnetic conductor exhibits285

a worse shielding performance than copper, for all considered frequencies.286

7. Conclusions

This paper presents a novel method to accurately and efficiently calculate 2.5-D287

MoM interactions integrals in conductive media, with arbitrary permeability. The re-288

sulting BEM is practically relevant to a large number of application domains, includ-289

ing modal analysis of waveguides with non-perfect conductors, scattering problems,290

and shielding problems with general three-dimensional sources.291
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Appendix A: Derivation of the Green’s function’s normal derivatives

Using the notation of Figure 14, the gradients of the Green’s function G(r|r′) =292

j
4
H

(2)
0 (γr) w.r.t. the observation point r and source point r′ are given by293

∇G(r|r′) = −∇′G(r|r′) = −jγ
4
H

(2)
1 (γr)r̂. (A1)

From these expressions, the normal derivatives of the Green’s function follow imme-294

diately:295

∂G

∂n
(r|r′) = −jγ

4
H

(2)
1 (γr)(n̂ · r̂), (A2)

∂G

∂n′
(r|r′) =

jγ

4
H

(2)
1 (γr)(n̂′ · r̂). (A3)

Taking the gradient w.r.t. r′ of (A1) leads to the following dyadic, with the dot296

representing the derivative of a holomorphic function:297

∇′∇G(r|r′) = ∇′
(
jγ

4
Ḣ

(2)
0 (γr)

)
r̂ +

jγ

4
Ḣ

(2)
0 (γr)∇′r̂

= −jγ
2

4
Ḧ

(2)
0 (γr)r̂r̂− jγ

4r
Ḣ

(2)
0 (γr)φ̂φ̂. (A4)

After some manipulations, the second order normal derivative of the Green’s function298

can finally be written as299

∂2G

∂n∂n′
(r|r′) = n̂′ ·∇′∇G · n̂

=
jγ2

8

(
H

(2)
0 (γr) +H

(2)
2 (γr)

)
n̂ · n̂′ − jγ2

4
H

(2)
2 (γr)(n̂ · r̂)(n̂′ · r̂). (A5)
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Figure 1. General isotropic piecewise-homogeneous 2-D geometry with a 3-D

excitation.
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Figure 2. The boundaries are approximated with straight segments along which

triangular and pulse functions are defined.

Sk

Υk
Sj

b

b

A

B

rcut

Figure 3. Test integration interval AB, where the interactions from segment Sk

are non-negligible.
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Sk
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Figure 4. Basis integration interval CD, for test point r.

Figure 5. Plane wave scattering at a conductive cylinder with conductivity σ,

permittivity ε0 − jσ/ω and diameter d = 1 m. The cylinder is illuminated by a

linearly polarized plane wave, with free space wavelength λ0 = 1 m, impinging at an

angle α w.r.t. the (x, y) plane.
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Figure 6. Relative error of the co-polarization RCS (VV) as a function of the

skin depth δ for oblique incidence (α = 45◦) for the proposed method, the traditional

method without cutoff distance and limited extracted part, and a surface impedance

approximation. The quadrature order of the interaction integrals (Q = 32) and

number of boundary segments (N = 630) are constant.
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Figure 7. Relative error of the cross-polarization RCS (VH) as a function of the

skin depth δ for oblique incidence (α = 45◦) for the proposed method, the traditional

method without cutoff distance and limited extracted part, and a surface impedance

approximation. The quadrature order of the interaction integrals (Q = 32) and

number of boundary segments (N = 630) are constant.
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Figure 8. Cross section of a coaxial enclosure with conductivity σ and relative

permeability µr, illuminated by an electric line current I0, and enclosing a copper

signal conductor with induced noise current I1. There are one or two slots present at

angles α1 and α2.
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Figure 9. Shielding performance of the coaxial enclosure as a function of frequency,

for a copper and perfect electric conducting (PEC) enclosure, with a varying number

of slots.
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Figure 10. Shielding performance of the coaxial enclosure as a function of fre-

quency, for the magnetic conductor, with a varying number of slots.
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Figure 11. Comparison between the traditional method (with rcut = ∞) and the

new method in this work (with ∆cut = 10−9), of the calculated shielding performance

of the copper coaxial enclosure with two slots, for a varying quadrature order Q.
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Table 1. Simulation time of the new method (top) and the traditional method

(bottom), versus the quadrature order Q (see Fig. 11).

Q Time (s)

10 10

10 17

20 45

40 150

80 575

Figure 12. Cross section of an open cable tray with conductivity σ and relative

permeability µr, illuminated by an electric line current I0, and enclosing three copper

signal conductors with induced noise currents I1 to I3. The geometry is symmetrical

w.r.t. a vertical line through the center of the middle conductor.
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Figure 13. Shielding performance of the open (g = 5.5 mm) and closed (g = 0)

cable tray as a function of frequency, for various shielding materials.

Figure 14. Relevant to the derivation of the normal derivatives.
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