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Abstract

We consider the Motzkin paths which are simple combinatorial objects appear-
ing in many contexts. They are counted by the Motzkin numbers, related to the
well known Catalan numbers. Associated with the Motzkin paths, we introduce the
Motzkin polynomial, which is a multi-variable polynomial “counting” all Motzkin
paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polyno-
mials) have been studied before, but here we deduce some properties based on
recurrence relations. The recurrence relations proved here also allow an efficient
computation of the Motzkin polynomials. Finally, we show that the matrix en-
tries of powers of an arbitrary tridiagonal matrix are essentially given by Motzkin
polynomials, a property commonly known but usually stated without proof.

1 Introduction

Catalan numbers and Motzkin numbers have a long history in combinatorics [19, 20].
A lot of enumeration problems are counted by the Catalan numbers Cn = 1

n+1

(

2n
n

)

, see
e.g. [20]. Closely related to Catalan numbers are Motzkin numbers Mn,

Mn =

⌊n/2⌋
∑

k=0

(

n

2k

)

Ck

similarly associated to many counting problems, see e.g. [9, 1, 18]. For example, the
number of different ways of drawing non-intersecting chords between n points on a circle
is counted by the Motzkin numbers. Counting only the cases where every point meets a
chord, one again arrives at the Catalan numbers. A selection of 14 situations where the
Motzkin numbers occur along with the Catalan numbers can be found in [9].
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In particular in lattice path enumeration, both numbers appear in counting Dyck
paths or Motzkin paths [13, 14]. A Dyck path is a lattice path in the plane integer lattice
Z× Z consisting of up steps (1, 1) and down steps (1,−1), which never passes below the
x-axis. A Motzkin path is similar, but allowing up steps (1, 1), down steps (1,−1) and
horizontal steps (1, 0). The number of Dyck paths from (0, 0) to (2n, 0) is given by the
Catalan number Cn, and the number of Motzkin paths from (0, 0) to (n, 0) is given by
the Motzkin number Mn.

To every Motzkin path, one can associate a “weight” keeping track of the height of
the up, down and horizontal steps. In the last decade, many results have been published
related to generating functions of such Motzkin path weights. The most celebrated result
in Motzkin path enumeration is the generating function for Motzkin path weights in a
strip, due to Viennot [24]; see also the Appendix in [12] for an accessible overview and
proof.

The Motzkin polynomial Pn considered in this paper can be seen as the generating
function of Motzkin path weights from (0, 0) to (n, 0). This polynomial was already
studied by Flajolet [11], where it is called the Jacobi-Rogers polynomial (because it was
apparently first introduced by Rogers). In [11], the emphasis is on the relation with
continued fractions. In the current paper we also introduce the Motzkin polynomial
P

(a,b)
n , which can be seen as the generating function of Motzkin path weights from (0, 0)

to (n, 0) for paths starting with a up steps and ending with b down steps, and study their
properties.

In the following section we recall the definition of a Motzkin path and illustrate these
combinatorial objects with some examples. In section 3 we introduce the Motzkin poly-
nomials corresponding to (generating functions of) Motzkin paths of a certain type, in
particular those that start with a up steps and end with b down steps. Section 4 lists
some properties of these Motzkin polynomials. Notably, we prove interesting recurrence
relations that allow a fast and efficient way of computing Motzkin polynomials. Section 5
deals with the connection to powers of tridiagonal matrices. Although this is a “folklore
result” in combinatorics, it is often stated inaccurately or without proof. For this reason,
we think it is useful to incorporate and state this connection here. In section 6, we show
how the recurrence relation discussed earlier gives rise to the continued fractions of [11],
and in the closing section 7 we indicate how the results can be extended to generalizations
of Motzkin paths.

Our own interest in Motzkin paths, Motzkin polynomials and Dyck polynomials came
from its relation to powers of tridiagonal matrices, needed in the computation of Wigner
distribution functions for finite oscillator systems [23, 15]. It was only in the process of
using and rediscovering Motzkin polynomials, that we realized how much is known in the
literature. Despite this, we think we can still contribute to this topic, in particular by the
new recurrence relations, their connection to continued fractions, and their computational
advantage.
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2 Motzkin paths

A Motzkin path p of size n is a lattice path in the integer plane Z×Z from (0, 0) to (n, 0)
which never passes below the x-axis and whose permitted steps are the up step (1, 1), the
down step (1,−1) and the horizontal step (1, 0). Figure 1 depicts a Motzkin path of size
11. Denoting the up step by u, the down step by d and the horizontal step by h, one can

Figure 1: Example of a Motzkin path of size n = 11.

encode a Motzkin path of size n by a Motzkin word of n letters. In this way, the Motzkin
path in figure 1 can be rendered as the Motzkin word uhuhdduhhdh. Formally, a Motzkin
word of size n is a word consisting of n letters u, d, h in such a way that counting from
the left the u count is always greater than or equal to the d count (this ensures the path
never passes below the x-axis), and such that the total u count is equal to the total d
count (as the end point of the path has to be on the x-axis, namely (n, 0)).

We will denote by Mn the set of all Motzkin paths of size n, and by M0 the set
consisting of the empty path only. The elements of M3 are presented in figure 2. When
expressed as Motzkin words, the four Motzkin paths of size 3 are given by

uhd, udh, hud, hhh, (1)

Similarly, the Motzkin words

uudd, uhhd, uhdh, udud, udhh, huhd, hudh, hhud, hhhh. (2)

correspond with the elements of M4, shown in figure 3.
The cardinalities of Mn are precisely the Motzkin numbers, 1, 1, 2, 4, 9, 21, 51, 127, . . . .

The Motzkin numbers form a sequence of natural numbers that count specific combina-
torial objects including (but not limited to) the Motzkin paths [9, 1]. They satisfy the
recurrence relation

Mn+1 = Mn +
n−1
∑

k=0

Mk ·Mn−1−k, (3)

and are closely related to the well known Catalan numbers. For n even, say n = 2r, the
paths in Mn that contain only up and down steps but no horizontal steps are precisely
the Dyck paths of size r, which are counted by the Catalan numbers [6, 7].
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Figure 2: All Motzkin paths of size n = 3.

Figure 3: All Motzkin paths of size n = 4.
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The elements of Mn can be further classified according to common features they
share. Here, we consider some specific subsets of Mn consisting of paths with certain
characteristics that will be useful for our purpose.

We call the height of a Motzkin path p the largest integer N for which p touches the
line y = N . Note that a Motzkin path of size n has n steps and has to end at (n, 0), so it
can have at most ⌊n/2⌋ up steps, which yields a maximum height of ⌊n/2⌋ for a Motzkin
path of size n. In case n is even, the only path with height equal to n/2 is the path that
has n/2 up steps followed by n/2 down steps. For n odd, there are n paths with height
equal to ⌊n/2⌋ (to attain this height a path needs ⌊n/2⌋ up steps and ⌊n/2⌋ down steps,
this leaves n possible places for a horizontal step).

We denote by Mn|N the subset of Mn consisting of all elements with height at most
N (or height “restricted by N”, hence the notation). As all elements of Mn have height
less than or equal to ⌊n/2⌋, we have Mn|⌊n/2⌋ = Mn.

From figure 3, one can see that |M4|2| = 9, |M4|1| = 8 and |M4|0| = 1.
Another feature one can use to classify the elements of Mn is by checking whether the

beginning or ending segments of two paths coincide. For a given n, and integer values a, b
with 0 6 a, b 6 ⌊n/2⌋, we denote by M

(a,b)
n the set of all Motzkin paths of size n, starting

with at least a up steps and ending with at least b down steps. For example, in figure 4
we list the Motzkin paths of size n = 8 with a = 3 and b = 2. Note that when encoded

Figure 4: All Motzkin paths of size n = 8 with a = 3 and b = 2, i.e. starting with at least
three up steps and ending with at least two down steps.

as Motzkin words,

uuuudddd, uuuhhddd, uuuhdhdd, uuududdd, uuudhhdd, uuuddudd,

they all start with three letters u and end with two letters d.
Obviously, considering the set M

(a,b)
n is equivalent to considering the paths of length

n− a− b from (a, a) to (n− b, b), with up, down and horizontal step, and never passing
below the x-axis (or those from (0, a) to (n−a− b, b)). It will be useful, however, to work
with genuine Motzkin paths and stick to the terminology introduced here.
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Combining the previous two concepts, we denote by M
(a,b)
n|N the set of all Motzkin paths

of size n, with height at most N , starting with at least a ups and ending with at least b
downs. The notation M

(a,b)
n|N thus again refers to restricting to certain elements of M

(a,b)
n .

For x, y, z positive integers, possibly zero, we have the following inclusion

M
(a+y,b+z)
n|N−x ⊆ M

(a,b)
n|N .

3 Motzkin polynomials

In order to define the Motzkin polynomial associated to a Motzkin path, we first introduce
the concept of the weight of a Motzkin path.

Recall that a Motzkin path consists of a sequence of steps with each step being one
of three possible types: up, down or horizontal. Now, to each step of a Motzkin path we
will assign a weight, dependent firstly on the specific type of the step.

An up step is of the form (1, 1), so it goes from a lattice point (l − 1, k − 1) to the
point (l, k) for some integers l, k. We say that this up step occurs at height k, where k is
in fact the largest integer for which the up step touches the line y = k. To each up step
at height k, we assign the weight uk. In the same way, we assign to a horizontal step at
the integer coordinates (l − 1, k) and (l, k) the weight hk (with k again being the largest
integer for which the horizontal step touches the line y = k). Finally, we assign the weight
1 to any down step.

Now, we define the weight w(p) of a Motzkin path p to be the product of the weights
of its individual steps. The weight of p is thus a monomial in the commuting variables
ui (i = 1, 2, . . .) and hi (i = 0, 1, 2, . . .). Each up step and horizontal step contributes a
factor to the weight of the path, indicating on the one hand the type of step, and on the
other hand the height at which this step occurs. Moreover, to the empty path we assign
the weight of 1. For example, the path p in figure 1 has as weight w(p) = u2

1u2h0h
3
1h2,

since there are in total two up steps at height 1, one up step at height 2 and five horizontal
steps, one at height 0, three at height 1 and one at height 2.

Note that the weight does not uniquely characterize a path. For instance, the paths
udh and hud both have a weight of u1h0 (due to commutativity of multiplication).

In principle, one could also assign the weight dk to a down step at height k. However,
as a Motzkin path contains the same number of down steps as up steps, which moreover
must occur at the same height, this extension would not give any extra information. It
corresponds merely to replacing every uk by ukdk.

We remark that in [22] one also defines a weight for Motzkin paths, which counts the
number of horizontal steps of a path with a single variable t but gives no information
regarding the height at which a step occurs. This is a different definition than ours,
having also a different purpose.

The weights of the four elements of M3, shown in figure 2, are

u1h1, u1h0, u1h0, h3
0. (4)
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The weights of the paths in figure 3 are

u1u2, u1h
2
1, u1h0h1, u2

1, u1h
2
0, u1h0h1, u1h

2
0, u1h

2
0, h4

0.

Now, we define the Motzkin polynomial P
(a,b)
n|N as the sum of the weights of all elements

of M
(a,b)
n|N :

P
(a,b)
n|N ≡ P

(a,b)
n|N (u, h) ≡ P

(a,b)
n|N (u1, . . . , uN , h0, . . . , hN) =

∑

p∈M
(a,b)
n|N

w(p). (5)

Here we introduced the notation u, h as shorthand to denote the sequence of variables

u = (u1, u2, u3, u4, . . .), h = (h0, h1, h2, h3, . . .).

Any polynomial P
(a,b)
n|N only contains a finite number of variables u1, . . . , uN , h0, . . . , hN ,

where N is determined by the maximum height of the set of Motzkin paths over which is
summed.

For convenience, we shall use a simpler notation for those polynomials corresponding
to non-restricted Motzkin paths (i.e. with no restriction on height and/or on the start
and end):

P (a,b)
n ≡ P

(a,b)
n|⌊n/2⌋ =

∑

p∈M
(a,b)
n

w(p), (6)

Pn ≡ P (0,0)
n =

∑

p∈Mn

w(p). (7)

The polynomials Pn will be referred to as the standard Motzkin polynomials. From
the previous examples, one can see:

P3 = P
(0,0)
3|1 = u1h1 + 2u1h0 + h3

0,

P3|0 = h3
0,

P
(1,0)
3 = u1(h1 + h0),

P
(3,2)
8 = P

(3,2)
8|4 = u1u2u3(u2 + h2

2 + h2h3 + u3 + u4 + h2
3).

Note that in [11], a noncommutative version of the standard Motzkin polynomials Pn

is defined (i.e. in noncommutative variables). These are called the Jacobi-Rogers polyno-
mials Rn, and they are in terms of noncommuting up, horizontal and down variables. For
example, R3 = u1h1d1 + u1d1h0 + h0u1d1 + h3

0, to be compared to P3 given above. For
most of the properties to be considered, commuting variables will do, and when relevant
a property can often be translated to the noncommuting case.

In the same paper [11, Proposition 3A], an explicit expression is given for the Jacobi-
Rogers polynomials with commuting variables (i.e. the Motzkin polynomials). However,
there are some typing errors and a mistake in this expression. So we think it is useful to
give it here again.

the electronic journal of combinatorics 22 (2015), #P00 7



Proposition 1. The Motzkin polynomial of size r is explicitly given by

Pr = Pr(u, h) =
∑

n,m

ρ(n,m)
∏

i>1

ui
ni

∏

j>0

hj
mj (8)

where the sum ranges over all nonnegative integer sequences m = (m0,m1,m2, . . .) and

n = (n1, n2, n3, . . .) such that
∑

i

2ni +
∑

j

mj = r,

with

ρ(n,m) =

(

n1 +m0

m0

)

∏

i>1

(

ni + ni+1 +mi − 1

mi

)

∏

i>1

(

ni + ni+1 − 1

ni+1

)

(9)

Proof. For given nonnegative integer sequences n = (n1, n2, . . .) andm = (m0,m1,m2, . . .)
with a finite number of non-zero components, we shall prove that ρ(n,m) gives the number
of Motzkin paths having ni up steps at height i and mj horizontal steps at height j.

One can see this as follows. Given the number of up steps and horizontal steps at each
height, i.e. the numbers n = (n1, n2, n3, n4, . . .) andm = (m0,m1,m2,m3, . . .) respectively,
we find the total number of paths having these step counts by enumerating all possible
configurations of step positions relative to each other.

A horizontal step at height i can only occur following an up step at height i, another
horizontal step at height i, or a down step at height i which must always have been
preceded by an up step at height i + 1. Now, interchanging horizontal steps at one and
the same height does not inherently change the configuration of a path and therefore
the path itself. This leaves a total of ni + ni+1 inherently different positions at which a
horizontal step at height i can occur. As we have mi such steps, the number of different
configurations with these step counts is the number of ways to choose mi elements from a
set of ni+ni+1 elements with repetitions allowed (multisets of cardinality mi taken from a
set of cardinality ni+ni+1, i.e.

(

ni+ni+1+mi−1
mi

)

in total). For the horizontal steps at height
0, they can only occur before an up step at height 1 or following a down step at height 1
but before the next up step at height 1. This gives a total of n1 + 1 different positions.

Similarly, the number of different configurations with ni up steps at height i and ni+1

at height i+ 1 is given by the number of multisets of cardinality ni+1 taken from a set of
cardinality ni. In a given configuration, the relative positions of the up steps at height 0
is completely fixed by the positions of all other steps.

The explicit expression (8) is not very practical to actually compute the Motzkin
polynomials; for this purpose, the recurrence relation of the following section will be most
efficient.

4 Properties and recurrence relations

We now discuss some properties of the Motzkin polynomials. First of all, we consider some
evaluations of these polynomials at specific values for the variables. Setting all variables
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ui, hi in the polynomial P
(a,b)
n|N equal to 1 yields the cardinality of the set M

(a,b)
n|N . We have

P
(a,b)
n|N

∣

∣

∣

∣

u=1,h=1

≡ P
(a,b)
n|N (1, 1) ≡ P

(a,b)
n|N (1, 1, . . . , 1, 1, . . . ) =

∣

∣M
(a,b)
n|N

∣

∣, (10)

where the notation on the left stands for evaluating the polynomial P
(a,b)
n|N at u1 = 1, u2 =

1, . . . , h0 = 1, h1 = 1, . . . . Hence, for integer n, the value Pn(1, 1) is precisely the Motzkin
number Mn.

Setting all hi-variables to zero in P
(a,b)
n|N , the polynomial reduces to the sum of the

weights of all elements of M
(a,b)
n|N that do not contain any horizontal steps. For n an odd

integer, this equals zero as any Motzkin path of odd size must contain a horizontal step.
For n = 2r even, these paths are precisely the Dyck paths, and P

(a,b)
2r|N becomes the Dyck

polynomial, used in [15]. Consequently, taking u1 = 1, u2 = 1, . . . and h0 = 0, h1 = 0, . . .
we find that P2r(1, 0) is the Catalan number Cr.

The elements of Mn|N are those of Mn with height at most N . The set Mn \Mn|N

consists thus of the paths with height higher than N , and the weights of these paths
have at least one of the factors uN+1, uN+2, . . . and/or hN+1, hN+2, . . .. Therefore, one can
obtain Pn|N from Pn, by putting uN+1 = uN+2 = . . . = 0 and hN+1 = hN+2 = . . . = 0 in
Pn:

Pn|N = Pn(u1, u2, . . . , uN , 0, 0, . . . , h0, h1, . . . , hN , 0, 0, . . .). (11)

Clearly, this is also valid for Motzkin paths that are restricted on the start and/or end:

P
(a,b)
n|N = P (a,b)

n (u1, u2, . . . , uN , 0, 0, . . . , h0, h1, . . . , hN , 0, 0, . . .). (12)

For this reason, it will be sufficient to study P
(a,b)
n , and thus work with Motzkin paths

of size n that are not restricted in height. The properties for P
(a,b)
n|N then follow from a

suitable substitution.
Our main new result for Motzkin polynomials is the construction of a recurrence

relation. Hereto we first introduce the following notation:

u+ = (u2, u3, u4, . . .), h+ = (h1, h2, h3, . . .).

This stands for raising the indexes of the variables by 1. So Pn(u
+, h+) will have u2

substituted for u1, u3 for u2, etc., and also h1 substituted for h0, h2 for h1, etc. For
example:

P3(u, h) = P3(u1, h0, h1) = u1h1 + 2u1h0 + h3
0,

P3(u
+, h+) = P3(u2, h1, h2) = u2h2 + 2u2h1 + h3

1.

Theorem 2. For integer n, we have

Pn+1 = h0Pn(u, h) +
n−1
∑

i=0

u1Pi(u
+, h+)Pn−1−i(u, h). (13)
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Proof. We must show that the right-hand side of (13) contains the weights of all Motzkin
paths of size n+ 1. The first step of a Motzkin path of size n+ 1 is either an up step or
a horizontal step. If the first step is horizontal, this leaves a remaining path of n steps.
The sum of the weights of all Motzkin paths of size n is given by Pn. Hence, multiplying
these weights by a factor h0 for an extra horizontal step at height 0, we find that h0Pn

is exactly the sum of the weights of all Motzkin paths of size n + 1 that start with a
horizontal step.

Now, consider a Motzkin path of size n + 1 that starts with an up step. Any such
path must ultimately meet again at the x-axis with a down step at height 1, occurring as
one of its n remaining steps. Say this path meets the x-axis at (i + 2, 0) (i > 0) for the
first time (counting from the left) after its up step at (0,0), leaving n − 1 − i remaining
steps starting from (i+ 2, 0) to (n+ 1, 0). From (1, 1) to (i+ 1, 1) this path never passes
below the line y = 1. This Motzkin path can thus be seen as the concatenation of an up
step, followed by a “raised” Motzkin path of size i, a down step and finally a Motzkin
path of size n − 1 − i. In this way, summing over all possible points (i + 2, 0), we find
that the right-hand side of (13) is precisely the sum of the weights of all Motzkin paths
of size n+ 1 that start with an up step.

For u = 1, h = 1, the relation (13) reduces to the recurrence relation (3) for the
Motzkin numbers.

One easily verifies the relation (13) for the first few polynomials

P0 = 1, P1 = h0, P2 = u1 + h2
0, P3 = u1h1 + 2u1h0 + h3

0,

P4 = u1u2 + u1h
2
1 + 2u1h0h1 + u2

1 + 3u1h
2
0 + h4

0,

P5 = u1u2h2 + 2u1u2h1 + u1h
3
1 + 2u2

1h1 + 2u1u2h0 + 2u1h0h
2
1 + 3u2

1h0

+ 3u1h
2
0h1 + 4u1h

3
0 + h5

0,

P6 = u1u2u3 + 4u1u2h0h1 + 2u1u2h0h2 + 2u1u2h1h2 + 3u1u2h
2
0 + 6u2

1h0h1

+ 3u1u2h
2
1 + u1u2h

2
2 + 4u1h

3
0h1 + 3u1h

2
0h

2
1 + 2u1h0h

3
1 + u3

1 + 2u2
1u2

+ u1u
2
2 + 5u1h

4
0 + 6u2

1h
2
0 + 3u2

1h
2
1 + u1h

4
1 + h6

0.

In fact, (13) gives a very efficient way of calculating the polynomials Pn. It is moreover
easy to implement in any computer algebra package.

In a similar way, one obtains a recurrence relation for the polynomials P
(a,b)
n . First of

all, note that obviously

P (a,b)
n = 0 for n < 0 or a < 0 or b < 0, (14)

P (a,b)
n = 0 for a > ⌊n/2⌋ or b > ⌊n/2⌋. (15)

Moreover, a mirror reflection of all paths in M
(a,b)
n yields

P (b,a)
n = P (a,b)

n . (16)
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Theorem 3. For a > 1 and b > 0 one has

P
(a,b)
n+1 = u1P

(a−1,b−1)
n−1 (u+, h+) +

n−1
∑

i=0

u1P
(a−1,0)
i (u+, h+) · P

(0,b)
n−1−i(u, h). (17)

Proof. The proof of this relation is similar to the proof of Theorem 1. Consider first the
case a > 1 and b > 1. We must show that the right-hand side of (17) contains the weights
of all Motzkin paths of size n+ 1 that start with a up steps and ends with b down steps.
If such path does not meet the x-axis apart from its end points (0,0) and (n+ 1, 0), then
by removing its first and final step it is in fact reduced to a Motzkin path of size n − 1
starting with a − 1 ups and ending with b − 1 downs. The sum of the weights of these
kind of paths is precisely the term

u1P
(a−1,b−1)
n−1 (u+, h+).

The remaining paths all touch the x-axis in some intermediate step. The summation in
the right-hand side of (17) follows by making the distinction as to where the Motzkin path
in question first touches the x-axis, similar to what we did in the proof of Theorem 1.

Now, for b = 0 the first count should be deleted, which corresponds to deleting the
first term in (17). But this is automatically the case because of (14).

For a = 0, the counting argument (and thus the recurrence relation) does not hold.

This is no disadvantage for the actual computation of the polynomials P
(a,b)
n since one

can make use of the symmetry (16).
Note that the sum over i in (17) runs in fact from 2a − 2 to n − 1 − 2b (for i from 0

to 2a − 3, P
(a−1,0)
i = 0 due to (15); for i from n − 2b to n − 1, P

(0,b)
n−1−i = 0 for the same

reason).
The recurrence relations (13) and (17), together with the boundary conditions (14)

and (15), can be used to easily compute the Motzkin polynomials P
(a,b)
n by means of a

computer algebra package.
Finally, we prove the following relation which we will need in the next section.

Lemma 4. For a > 0, b > 0, k > 0, one has

P
(a,b)
a+b+k+1 = uaP

(a−1,b)
a+b+k−1 + haP

(a,b)
a+b+k + P

(a+1,b)
a+b+k+1, (18)

with u0 = 0 in the case a = 0.

Proof. By definition, the left-hand side of (18) is precisely the sum of the weights of all
Motzkin paths that start with at least a up steps, end with b down steps, and have k+ 1
steps in between. The equality in (18) now follows from classifying these paths according
to their subsequent step after the a up steps, which is either an up step, a horizontal step,
or a down step.

Any path with a up steps and as subsequent step again an up step, is in fact a path
starting with a+1 up steps. This leaves a remainder of k steps, followed by b down steps,
hence the sum of the weights of all paths of this type is given by P

(a+1,b)
a+b+k+1.
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If the subsequent step is a horizontal step, we have again k remaining steps, followed
by b down steps. Removing this horizontal step starting at (a, a) and putting the loose

ends together, the sum of all weights of these reduced paths is given by P
(a,b)
a+b+k. The paths

we are after then follow by multiplying these weights by a factor ha to compensate for
the removed horizontal step at height a.

If the subsequent step is a down step, we have again k remaining steps, now starting at
height a− 1, followed by b down steps. Removing the up step from (a, a) to (a+1, a+1)
and the down step from (a + 1, a + 1) to (a, a), and putting the loose ends together, the

sum of all weights of these reduced paths is given by P
(a−1,b)
a+b+k−1. Multiplying these weights

by a factor ua to account for the removed up (and down) step yields the last term of the
sum in the right-hand side of (18), which completes the proof.

5 Relation to tridiagonal matrices

The relation between powers of tridiagonal matrices and Motzkin polynomials seems to
be “commonly known” in the literature on transfer matrices (see e.g. [19, 3]). However,
it is often stated without a proof. With our current definitions and equation (18), it is
easy to describe this relation.

Theorem 5. Let R = (Ra,b)06a,b6N be the (N + 1)× (N + 1) matrix

R =



















h0 u1 0
1 h1 u2

0 1 h2

. . .
. . .

. . . 0
hN−1 uN

0 1 hN



















. (19)

For k a positive integer, and 0 6 a, b 6 N , we have

(Rk)a,b =
P

(a,b)
a+b+k|N

u1 · · · ua

. (20)

Proof. We shall prove (20) by induction on k. For k = 1, let us consider the polynomials

P
(a,b)
a+b+1|N . These are precisely the weights of all Motzkin paths that start with at least a

up steps and end with b down steps and have one unspecified step in between. Clearly,
there are three possible scenarios where this polynomial is nonzero, i.e. when there is at
least one valid corresponding Motzkin path. When b = a + 1, we have one path with
its weight given by u1u2 · · · uaua+1. When b = a, we have a path with associated weight
hau1 · · · ua−1ua, and similarly when b = a − 1 the weight is u1u2 · · · ua−1ua. Thus both
sides of (20) coincide when k = 1.
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Now we can use the induction hypothesis, and assume that (20) holds for k > 1. The
matrix elements of Rk+1 are computed as follows:

(Rk+1)a,b = (RRk)a,b =
N
∑

j=0

(R)a,j(R
k)j,b

= (Rk)a−1,b + ha(R
k)a,b + ua+1(R

k)a+1,b

=
P

(a−1,b)
a−1+b+k|N

u1 · · · ua−1

+ ha

P
(a,b)
a+b+k|N

u1 · · · ua

+ ua+1

P
(a+1,b)
a+1+b+k|N

u1 · · · ua+1

=
(

ua P
(a−1,b)
a−1+b+k|N + ha P

(a,b)
a+b+k|N + P

(a+1,b)
a+1+b+k|N

)

/u1 · · · ua.

Using (18) (which is obviously also valid after restriction to N variables), this gives

(Rk+1)a,b =
P

(a,b)
a+b+k+1|N

u1 · · · ua

.

The “boundary” matrix elements of Rk+1 are computed similarly, taking into account
that in (18) when restricted to height N for a = N or b = N , P

(a+1,b)
a+1+b+k|N = 0.

It is straightforward to extend this result to general tridiagonal matrices of the form

S =



















h0 u1 0
d1 h1 u2

0 d2 h2

. . . . . . . . . 0
hN−1 uN

0 dN hN



















. (21)

Indeed, using the diagonal matrix D of the form

D = diag(1, d1, d1d2, . . . , d1d2 · · · dN)

one can see that

D−1SD =



















h0 u1d1 0
1 h1 u2d2
0 1 h2

. . . . . . . . . 0
hN−1 uNdN

0 1 hN



















≡ R′,

where R′ follows from R by the replacements ui → uidi. Hence, the powers of S are easily
related to the powers of R′, and one obtains:

Theorem 6. Let S be a general tridiagonal (N +1)× (N +1) matrix given by (21). For
k a positive integer, and 0 6 a, b 6 N , we have

(Sk)a,b =
1

u1 · · · ua · d1 · · · db
P

(a,b)
a+b+k|N(u1d1, u2d2, . . . , uNdN , h0, h1, . . . , hN). (22)
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6 Generating function

For the standard Motzkin polynomials, introduced in section 2, one can consider the
generating function

G(z; u, h) =
∞
∑

n=0

Pnz
n =

∞
∑

n=0

Pn(u1, u2, . . . , u⌊n/2⌋, h0, h1, . . . , h⌊n/2⌋)z
n.

Multiplying the recurrence relation (13) by zn+1 and summing over all n > 0 then gives:

G(z; u, h)− 1 = zh0

∞
∑

n=0

Pnz
n +

∞
∑

n=0

n−1
∑

i=0

u1Pi(u
+, h+)Pn−1−i(u, h)z

n+1

= zh0G(z; u, h) + z2u1

(

∞
∑

i=0

Pi(u
+, h+)zi

)(

∞
∑

n=i+1

Pn−1−i(u, h)z
n−1−i

)

= zh0G(z; u, h) + z2u1G(z; u+, h+)G(z; u, h).

So

G(z; u, h) =
1

1− zh0 − z2u1G(z; u+, h+)
. (23)

Repeated use of (23) leads to

G(z; u, h) =
1

1− zh0 −
z2u1

1− zh1 −
z2u2

1− zh2 −
z2u3

1− zh3 − · · ·

. (24)

This generating function is the central object of study in [11]. In our case, the form of
the generating function follows in a very simple way from the recurrence relation (13).

For Motzkin paths restricted to height N and the corresponding Motzkin polynomials
restricted to N variables, the generating function

G(z; u1, . . . , uN , h0, . . . , hN) =
N
∑

n=0

Pnz
n +O(zN+1)

becomes

G(z; u1, . . . , uN , h0, . . . , hN) =
1

1− zh0 −
z2u1

1− zh1 −
z2u2

1− zh2 −

. . .

1− zhN−1 −
z2uN

1− zhN

.

(25)
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7 Generalizations of Motzkin paths

There exist several lattice paths that are generalizations of Motzkin paths occurring in
a range of different fields. We now show that the approach above is readily transferred
to such generalized paths. More specifically, we demonstrate that one easily associates
weights and polynomials to these paths which can be computed efficiently by means of a
(modified) recurrence relation.

A first extension is obtained by removing the restriction that a path may not pass below
the x-axis. Such paths are sometimes called super Dyck paths and super Motzkin paths,
see e.g. [17, 5]. In exactly the same manner as for the classical paths, one easily assigns
a weight to any path that is allowed to go below the x-axis by letting the indices of the
variables ui and hi take on negative values. The associated polynomials and corresponding
recurrence relation then follow immediately. Note, however, that these kind of paths are
in fact already included in the class of paths having a fixed number of steps at the start
and at the end. Indeed, a super path of size n is up to an upward shift equivalent to the
middle part of a regular path of size n+2⌊n/2⌋ that starts with ⌊n/2⌋ up steps and ends
with ⌊n/2⌋ down steps. The appropriate weight then follows after a shift of the indices
of the variables ui and hi and accounting for the extra up steps at the beginning.

Another class of generalized paths consists of coloured Motzkin paths, where the al-
lowed steps can occur in a number of different colours, see e.g. [17, 2, 8]. Also, in [10]
a bijection is established between the n-cell standard Young tableaux of bounded height
and the coloured Motzkin paths of size n. This colouring makes it possible to distinguish
between two steps of the same kind occurring at the same height, which is something one
would want to incorporate when assigning weights to these paths. For instance, consider
a Motzkin path which has horizontal steps in k different colours, also called a k-coloured
Motzkin path. To each step of such a path we can once more associate a weight in the
usual way, now assigning to a horizontal step the weight hi,j where i ranges from 1 to k
and stands for the colour of the step, while the index j again denotes the height at which
the step occurs. Removing the colouring of a path (replacing all coloured horizontal steps
by its uncoloured variant) we obtain a classical Motzkin path. In terms of its weight this
corresponds to substituting hj for hi,j for every i. The number of coloured paths which
reduce to the same classical Motzkin path depends on the number of horizontal steps it
has and how many different colours these steps can take on. The sum of the weights of
all paths which reduce to the same path p when removing their colouring can then easily
be obtained from the weight w(p) by carrying out the substitution

hi 7→ h1,i + h2,i + · · ·+ hk,i,

for all relevant heights i in p. Hence, the polynomial consisting of the sum of the weights
of all paths with a specified size n then follows from this same substitution but now for the
Motzkin polynomial Pn. Similarly, with regard to the weights of paths, the substitution

ui 7→ u1,i + u2,i + · · ·+ uℓ,i

corresponds to introducing ℓ different colours that an up step is allowed to have.
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Imposing conditions on height and/or on the start and end of such paths then cor-

responds to using the appropriate polynomial P
(a,b)
n|N instead of Pn. By means of the

recurrence relations for the Motzkin polynomials this allows to efficiently compute also
polynomials associated to coloured Motzkin paths.

We mention a last generalization which is obtained through tinkering with the length
of the individual steps occurring in a Motzkin path. In general, the length of each kind
of step can be altered; however, the most prominent type of such generalized paths is the
one where up and down steps remain of the form (1, 1) and (1,−1), while horizontal steps
are changed to k-horizontal steps which have a fixed length k or thus are of the form
(k, 0). These paths are also called k-Motzkin paths, see [8, 16, 22]. The case k = 1 then
covers regular Motzkin paths, while k = 0 corresponds to Dyck paths.

For any k, in exactly the same manner as was the case for the classical paths, one
assigns to each path a weight which portrays the steps it contains and the height they
occur at. Now, if we again define polynomials as the sum of the weights of all paths of a
given size n, then the following modified version of the recurrence relation (13) holds:

Pn+1 = h0Pn+1−k(u, h) +
n−1
∑

i=0

u1Pi(u
+, h+)Pn−1−i(u, h). (26)

Note that for n+1 < k, the term h0Pn+1−k(u, h) disappears, in line with (14). The reason
for this is that these paths are of insufficient size to accommodate a horizontal step of
length k. In this case, (26) reduces to the recurrence relation for Dyck paths, evidently
as they contain no horizontal steps, see [15].

Just as in Section 6, the recurrence relation (26) gives rise to an expression for the
generating function

G(z; u, h) =
∞
∑

n=0

Pnz
n =

∞
∑

n=0

Pn(u, h)z
n.

where Pn now denotes the polynomial containing the weights of all k-Motzkin paths for
some arbitrary integer k. Multiplying the recurrence relation (26) by zn+1 and summing
over all n > 0 then yields:

G(z; u, h) =
1

1− zkh0 − z2u1G(z; u+, h+)
,

which leads to

G(z; u, h) =
1

1− zkh0 −
z2u1

1− zkh1 −
z2u2

1− zkh2 −
z2u3

1− zkh3 − · · ·

. (27)

Plugging in k = 1 indeed gives the generating function for the standard Motzkin polyno-
mials. The case k = 0 corresponds to a generating function for Dyck polynomials which
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allow zero-length horizontal steps, i.e. dots. The known expression then follows after
putting hi = 0 for all i, and substituting z for z2 (which is the result of Dyck paths always
having even size), see [15].

We conclude with a remark on the case where k = 2. A 2-Motzkin path consists of
horizontal steps of the form (2, 0), up steps (1, 1) and down steps (1,−1). Note that a
2-Motzkin path must always be of even size n = 2r. These paths correspond precisely
to the Schröder paths which are counted by the (large) Schröder numbers. A Schröder
path is usually defined as a path which goes from (0, 0) to (r, r) using horizontal steps
(1, 0), vertical steps (0, 1) and diagonal steps of the form (1, 1) and which does not rise
above the line y = x [21]. Setting all variables ui, hi equal to 1 in the polynomial Pn

associated to the 2-Motzkin paths thus gives the Schröder numbers. Moreover, if we
also define the polynomials P

(a,b)
n which consist of the weights of all 2-Motzkin paths

which start with a up steps and end with b down steps, then these can be related to the
Delannoy numbers [4]. For integers a, b, the Delannoy number D(a, b) counts all paths
going from the southwest corner (0, 0) of a rectangular grid to the northeast corner (a, b),
using only single steps north (0, 1), northeast (1, 1), or east (1, 0). Now, the 2-Motzkin

polynomial P
(a,b)
2a+2b corresponds precisely to all these paths. Furthermore, for arbitrary

positive integers k and ℓ, we have

P
(a+k,b+ℓ)
2a+2b+k+ℓ(1, 1) = D(a, b).

Taking this into account, a modified version of (18) correlates to the recursion relation
for the Delannoy numbers

D(a+ 1, b+ 1) = D(a+ 1, b) +D(a, b) +D(a, b+ 1).

For the 2-Motzkin polynomials, the recurrence relation (26) reduces to

P2r+2 = h0P2r(u, h) +
r
∑

i=0

u1P2i(u
+, h+)P2r−2i(u, h),

where we have left out all paths of odd size. With generating function given by

G(z; u, h) =
∞
∑

r=0

P2rz
r =

∞
∑

r=0

P2r(u, h)z
r,

this gives rise to

G(z; u, h) =
1

1− zh0 −
zu1

1− zh1 −
zu2

1− zh2 −
zu3

1− zh3 − · · ·

,

which is precisely (27) for k = 2 with z substituted for z2.
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