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Abstract

We introduce strong Goodstein principles which are true but unprovable in
strong impredicative theories like IDn.
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1. Introduction

Goodstein sequences provide examples for strictly mathematical statements
which are true (by Goodstein, see [Goo44]) but (according to Kirby and Paris,
see [KP82]) not provable in PA. In the 80s several attempts have been made to
define Goodstein principles capturing larger complexities using Π1

2-logic. Unfor-
tunately, even slight extensions of the original Goodstein principle led in some
articles (see for instance [Abr89]) to somewhat messy expositions which were
not completely transparent, at least from our point of view.

Quite recently an alternative and transparent method to generate Goodstein
principles has been provided by De Smet and Weiermann in [DSW12]. Their
Goodstein principles ranged in strength between Peano Arithmetic (PA) and
the theory ID1 of non-iterated monotone inductive definitions, and they asked
whether an extension to the theories IDn was possible. In this article we provide
an affirmative answer by elementary calculations based on Buchholz style tree
ordinals and a trick suggested by Cichon, see [Cic83].

There is some indication that Goodstein principles have no canonical exten-
sion to a strength beyond IDν and we expect having reached a canonical limit
for strong Goodstein principles.
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2. Tree Ordinals

We introduce tree ordinals, following lecture notes by Wilfried Buchholz.
Minor technical modifications are motivated by our specific purposes.

Definition 2.1. Inductive definition of classes Ti, i < ω, of tree ordinals.

1. 0 := () ∈ Ti.
2. α ∈ Ti ⇒ α+ 1 := (α) ∈ Ti.
3. ∀n ∈ N(αn ∈ Ti) ⇒ (αn)n∈N ∈ Ti.
4. j < i & ∀ξ ∈ Tj(αξ ∈ Ti) ⇒ (αξ)ξ∈Tj ∈ Ti.

The set of tree ordinals, denoted by α,β,γ, etc., is thus given by

T<ω :=
⋃
i<ω

Ti.

We also use the notation 1 := (()) = 0 + 1.
Note that every α ∈ Ti is of a form (αι)ι∈I where I is one of the sets

∅, {0},N, or Tj for some j < i. We define

||(αι)ι∈I || := sup
ι∈I

(||αι||+ 1).

By transfinite induction on ||α|| it is easy to show that α = (αι)ι∈I ∈ Ti implies
αι ∈ Ti for all ι ∈ I.

We introduce the following abbreviations:

0 := 0, n+ 1 := n+ 1

and
Ω0 := (n)n∈N, Ωi+1 := (ξ)ξ∈Ti ,

so that Ωi ∈ Ti −
⋃
j<i Tj . We will sometimes write ω for both ω := Ω0 and N,

assuming that ambiguity is excluded by context. Likewise, we will sometimes
identify Ωi+1 with Ti.

Addition is defined by

α+ 0 := α, α+ (βι)ι∈I := (α+ βι)ι∈I if I 6= ∅,

consistent with the above definition of the special case α+ 1, and multiples are
defined by

α · 0 := 0, α · (n+ 1) := (α · n) +α.

Proposition 2.2. Let α,β,γ ∈ T<ω.

1. α,β ∈ Ti ⇒ α+ β ∈ Ti.
2. α+ (β + γ) = (α+ β) + γ.

Definition 2.3. We define mappings Di : T<ω → Ti simultaneously for i ∈ N.
Di(α) is defined by transfinite recursion on ||α|| as follows:
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1. Di(0) := Ωi.
2. Di(α+ 1) := Di(α) + Di(α) + 1.
3. Di((αι)ι∈I) := (Di(αι))ι∈I if I ∈ {N} ∪ {Tj | j < i}.
4. Di((αι)ι∈Tj ) := Di(αDj(αΩj

)) if j ≥ i.

Remark 2.4. We generally have

Im(Di+1) ⊆ Ti+1 − Ti.

Clause 2 in the above definition has been chosen in order to have direct access to
exponentiation. This is crucial to approximate the appropriate epsilon numbers
in applications. The following proof would go through also for the modified
version Di(α + 1) := Diα + 1 but then the underlying semantics in terms of
order types would be affected. In the next definition Clause 4 will only be used
for j = i.

With these preparations we may now define a set of terms for tree ordinals.

Definition 2.5. The set BT of terms for tree ordinals is defined inductively as
follows. We simultaneously define the level lv(α) of a term α ∈ BT.

1. 0, 1 ∈ BT, and
lv(α) := 0 for α = 0, 1.

2. If α1, . . . , αn ∈ BT− {0} where n > 1, then α :=
∑n
i=1 αi ∈ BT, and

lv(α) := max{lv(αi) | 1 ≤ i ≤ n}.
3. If α ∈ BT with lv(α) ≤ i+ 1, then Diα ∈ BT, and

lv(Diα) := i.

We introduce the following notations.

BT≤i := {α ∈ BT | lv(α) ≤ i}, BTi := {α ∈ BT | lv(α) = i}.

The canonical interpretation of α ∈ BT, sometimes written as α, is given in
the obvious way, interpreting terms Diα by Di(α) where α is the canonical
interpretation of α.

If ambiguity is unlikely, we will tacitly use canonical interpretations when
dealing with terms in BT or writing BT-terms instead of tree ordinals.

Lemma 2.6. Let α ∈ BT. We have

α ∈ Ti ⇔ lv(α) ≤ i.

Proof. Trivial induction on the buildup of α ∈ BT.

Definition 2.7. Before defining tp : BT→ {0, 1, ω}∪{Ti | i ∈ N} and α[ξ] ∈ T<ω
for α ∈ BT and ξ ∈ tp(α), we introduce a few standard conventions in order to
ease notation. For the range of tp we declare the ordering

0 < 1 < ω < T0 < T1 < . . . ,

for tp(α) = ω we sometimes write tp(α) = Ω0, and for tp(α) = Ti we also write
tp(α) = Ωi+1. We then also declare the ordering

0 < 1 < Ω0 < Ω1 < . . . .
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1. tp(0) := 0.

2. tp(1) := 1, and 1[0] := 0.

3. tp(α) := tp(αn), if α =
∑n
i=1 αi with n > 1, and for ξ ∈ tp(αn)

α[ξ] := α1 + . . .+ αn−1 + αn[ξ].

4. tp(Di0) := Ωi, and for ξ ∈ Ωi

(Di0)[ξ] := ξ.

5. If tp(α) = 1 and lv(α) ≤ i+ 1, then tp(Diα) := 1 and

(Diα)[0] := Di(α[0]) +Di(α[0]).

6. If tp(α) ∈ {Ωj | j ≤ i} and lv(α) ≤ i+ 1, then tp(Diα) := tp(α), and for
ξ ∈ tp(α)

(Diα)[ξ] := Di(α[ξ]).

7. If tp(α) ∈ {Ωj+1 | j ≥ i} and lv(α) ≤ i + 1, then tp(Diα) := Ωi, and for
ξ ∈ Ωi

(Diα)[ξ] := Di(α[Dj(α[ξ])]).

In the case tp(α) = 1, for convenience we set α[k] := α[0], k ∈ ω. In the case
tp(α) = 0 we similarly set α[k] := 0.

Tree ordinals are by definition identified with their fundamental sequences.
Notice that tp(α) can be understood as the domain of the canonical interpreta-
tion of α. The notation ·[·] makes the fundamental sequences of the canonical
interpretations of BT-terms visible.

In general there does not always exist a term in BT whose canonical inter-
pretation is α[ξ]. However, in case there is, the above definition clearly indicates
which BT-term has to be taken. This will be made precise by the next lemma.

Lemma 2.8. Let α, ξ ∈ BT and identify ξ with its canonical interpretation ξ.
Suppose ξ ∈ tp(α). Then we have

α[ξ] ∈ BT and lv(α[ξ]) ≤ lv(α)

where we have identified α[ξ] ∈ T<ω with the term indicated in Definition 2.7.

Proof. Using Lemma 2.6, we proceed by trivial induction along the buildup of
α.

Lemma 2.9. Let α ∈ BT be such that α ∈ Ti for some i ∈ N. Then we have

tp(α) ∈ Ti.

Since in general α ∈ Tlv(α), it follows that

tp(α) < Tlv(α).
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Proof. The lemma follows immediately from the definitions involved.

Remark 2.10. Notice that, due to the condition lv(α) ≤ i + 1 and the above
lemma, Clause 3 of Definition 2.5 implies that terms Diα ∈ BT always satisfy
tp(α) ≤ Ωi+1. This shows that Clause 7 of Definition 2.7 can be simplified to

7.’ If tp(α) = Ωi+1 and lv(α) = i+ 1, then tp(Diα) := Ωi, and for ξ ∈ Ωi

(Diα)[ξ] := Di(α[Di(α[ξ])]),

where the condition lv(α) ≤ i+ 1 has cristallized to lv(α) = i by Lemma 2.6.

Lemma 2.11. Let α ∈ BT be such that tp(α) = Ωj , and let β ∈ BT be such
that lv(β) < j and tp(β) = Ωi where i < j. Then we have

tp(α[β]) = Ωi.

Proof. The proof proceeds again by induction along the buildup of α. The
interesting case is where α = Dj(γ) for some γ such that tp(γ) = Ωj+1 and
lv(γ) = j + 1. We then have α[β] = Dj(γ[Dj(γ[β])]), and by definition and
i.h. we have tp(Dj(γ[β])) = tp(γ[β]) = Ωi. We apply the i.h. again to obtain
tp(γ[Dj(γ[β])]) = Ωi which implies that tp(α[β]) = Ωi.

3. A Term Rewriting System to Base k

We now define a modified version of the Grzegorczyk hierarchy along count-
able tree ordinals represented as BT-terms. The argument k will serve as the
base parameter in the generalized Goodstein process that we are going to define
later. The approach to handle base-k representations via term rewriting is as
in [DSW12].

Definition 3.1. For k ∈ N− {0}, α, λ ∈ BT0 with tp(λ) = ω, define

B0(k) := k

Bα+1(k) := Bα(k) · 2 + 1

Bλ(k) := Bλ[Bλ[k](k)](k).

Definition 3.2. Let k > 0 be fixed. We define the following four sets of terms:
(principal) k-terms and (countable) ordinal k-terms. Any principal k-term is a
k-term, any k-term is a countable ordinal k-term, which in turn is an ordinal k-
term. The level lv(t) of an ordinal k-term t is defined simultaneously, compatibly
with the corresponding definition for BT-terms, cf. Definition 2.5, by setting
lv(t) := 0 if t is a k-term. Countable ordinal k-terms will thus be characterized
as the ordinal k-terms of level 0.

1. 0 is a k-term.

2. 1 is a principal k-term.

3. If α is a countable ordinal k-term, then Bα(k) is a principal k-term.
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4. Suppose α1, . . . , αn (n > 0) are ordinal k-terms such that each αi is either
a principal k-term or a term of the form Diβ where β is an ordinal k-term
such that lv(β) ≤ i+ 1, then

α := α1 + . . .+ αn

is an ordinal k-term. If each term of a form Diβ among α1, . . . , αn satisfies
i = 0, then α is a countable ordinal k-term. If all terms α1, . . . , αn are
k-terms, then α is a k-term.

Let Tk denote the set of k-terms and OTk denote the set of ordinal k-terms.
Since any term t of the form Bα(k) is evaluated as a nonzero natural number

n we may identify t with the corresponding tree ordinal denoting n and set
tp(Bα(k)) := 1 and t[0] := n − 1. We also may identify any term t of a form
(t1, . . . , tn) with a natural number, namely the sum over the evaluations of the
terms ti. We thus obtain a set of terms for tree ordinals, OTk, compatibly
extending BT.

The letters s, t, u (with or without indices) range over k-terms and the letters
α, β, γ (with or without indices) more generally range over ordinal k-terms.

Definition 3.3 (→). We evaluate k-terms, where k > 0, partially, following a
canonical and deterministic evaluation strategy. In each clause below suppose
n ∈ N and α, β, α1, . . . , αn ∈ OTk.

1. B0(k)→ k.

2. Bα+1(k)→ Bα(k) +Bα(k) + 1.

3. If α is →-irreducible and countable and not of a form β + 1 or 0, then
Bα(k)→ Bα[Bα[k](k)](k).

4. α1 + · · ·+ αn +Di(α+ 1)→ α1 + · · ·+ αn +Diα+Diα+ 1.

5. If α→ β then Bα(k)→ Bβ(k).

6. If α→ β then Diα→ Diβ.

7. If α→ β then α1 + · · ·+ αn + α→ α1 + · · ·+ αn + β.

Let →∗ be the reflexive transitive closure of →.

Lemma 3.4. If t is a nonzero k-term, then either t →∗ 1 or there is a unique
term s such that t→∗ s+ 1.

Proof. The relation→ terminates under a monotone intepretation with ordinals
below the ordinal of ID<ω. Normal forms of terms are either of the form 0, 1,
or s+ 1.

Definition 3.5. Let k, l ∈ N. We will define the change-of-base mapping

·[k ← l] : OTk → OTl

such that the change of base of k-terms results in l-terms. For convenience we
use the abbreviation α′ for α[k ← l].

1. 0′ := 0.
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2. 1′ := 1.

3. (Bα(k))′ := Bα′(l).

4. (α1 + . . .+ αn)′ := α′1 + . . .+ α′n.

Thus the argument k of each B-(sub-)term is replaced by l.

The above change of base is the analogue of the original change of base in
the Goodstein process, the subtraction of 1 in the Goodstein process has its
analogue in the following definition which is based on Lemma 3.4.

Definition 3.6. The function P : Tk → Tk is defined as follows. Set P0 := 0.
For nonzero t ∈ Tk let s be the unique k-term such that t →∗ s + 1, if that
exists, and s := 0 otherwise. Then Pt := s.

4. Pointwise Collapsing and Change of Base

We now define the mapping which plays the central role in this article.

Definition 4.1. The pointwise collapsing functions Ck : BT → OTk for k > 0,
are defined as follows.

1. Ck0 := 0.

2. Ck1 := 1.

3. Ck(
∑n
i=1 αi) :=

∑n
i=1 Ckαi.

4. CkD0α := BCkα(k).

5. CkDi+1α := DiCkα.

The following lemma addresses the relationship of Ck with tp and lv.

Lemma 4.2. Let α ∈ BT and k > 0.

1. Ckα = 0 ⇔ α = 0.

2. tp(α) = 1 ⇒ tp(Ckα) = 1.

3. lv(α) = 0 ⇒ lv(Ckα) = 0 & Ckα ∈ ω.

4. lv(α) = i+ 1 ⇒ lv(Ckα) = i.

5. tp(α) = Ωi+1 ⇒ tp(Ckα) = Ωi.

Proof. The proof is by induction on the buildup of α. Parts 1-4 are trivial. As for
part 5, we consider the most interesting case α = Di+1γ where tp(γ) = Ωi+2 and
lv(γ) = i+ 2, cf. Clause 7.’ of Remark 2.10. By Part 4 we have lv(Ckγ) = i+ 1,
and the i.h. yields tp(Ckγ) = Ωi+1. We have Ckα = DiCkγ, hence by 7.’
tp(Ckα) = Ωi.

We have the following crucial lemma regarding changes of base.

Lemma 4.3. Let α ∈ BT and k > 0. Then we have

(Ckα)[k ← k + 1] = Ck+1α.

Proof. Straightforward induction on the buildup of α.
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5. Collapsing and Fundamental Sequences

In this section we establish the key Lemma 5.2 that will allow us to apply
“Cichon’s trick”, cf.[Cic83]. For Lemma 5.2 we will need the following

Lemma 5.1. Let k > 0 and suppose λ ∈ BT satisfies tp(λ) = Ωj+1. We have

1. Ckλ is →-irreducible and neither 0 nor of a form α+ 1.
2. For any β ∈ BT such that lv(β) ≤ j and tp(β) < Ωj+1

Ck(λ[β]) = (Ckλ)[Ckβ].

Proof. We first show that
Ckβ ∈ Ωj .

In the case j > 0 parts 3 and 4 of Lemma 4.2 yield lv(Ckβ) < j, which by
Lemma 2.6 implies that Ckβ ∈ Ωj . If on the other hand j = 0, part 3 of Lemma
4.2 directly allows us to conclude that Ckβ ∈ ω. We now show the lemma by
induction on the buildup of λ ∈ BT.

Case λ = Dj+10.
Then Ckλ = Dj0 and λ[β] = β, and both claims are immediate.

Case λ = Di+1γ and tp(γ) = Ωj+1, lv(γ) ≤ i+ 2, where j ≤ i.
Notice first, that Ck(λ) is →-irreducible since Ck(γ) is →-irreducible by the
i.h. We proceed to show the second claim. We have Ckλ = DiCkγ and λ[β] =
Di+1(γ[β]). Lemma 4.2 yields tp(Ckγ) = Ωj and lv(Ckγ) ≤ i + 1. Using the
induction hypothesis we obtain

Ck(λ[β]) = DiCk(γ[β])

= Di((Ckγ)[Ckβ])

= (DiCkγ)[Ckβ]

= (Ckλ)[Ckβ].

Case λ = Dj+1γ and tp(γ) = Ωj+2, lv(γ) = Ωj+2.
Again, Ckλ is→-irreducible since Ckγ is→-irreducible. We have Ckλ = DjCkγ
and λ[β] = Dj+1(γ[Dj+1(γ[β])]). Notice that we may apply the i.h. to γ, both
with β and Dj+1(γ[β]) in the role of β in the original statement, since for the
latter we clearly have lv(Dj+1(γ[β])) = j + 1 and tp(Dj+1(γ[β])) < Ωj+2. By
Lemma 4.2, parts 4 and 5, we further have tp(Ckγ) = Ωj+1 and lv(Ckγ) = j+1,
which together with the initially shown Ckβ ∈ Ωj allows us to apply Clause 7.’
of Remark 2.10. We therefore have

(Ckλ)[Ckβ] = (DjCkγ)[Ckβ]

= Dj((Ckγ)[Dj((Ckγ)[Ckβ])]) by 7.’

= Dj((Ckγ)[Dj(Ck(γ[β]))]) by i.h.

= Dj((Ckγ)[Ck(Dj+1(γ[β]))])

= Dj(Ck(γ[Dj+1(γ[β])])) by i.h.

= Ck(λ[β]).

If λ is a sum then Ck distributes accordingly, and the claim follows.
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Lemma 5.2. For all k > 0 and all λ ∈ BT such that tp(λ) = ω we have

Ckλ→ Ck(λ[k]).

Proof. By induction on the buildup of λ ∈ BT.
Case λ = D00. Then

Ckλ = B0(k)

and

Ck(λ[k]) = Ckk = k

The definition of → yields the assertion.
Case λ = Di+1γ and tp(γ) = ω. Then

CkDi+1γ = DiCkγ

and

Ck((Di+1γ)[k]) = DiCk(γ[k])

By the induction hypothesis, Ckγ → Ck(γ[k]), and so the assertion follows.
Case λ = D0γ and tp(γ) = ω. Then

CkD0γ = BCkγ(k)

and

Ck((D0γ)[k]) = BCk(γ[k])(k)

By the induction hypothesis, Ckγ → Ck(γ[k]), and so the assertion follows.
Case λ = D0γ and tp(γ) = Ω1, lv(γ) = 1. Then by Claim 1 of Lemma 5.1

Ckγ is →-irreducible and neither 0 nor of a form β + 1. Thus

Ckλ = CkD0γ

= BCkγ(k)

→ B(Ckγ)[B(Ckγ)[k](k)](k). (1)

According to 7.’ of Remark 2.10 we have

(D0γ)[k] = D0(γ[D0(γ[k])]), (2)

and by Lemma 5.1 we have

Ck(γ[D0(γ[k])]) = (Ckγ)[CkD0(γ[k])]

= (Ckγ)[BCk(γ[k])(k)] (3)

as well as
Ck(γ[k]) = (Ckγ)[k] (4)
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since Ckk = k. We thus obtain

Ck(λ[k]) = Ck((D0γ)[k])

= Ck(D0(γ[D0(γ[k])])) by (2)

= BCk(γ[D0(γ[k])])(k)

= B(Ckγ)[BCk(γ[k])(k)](k) by (3)

= B(Ckγ)[B(Ckγ)[k](k)](k) by (4), which is (1),

hence
Ckλ→ Ck(λ[k]).

Finally, if λ is a sum then Ck and ·[·] distribute accordingly, and the claim
follows.

6. Goodstein-Sequences for IDn and Π1
1−CA0

The next definition will allow us to model subtraction by 1 in the Goodstein
process in the context of ordinal terms in BT.

Definition 6.1. For k > 0 we define Pk : BT0 → BT0 according to the following
clauses.

1. Pk0 := 0.

2. Pkα := β if α = β + 1 for some β ∈ BT, i.e. tp(α) = 1.

3. Pkα := Pk(α[k]) if tp(α) = ω.

Notice that tp(α) ≤ ω follows from lv(α) = 0 by Lemma 2.9. Note further
that if α is of the form D0(γ + 1) we have Pkα = D0γ +D0γ.

Lemma 6.2. Let α ∈ BT0 and k > 0. Then we have

CkPkα = PCkα.

Proof. We argue by induction on ||α||, identifying α with its canonical interpre-
tation in T<ω.

Case α = 0. Trivial.
Case α = β + 1. Then we have Pkα = β, hence Ckα = Ckβ + 1, and

thus PCkα = Ckβ. In particular, for α of the form D0(γ + 1) we obtain
PCkα = PBCkγ+1(k) = BCkγ(k) · 2.

Case α ∈ Lim, i.e. tp(α) = ω. We then have Pkα = Pk(α[k]). By Lemma
2.8 we have lv(α[k]) = 0, and since ||α[k]|| < ||α||, using the i.h. we obtain

CkPkα = CkPk(α[k])

= PCk(α[k])

= PCkα

by the definition of P , since Ckα→ Ck(α[k]) according to Lemma 5.2.

10



By the work of Buchholz in [B81, B87] we know that

sup
m∈N
||D0 . . . Dm0|| = |ID<ω| = |Π1

1−CA0| =: τ0

and that, setting
σn := sup

m∈N
||D0 . . . DnD

(m)
n 0||

for n ∈ N, where D
(m)
n 0 is the m-fold application of Dn to 0, we have

σ0 = |PA| = ε0

and
σn+1 = |IDn+1|.

It is well-established that defining the fast-growing hierarchy hα : N → N
for α ∈ BT0 ∪ {τ0} by

1. h0(x) := x,
2. hα+1(x) := hα(x) + 1,
3. hλ(x) := hλ[x](x) for λ ∈ Lim,

where τ0[m] := D0 . . . Dm0, the function hτ0 is not provably recursive in the the-
ory PA + TI(<τ0) and hence not provably recursive in Π1

1−CA0. Furthermore,
hσn is not provably recursive in the theory PA + TI(<σn), cf. [FS95].

Lemma 6.3. Let α ∈ BT0 be nonzero, and let k ≥ 2. Setting

s(α, k) := min{l > k | PlPl−1 . . . Pk+1α = 0}

we have
s(α, k) = hα(k + 1)− 1.

Proof. We proceed by induction on ||α||, as in [DSW12].
Case α = 1. Then we have Pk+11 = 0 and s(1, k) = k + 1 = h1(k + 1)− 1.
Case α = β + 1 for some nonzero β ∈ BT. Then Pk+1α = β, hence by i.h.

s(α, k) = s(β, k + 1) = hβ(k + 2)− 1 = hα(k + 1)− 1.

Case α ∈ Lim, i.e. tp(α) = ω. We then have

Pk+1α = Pk+1(α[k + 1]) = hα[k+1](k + 1)− 1 = hα(k + 1)− 1

by the i.h.

Definition 6.4. We define canonical Goodstein processes for the theories IDn,
where ID0 := PA, and Π1

1-CA0 which are parametrized in m ∈ N, by the
sequences (tnk (m))k∈N and (tk(m))k∈N, respectively, as follows:

tn0 (m) := C2(D0 . . . DnD
(m+1)
n+1 0),

tnk+1(m) := P (tnk (m)[k + 2← k + 3]) and

t0(m) := C2(D0 . . . Dm0),

tk+1(m) := P (tk(m)[2 + k ← 2 + k + 1]) .
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Remark 6.5. By an application of Lemma 4.3 we obtain

t0(m)[2← 3] = C3(D0 . . . Dm0),

and Lemma 6.2 shows that t1(m) = C3P3(D0 . . . Dm0). Applying Lemma 4.3
again we obtain

t1(m)[3← 4] = C4P3(D0 . . . Dm0),

whence by Lemma 6.2 t2(m) = C4P4P3(D0 . . . Dm0), etc. In general we there-
fore have

tk(m) = Ck+2Pk+2 . . . P3(D0 . . . Dm0). (5)

If we define BT-terms αm := D0 . . . Dm0, whose interpretations are the ordinals
τ0[m], Equation (5) yields, according to part 1 of Lemma 4.2, that the existence
of (the minimal) k such that tk(m) = 0 is equivalent to the existence of s(αm, 2),
which then is equal to k + 2.

Similarly, we obtain

tnk (m) = Ck+2Pk+2 . . . P3(D0 . . . DnD
(m+1)
n+1 0). (6)

Theorem 6.6 (Unprovability Results).

1. The number-theoretic assertion

∀m∃k(tnk (m) = 0)

is unprovable in PA + TI(<σn), hence unprovable in IDn.

2. The number-theoretic assertion

∀m∃k(tk(m) = 0)

is unprovable in PA + TI(<τ0), hence unprovable in ID<ω and Π1
1−CA0.

Proof. We argue as in [DSW12], starting from Definition 6.4 and using Remark
6.5, Equations 6 and 5, in order to see that the assertions are equivalent to the
statement

∀α∀x∃y((α < ρ & x > 0)→ (y > x & PyPy−1 . . . Px+1α = 0)), (7)

where ρ = σn for Claim 1 and ρ = τ0 for Claim 2. We use Lemma 6.3 in order
to see that the provability of (7) would imply the provable totality and hence
recursiveness of hρ in PA + TI(<ρ), contradicting the results in [FS95].

7. Final Remarks

1. It seems to be straightforward to extend the results of this paper to ordinal
segments given by the proof-theoretic ordinals of the theories IDν for, say,
ν ≤ Γ0 or more general for those ν for which the nature of the slow growing
hierarchy has been classified in terms of the Hardy hierarchy.
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2. A natural problem for future research would be to classify the phase tran-
sition threshold for the Goodstein principles considered in this paper or
from [DSW12]. To this end one replaces the transition t[k ← k + 1] by
t[f(k) ← f(k + 1)] for some definable sublinear unbounded function f
(cf., e.g., [MW08]) and one is interested in classifying those functions f
for which the underlying Goodstein principle remains unprovable in the
theory in question. Corresponding results for Buchholz-style Hydra games
have already been obtained by Frederik Meskens in [M09]. We conjecture
that similar thresholds will also apply in the context of strong Goodstein
principles and that these results will provide intrinsic information on the
first subrecursively inaccessible ordinal, i.e. the first ordinal where the
slow and fast growing hierarchies match up.

3. A technical stumbling block for extending Goodstein principles to larger
ordinals comes from the largely unknown behaviour of the slow growing
hierarchy for indices above ψ0Ωω (assuming Buchholz style notations).
We expect that progress will be possible in case that one would be able to
show that ψ0ΩΩω is the second subrecursively inaccessible ordinal, i.e. the
second ordinal where the slow and fast growing hierarchy match up (un-
der the standard Buchhholz-style assignment of fundamental sequences).
But this problem seems to be rather difficult to us although some initial
progress is reported in [Ar91] and [Wei95].
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