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Abstract
Minimal complex windmill transformations of G2IB(ii) spacetimes (admitting
a two-dimensional Abelian group of motions of the so-called Wainwright
B(ii) class) are defined and the compatibility with a purely magnetic Weyl
tensor is investigated. It is shown that the transformed spacetimes cannot be
perfect fluids or purely magnetic Einstein spaces. We then determine which
purely magnetic perfect fluids (PMpfs) can be windmill-transformed into
purely magnetic anisotropic fluids (PMafs). Assuming separation of variables,
complete integration produces two, algebraically general, G2I -B(ii) PMpfs: a
solution with zero 4-acceleration vector and spatial energy–density gradient,
previously found by the authors, and a new solution in terms of Kummer’s
functions, where these vectors are aligned and non-zero. The associated
windmill PMafs are rotating but non-expanding. Finally, an attempt to relate
the spacetimes to each other by a simple procedure leads to a G2I -B(ii) one-
parameter PMaf generalization of the previously found metric.

PACS numbers: 04.20.−q, 02.40.Tt, 04.20.Jb

1. Introduction

Complex transformations have long been used to either relate two known (real) spacetimes
or generate a new (real) spacetime from a known one, see [1] for various discussions, and
have been successfully applied to higher-dimensional spacetimes [2]. Formally, there has been
extensive investigations [3–9] of complex relativity with the aim of obtaining real spacetimes
as real slices of complex spacetimes (also see parts of [10] for a brief but concise review).
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In addition, the complex point of view furnishes a way of classifying real spacetimes and is
therefore of considerable interest.

A fact exploited in this study is that properties of the kinematic quantities, in general,
are not preserved under the action of complex transformations. This extends to the form
of the Ricci tensor and Petrov type of the Weyl tensor. However, there are cases in which
either the form of the Ricci tensor or Petrov type (or both) are preserved. An example of a
kinematic non-preserving but Ricci and Weyl (Petrov type) preserving complex transformation
is the original Newman–Janis transformation4 of Schwarzschild to Kerr [11] (for more details
see [12–14], also [15] for extension to Kerr–Newman and [16–21] for other applications).
It is interesting to note that while the Petrov type is preserved in this case, the nature of
the gravito-electromagnetic tensors are mapped from purely electric (Schwarzschild) to the
general case (Kerr)—neither purely electric nor purely magnetic. The same holds for the
complex transformation of Kasner to vacuum windmill5 (i.e the Lewis spacetime [23] or, in
the notation of McIntosh, vacuum ‘windmill’ spacetime) [22]. However, preserving the nature
of the gravito-electromagnetic tensors, in addition to the form of the Ricci, is also possible,
as demonstrated by the well-known relationship between the Weyl-W2 [1, 24] and Kasner
[25, 26] spacetimes. Note that preserving the nature of the gravito-electromagnetic tensors,
even in the purely electric or purely magnetic case, is not sufficient to preserve the Petrov type.

Preserving the purely electric or purely magnetic condition under the action of complex
transformations is an intriguing possibility. Especially from the perspective of generating new
solutions. This is of particular interest in the purely magnetic case as there are relatively few
known examples compared to the purely electric case. Moreover, there appears to be a lack
of specific generating procedures, apart from simply conformally relating a purely magnetic
spacetime. These key ideas and requirements form the main motivation of this investigation.

More specifically, the suggestion by McIntosh [22] to further investigate complex
transformations of Wainwright [27] class B(ii) (orthogonally transitive G2I acting on a S2

with two hypersurface orthogonal Killing vectors (HOKV)) spacetimes,

g = exp(2b) dx2 + exp(h)[exp(2k) dy2 + exp(−2k) dz2] − exp(2a) dw2, (1)

is considered in the non-vacuum case under a specific set of assumptions. Note that separable
perfect fluid spacetimes of this class have attracted considerable attention and the general
solution is known; stiff-matter [28], linear equation of state and conformally-flat spatial 3-
slices (for the latter, see Wainwright [29]) [30], general case [31] and for non-comoving,
general properties and solutions, see [32, 33].

For future reference, these transformations are referred to as complex windmill
transformations or minimal complex windmill transformations if the related spacetimes share
all metric coefficients (see sub-section 2.1). Under the action of this transformation it will be
assumed that the purely magnetic condition is preserved while the energy–momentum tensor
is transformed from a perfect to anisotropic fluid. Moreover, this class of PMpf spacetimes
considered here is general enough to possibly include members where the spatial gradient
of the energy–density function and 4-acceleration vector are both non-zero. Kinematically,
one of the appealing consequences of complex windmill transformations is that, in general,
irrotational spacetimes map to rotating spacetimes. This is of importance as there are very few
known examples of rotating purely magnetic spacetimes.

4 Commonly referred to as the Newman–Janis algorithm (NJA).
5 The term, vacuum ‘windmill’ spacetime, was coined by McIntosh [22] to describe the transitional nature of the
light-cone as measured by an observer moving along a spatial axis. We shall adopt the word ‘windmill’ to distinguish
our definition of the complex transformation under consideration.
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One of the main theorems of the Wylleman-Van den Bergh [34] classification of
irrotational and non-accelerating, type I, PMpf spacetimes dictates that if any two of the
following conditions hold (which imply the third):

(1) the fluid 4-velocity is irrotational;
(2) the fluid 4-velocity is non-accelerating (i.e. the spatial gradient of the pressure function

vanishes);
(3) the spatial gradient of the energy–density function vanishes;

then (up to a constant re-scaling of the metric) there exists a unique PMpf spacetime6. More
broadly, the classification includes the possible entry of irrotational PMpf spacetimes where
the spatial gradient of the energy–density function and 4-acceleration vector are both non-zero.
This possibility was indicated with a question mark as it was unknown if this class is empty
or non-empty (see figure 1 of [34]). It is shown here that this class is non-empty by producing
an explicit example.

In section 2, a general complex windmill transformation of G2I -B(ii) spacetimes is defined
and the form of the resulting windmill spacetime is presented. The concept of a minimal
complex windmill transformation is defined and the assumptions on the energy–momentum
and Weyl tensors are stated. The general forms of the energy–momentum tensors are defined
and the kinematic properties are calculated for each spacetime. In section 3, it is shown that
windmill perfect fluids or purely magnetic Einstein spaces do not exist, while in section 4
G2I -B(ii) PMpf spacetimes are considered. It is shown that there are two PMpf spacetimes
that have related windmill PMaf spacetimes. One of these is the PMpf solution independently
found by the present authors [34] (henceforth, referred to as the WVL spacetime), and the
other is given by a general solution to the confluent hypergeometric equation by Kummer’s
functions. The spatial gradient of the energy–density function and the 4-acceleration vector
are both 0 for the former spacetime while non-zero for the latter. In section 5, an attempt to
relate these spacetimes to each other by interchanging coordinates of the metric coefficients
and introducing an appropriate conformal factor leads to a one parameter PMaf generalization
of the WVL PMpf spacetime.

2. Complex windmill transformation

The concept of a complex ‘windmill’ transformation is a straightforward generalization of
the type of transformation McIntosh [22] used to obtain a vacuum ‘windmill’ spacetime. In
this section a concise definition of a complex windmill transformation is given, as are the
assumptions made on the properties of the related spaetimes and the kinematic properties of
these spacetimes.

2.1. G2I -B(ii) and related windmill spacetime

A general complex windmill transformation of (1), C(g) = ĝ, is defined by

C : {a, b, h, k; y, z} �→
{
â, b̂, ĥ, ik̂; 1√

2
(u + iv), 1√

2
(u − iv)

}
(2)

and leads to a windmill spacetime of the MacCallum–McIntosh form [36]:

ĝ = ε1 exp(2â) dw2 + ε2 exp(2b̂) dx2 + ε3 exp(ĥ)[cos(2k̂)(du2 − dv2) − 2 sin(2k̂) du dv] (3)

6 It should be emphasized that this is a uniqueness theorem. Therefore, investigations assuming any of the two
conditions above will lead to the WVL spacetime. This is the case for the purely magnetic non-tilted Bianchi-type
VI0 cosmological models considered in [35]. This will be commented on further elsewhere.
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where {â, b̂, ĥ, k̂} are the real functions of w and x only, and the signature is preserved by the
set of constants ε1, ε2, ε3 ∈ {−1, +1}, see appendix A. It is interesting to note that MacCallum
[36] has shown that orthogonally transitive G2I spacetimes (in the form (4) of [36]) admit a
HOKV (neither ξa = (0, 0, 1, 0) nor ηa = (0, 0, 0, 1) but a linear combination of these) iff
certain metric coefficients satisfy a linear relation. It follows that if there is one HOKV then
there must be a second orthogonal to the first [37] and if they constitute a pair of complex
conjugate HOKVs then the spacetime is of the form (3).

Note that if a complex windmill transformation leads to a complex spacetime, i.e. the
requirement k �→ ik̂ ⇒ {â, b̂, ĥ, k̂} ∈ C (in general), then such spacetimes are not considered
further. On the other hand, if the entire transformation itself turns out to be real then this
is considered trivial. A trivial complex windmill transformation will be defined below, in
subsection 2.3, in terms of kinematic quantities.

For simplicity a special case of (2) will be considered in this study. It is assumed that
spacetime (3) inherits the metric coefficients of (1) in the following sense.

Definition 2.1. A minimal complex windmill transformation of (1) is defined by

C◦ : {a, b, h, k; y, z} �→
{
a, b, h, ik; 1√

2
(u + iv), 1√

2
(u − iv)

}
. (4)

2.2. Energy–momentum and weyl tensors

In this study the following assumptions are made.

Assumptions 2.1.

(1) The energy–momentum tensor of any one of the spacetimes (1) or (3) is in the form of a
perfect fluid while the other an anisotropic fluid (which may degenerate to a perfect fluid).

(2) The minimal complex windmill transformation preserves the purely magnetic property.
(3) The G2I -B(ii) and windmill spacetimes are assumed not to be both conformally flat.

Specifically, for (1),{∃ua : uau
a = −1, Eac = 0, ein(af)

ac ≡ Rac − 1
2Rgac − T (af)

ac = 0
}

(5)

where, see for example Maartens et al [38],

T (af)
ac = (ρ + p⊥)uauc + p⊥gac + (p|| − p⊥)sasc, (6)

and the fluid 4-velocity, ua, satisfies uas
a = 0 and sas

a = 1. Further, ρ is the energy–density
function while p⊥ and p || denote the pressure functions perpendicular and parallel to sa,
respectively. On the other hand, for (3), which is related to (1) by (4),{

∃ûa : ûaû
a = −1, Êac = 0, ein(âf)

ac ≡ R̂ac − 1
2 R̂ĝac − T̂ (af)

ac = 0
}

(7)

where

T̂ (af)
ac = (ρ̂ + p̂⊥)ûaûc + p̂⊥ĝac + (p̂|| − p̂⊥)ŝa ŝc, (8)

and the fluid 4-velocity satisfies ûa ŝ
a = 0 and ŝa ŝ

a = 1. Further, ρ̂ is the energy–density
function while p̂⊥ and p̂ || denote the pressure functions perpendicular and parallel to sa,
respectively. Note that for these energy–momentum tensors a perfect fluid is achieved if
p || = p⊥ = p or p̂ || = p̂⊥ = p̂ (or both).
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2.3. General Kinematic Properties

The kinematic properties of {M,g, ua} change in an interesting manner under the action of the
minimal complex windmill transformation. Notably, the vorticity tensor is zero for {M,g, ua}
while it is non-zero for {M̂, ĝ, ûa}. That is, there is a possibility of obtaining rotating purely
magnetic spacetimes from irrotational purely magnetic spacetimes.

Remark 2.1. The timelike 4-velocities of {M,g, ua} and {M̂, ĝ, ûa} are

ua = (0, 0, 0, exp(−a)) (9)

and

ûa = exp(−h/2) (0, 0, sin(k), cos(k)) , (10)

respectively.

Note that for Wainwright class B(ii) spacetimes local coordinates have been introduced
such that the two Killing vectors are ξa = (0, 1, 0, 0) and ηa = (0, 0, 1, 0). Consequently the
timelike 4-vector ua is orthogonal to these Killing vectors and invariant under the action of the
symmetry group. In general, it is always possible to transform to co-moving coordinates whilst
preserving the diagonal form of the metric. However, for the G2I -B(ii) case two distinct forms
of the 4-vector are possible: the canonical (co-moving) form (9) or the general (tilted) form.
Since the general form is considerably more complicated the canonical form is assumed. For
the windmill case this is not an issue since the only possibility is (10), see appendix A.

For {M,g, ua} the (vorticity tensor is zero, i.e. ωac = 0, and the) non-zero components
of the shear tensor are

σxx = 1
3 exp(−a + 2b)∂w(2b − h) (11)

σyy = 1
6 exp(−a + h + 2k)∂w(−2b + h + 6k) (12)

σzz = 1
6 exp(−a + h − 2k)∂w(−2b + h − 6k). (13)

The non-zero component of the 4-acceleration vector (u̇a = uc∇cu
a) is

u̇x = exp(−2b)∂xa, (14)

and the expansion scalar is

	 = exp(−a)∂w(b + h). (15)

On the other hand, for {M̂, ĝ, ûa} the expansion scalar is 0, i.e. 	̂ = 0, while the non-zero
components of the shear and vorticity tensors are

σ̂wu = 1
2 cos(k̂) exp(ĥ/2)∂wk̂ = ω̂wu (16)

σ̂wv = − 1
2 sin(k̂) exp(ĥ/2)∂wk̂ = ω̂wv (17)

σ̂xu = 1
2 cos(k̂) exp(ĥ/2)∂x k̂ = ω̂xu (18)

σ̂xv = − 1
2 sin(k̂) exp(ĥ/2)∂x k̂ = ω̂xv (19)

where the vorticity scalar is
√

2ω̂ =
√

exp(−2â(w, x))(∂wk̂)2 + exp(−2b̂(w, x))(∂x k̂)2. (20)

5
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Finally, the non-zero components of 4-acceleration are

ˆ̇u
w = 1

2 exp(−2â)∂wĥ (21)

ˆ̇u
x = 1

2 exp(−2b̂)∂xĥ. (22)

It follows that under the action of a complex windmill transformation

{ω = 0,	 �= 0} �→ {ω̂ �= 0, 	̂ = 0} (23)

while all other kinematic quantities are non-zero (in general).

Definition 2.2. A complex windmill transformation, (2), of (1) is trivial if the vorticity tensor
for {M̂, ĝ, ûa} is 0.

3. Non-existence results for windmill spacetimes

In this section we show that purely magnetic windmill Einstein spaces and windmill perfect
fluids in fact do not exist.

Proposition 3.1. The class of all windmill perfect fluid (ρ̂ + p̂ �= 0) spacetimes (3), with no
restriction on the electric/magnetic properties of the Weyl tensor, is empty.

Proof. For the windmill spacetimes (3), assuming no restriction on the electric/magnetic
properties of the Weyl tensor, suppose the energy–momentum tensor takes the form of a
perfect fluid (i.e (8) with p̂ || = p̂⊥ = p̂ �= −ρ̂) where the fluid 4-velocity is assumed to be
given by (B.1). Combining

ein(p̂f)
uu : exp(h) cos(k)2p̂ + exp(h) sin(k)2ρ̂ + 1

4 (cos(2k)δ1 − 4 sin(2k)δ2) exp(2a + 2b) = 0

ein(p̂f)
vv : exp(h) sin(k)2p̂ + exp(h) cos(k)2ρ̂ − 1

4 (cos(2k)δ1 − 4 sin(2k)δ2) exp(2a + 2b)= 0,

where δ1 = [−4∂xxa − 2∂xxh + 4∂xa∂xb − 2∂xa∂xh + 2∂xb∂xh − 4(∂xa)2 − (∂xh)2 +
4(∂xk)2] exp(2a)+ [−4∂wwb−2∂wwh+ 4∂wa∂wb−2∂wb∂xh+ 2∂wa∂wh−4(∂wb)2 − (∂wh)2 +
4(∂wk)2] exp(2b) and δ2 = [∂xxk + ∂xa∂xk − ∂xb∂xk + ∂xh∂xk] exp(2a) + [∂wwk + ∂wb∂wk −
∂wa∂wk + ∂wh∂wk] exp(2b), leads to

exp(h)(ρ̂ + p̂) = 0 ⇒ ρ̂ + p̂ = 0,

which is a contradiction. Note that the case ρ̂ + p̂ = 0 is of no interest here as the associated
class of purely magnetic spacetimes is empty, as shown below. �

It should be stated that, as discussed by MacCallum [36], orthogonally transitive G2I

spacetimes (in the form (4) of [36]) do not in general restrict the form of the energy–momentum
tensor in this way and admit (3) as a particular form under given assumptions (see section 2.1).

Proposition 3.2. The class of all (non-conformally flat) Einstein spaces of {M̂, ĝ, ûa} is empty.

Proof. For {M̂, ĝ, ûa}, suppose the Ricci tensor is of the form

R̂ac = �̂ĝac (24)

where �̂ is a constant. Also, for {M̂, ĝ, ûa} without imposing Êac = 0 at this stage:

Î = −2 exp (−4a − 2b)[(Ĥwx)
2 exp(2a) + (Ĥww)2 exp(2b) − 3(Êww)2 exp(2b)]

Ĵ = −6Êww exp(−6a − 2b)[(Ĥwx)
2 exp(2a) + (Ĥww)2 exp(2b) + (Êww)2 exp(2b)]

(25)

where

Ĥww(= −Ĥxx exp(2a − 2b)) = − 1
2 (−2∂wxk + 2∂wb∂xk − ∂wk∂xh − ∂wh∂xk

+ 2∂xa∂wk) exp(a − b) (26)
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Ĥwx = 1
2 (∂wwk − ∂wb∂wk + ∂wh∂wk − ∂wa∂wk) exp(−a + b)

− 1
2 (∂xxk − ∂xa∂xk + ∂xh∂xk − ∂xb∂xk). (27)

Note that for {M,g, ua}, the non-zero component of Hac is

Hyz = exp(−2a + h)Ĥww. (28)

Now, (recall Êac = 0) by Êww = 0 (or equivalently by any other constraint; Êxx = 0 or
Êuu = 0 or Êuv = 0 or Êvv = 0),

∂wwh − ∂wa∂wh + ∂wb∂wh + 2∂wa∂wb − 2∂wwb − 4(∂wk)2 − 2(∂wb)2

+ [∂xxh − ∂xb∂xh + ∂xa∂xh + 2∂xb∂xa − 2∂xxa − 4(∂xk)2 − 2(∂xa)2]

× exp(2a − 2b) = 0. (29)

Note that this expression will also be required in the next section.
It follows that, with constraint (29) identically satisfied, the Weyl invariant [22] Ĵ = 0

(and Î ∈ R) and therefore the spacetime is of Petrov-type I (M∞). A theorem due to Brans
[39] (also see Szekeres [40]), which can be trivially extended to Einstein spaces (see Barnes
[41]), then implies that this spacetime is conformally-flat, a contradiction to assumption 2.1.3.
Note that the core of this proof is (25), which more generally shows that any purely magnetic
windmill spacetime is of type I (M∞) in the extended Weyl–Petrov type classification by
Arianrhod and McIntosh [42]. �

4. G2I-B(ii) PMpf ↔ windmill PMaf

In this section, as a result of the analysis of the previous section, a minimal complex windmill
transformation of G2I -B(ii) PMpf spacetimes is considered.

4.1. G2I -B(ii) PMpf

For {M,g, ua} the constraints Exx = 0 and Eyy = 0 (which together satisfy Ezz = 0) are

[−∂wb∂wh + 2∂wb2 − 2∂wb∂wa − 4(∂wk)2 − ∂wwh + 2∂wwb + ∂wa∂wh] exp(−2a + 2b)

+ ∂xxh − ∂xb∂xh + 4(∂xk)2 + 2∂xb∂xa − 2(∂xa)2 − 2∂xxa + ∂xa∂xh = 0 (30)

and[−∂wb∂wk − 1
3 (∂wb)2 − 1

3∂wwb + 1
3∂wb∂wa + 2

3 (∂wk)2 + 1
6∂wwh

+ ∂wwk − ∂wa∂wk + 1
6∂wb∂wh − 1

6∂wa∂wh + ∂wh∂wk
]

exp(−2a + 2b)

+ ∂xxk + 1
3 (∂xa)2 + 1

6∂xb∂xh − 1
6∂xxh − 2

3 (∂xk)2 − ∂xb∂xk

− ∂xa∂xk + 1
3∂xxa + ∂xh∂xk − 1

3∂xb∂xa − 1
6∂xa∂xh = 0, (31)

respectively.
Furthermore, a perfect fluid is established if the following field equations are satisfied:(

ein(pf)
yy

)
∂xxh + 2∂xb∂xk − ∂xa∂xh − 2∂xb∂xa + 2(∂xa)2 + 4(∂xk)2 − ∂xb∂xh

− 2∂xxk − 2∂xa∂xk + 2∂xxa − 2∂xh∂xk

+ [2∂wh∂wk + 2∂wb∂wk − ∂wa∂wh + 2∂wb∂wa − 2(∂wb)2 − 2∂wwb

− ∂wb∂wh + ∂wwh + 2∂wwk − 2∂wa∂wk + (∂wh)2] exp(−2a + 2b) = 0, (32)(
ein(pf)

zz

)
∂wwh − 2∂wh∂wk − 2(∂wb)2 − 2∂wwb − ∂wb∂wh − ∂wa∂wh

+ 2∂wb∂wa + 2∂wa∂wk + (∂wh)2 − 2∂wwk − 2∂wb∂wk

+ [−2∂xb∂xk + 2∂xa∂xk + 4(∂xk)2 − ∂xb∂xh − ∂xa∂xh + 2∂xh∂xk

+ 2(∂xa)2 + 2∂xxa + 2∂xxk − 2∂xb∂xa + ∂xxh] exp(2a − 2b) = 0 (33)

7
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and (
ein(pf)

wx

)
∂wxh − ∂wb∂xh + 1

2∂xh∂wh + 2∂xk∂wk − ∂xa∂wh = 0. (34)

In addition, the energy–density and pressure functions are

ρ = [
∂xb∂xh − ∂xxh − 3

4 (∂xh)2 − (∂xk)2
]

exp(−2b)

+
[

1
4 (∂wh)2 + ∂wb∂wh − (∂wk)2

]
exp(−2a) (35)

p = [
∂xa∂xh + 1

4 (∂xh)2 − (∂xk)2
]

exp(−2b)

+
[− 3

4 (∂wh)2 + ∂wa∂wh − ∂wwh − (∂wk)2
]

exp(−2a) (36)

subject to the conservation equations. Finally, recall that the only non-zero component of Hac

is (28).
If either the acceleration vector or the spatial derivative of the energy–density function

is 0 then the WVL spacetime is recovered. Recall, the fluid 4-velocity (9) is irrotational
(see section 2.3), the non-zero component of the 4-acceleration vector is (14) and the spatial
derivative (DaAb1...bn

≡ h c
a h

d1
b1

. . . h
dn

bn
∇cAd1...dn

where hab = gab + uaub, see Maartens [43])
of the energy–density function is

Dxρ = 6Hyz exp(−h)∂wk. (37)

Note that it is not known if the class of irrotational, Petrov-type I, PMpf spacetimes where
Daρ �= 0 and u̇a �= 0 is empty or non-empty.

Partial decoupling of equations. Before proceeding it is beneficial to manipulate (29), (30),
(31), (32) and (33) in the following way: combining (30), (31) and (32) produces:

∂wwk = ∂wa∂wk + exp(2a − 2b)∂xa∂xk − ∂wh∂wk (38)

and then, in turn, (38) leads to

∂xxk = ∂xb∂xk + exp(2b − 2a)∂wb∂wk − ∂xh∂xk (39)

∂xxh = ∂xb∂xh − 4(∂xk)2 +
[
2(∂wk)2 + ∂wb∂wh − 1

2 (∂wh)2] exp(−2a + 2b). (40)

Now, combining (29) and (33) given (38)–(40), leads to

∂wwh = 2(∂wb)2 + 2∂wwb + ∂wa∂wh − 2∂wb∂wa + 4 exp(−2b + 2a)(∂xk)2 − ∂wb∂wh (41)

∂xxa = ∂xb∂xa − 2(∂xk)2 − (∂xa)2 + 1
2∂xa∂xh

+
[−(∂wk)2 − 1

4 (∂wh)2 + 1
2∂wb∂wh

]
exp(−2a + 2b). (42)

4.2. Windmill PMaf

Recall, for {M̂, ĝ, ûa}, Êac = 0 is satisfied by (29) and the non-zero components of Ĥac are
given by (26) and (27).

Now, consider the form of the energy–momentum tensor. For a general unit spacelike
4-vector

ŝa = 1√
S

(ŝw, ŝx, ŝu,− tan(k)ŝu), (43)

(
ein(âf)

wu or ein(âf)
wv

)
ŝw ŝu(p̂⊥ − p̂||) = 0, (44)
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ein(âf)

xu or ein(âf)
xv

)
ŝx ŝu(p̂⊥ − p̂||) = 0 (45)

and therefore (by proposition 3.1 p̂⊥ �= p̂ ||)

ŝa =

⎧⎪⎪⎨
⎪⎪⎩

1√
S

(ŝw, ŝx, 0, 0) If ŝu = 0

ŝu

√
S

(0, 0, 1,− tan(k)) If ŝw = 0 = ŝx,

where S is the normalization for ŝa .

4.2.1. ŝu = 0. In this case, an anisotropic fluid is established if(
ein(âf)

wx

)
16∂xk∂wk +

[α − β]ŝx ŝw

[exp(b)ŝx − ŝw exp(a)][exp(b)ŝx + ŝw exp(a)]
= 0 (46)

(
ein(âf)

uv

)
8[exp(2a)∂xa∂xk + exp(2b)∂wb∂wk]

− [(ŝx)2α exp(2b) − (ŝw)2β exp(2a)] sin(k)

[(ŝw)2 exp(2a) − exp(2b)(ŝx)2] cos(k)
= 0 (47)

(
ein(âf)

uu

)
8[exp(2a)∂xa∂xk + exp(2b)∂wb∂wk]

+
[(ŝx)2α exp(2b) − (ŝw)2β exp(2a)] cos(2k)

[(ŝw)2 exp(2a) − exp(2b)(ŝx)2] sin(2k)
= 0 (48)

where (ŝw)2 exp(2a) − exp(2b)(ŝx)2 �= 0 and

α = 2[−4(∂xk)2 − 2∂xa∂xh + (∂xh)2] exp(2a)

+ 4[−2∂wwb + 2∂wa∂wb + ∂wb∂wh − 2(∂wb)2 + 4(∂wk)2] exp(2b) (49)

β = 4 exp(2b)∂wh∂w(−2b + h) + 32 exp(2a)(∂xk)2. (50)

However, combining (47) and (48) yields

exp(2a)∂xa∂xk + exp(2b)∂wb∂wk = 0 (51)

and

(ŝx)2α exp(2b) − (ŝw)2β exp(2a) = 0. (52)

That is, (51) and (52) can now replace (47) and (48) entirely.

Lemma 4.1. For all Windmill PMaf spacetimes assuming the special cases ŝw = 0 or ŝx = 0
leads to separable solutions.

Proof. Suppose that either ŝx = 0 or ŝw = 0 then, by (46),

∂wk∂xk = 0. (53)

The case ∂wk = 0 ⇒ Dxρ = 0 and leads to the WVL PMpf that will be considered in the
next section. Here, it is assumed that (53) is satisfied by ∂xk = 0( �= ∂wk). Note, for the same
reason, it is also assumed that ∂xa �= 0 (see (14)). In turn, by (51), ∂wk∂wb = 0 ⇒ ∂wb = 0.
These conditions reduce (34), (38) and (41) to the form

∂x(∂wh) = ∂x

(
a − 1

2h
)
∂wh, (54)

∂w(∂wk) = ∂w(a − h)∂wk, (55)

9
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and

∂w(∂wh) = ∂wa∂wh, (56)

respectively.
The general solution of (54)–(56) could be obtained in a straightforward manner.

Substituting the first derivative with respect to w of the general solution of (56),

∂wh = ν1 exp(a), [ν1 = ν1(x)] (57)

into (54) reduces this equation to the form ∂x(h + 2ν1) = 0 ⇒ h = −2ν1 + μ1 [μ1 = μ1(w)].
Then comparing this result with (57) leads to

a = −ν1 + ln ∂wμ1 (58)

where ∂wμ1 �= 0. By a suitable coordinate transformation of the G2I metric, such that w ≡ μ1,
these functions can be simplified to the form

a = −ν1 (59)

h = −2ν1 + w. (60)

Now, since a − h = ν1 − w 7, (55) reduces to

dw(dwk) = −dwk, (61)

with general solution

k = − exp(c1 − w) (62)

(recall ∂xk = 0). Note that an integration constant was absorbed by suitable coordinate
transformation. However, combining (40) and (42), given (59), (60) and (62), leads to

0 = −dxb dxν1 + 2(dxν1)
2 + 4 exp{2(c1 − w)} exp{2(b + ν1)} (63)

which cannot be satisfied for any b (recall ∂wb = 0) and ν1.
On the other hand, suppose (54) and (56) are satisfied by ∂wh = 0 ⇒ h = ν3 then (55)

reduces to

dw(dwk) = dwa dwk, (64)

with general solution exp(a) = exp(ν4)dwk. However, by a suitable coordinate transformation,
a = ν4 and, as a result, k = w. The next step is to choose coordinates such that a = b = ν4

then (40) and (42) reduce to a pair of coupled ODEs

dxxν3 = dxν4dxν3 + 2 (65)

dxxν4 = 1
2dxν4dxν3 − 1. (66)

Note that, by (49), (50) and (52), β = 0 and therefore ŝx = 0 and α �= 0 otherwise both the
G2I -B(ii) (1) and windmill (3) spacetimes are conformally flat, a contradiction.

Solutions of (65) and (66) determine the spacetime by effectively defining the conformal
factor, exp(2�) = exp(2

∫
ϒdx) where ϒ ≡ dxν4. That is, combining (65) and (66) produces

dxν3 − 2ϒ = 4x + c2, (67)

dxϒ − ϒ2 − (2x + c3)ϒ = −1 (68)

where c3 = c2/2. The Riccati equation (68) can be transformed, by

� = exp

(
−

∫
ϒ dx

)
, (69)

7 Note that by ∂xk = 0 it immediately follows from (55) that a−h is a separable function of the coordinates w and x.
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to a second-order linear ODE:

dxx� − (2x + c3)dx� − � = 0. (70)

The general solution of (70) is expressed in terms of the confluent hypergeometric (Kummer’s)
functions M(≡ 1F1) = M(n1, n2 ; x) and U = U(n1, n2 ; x):

� = c5M
(

1
4 , 1

2 , (x + c3/2)2
)

+ c6U
(

1
4 , 1

2 , (x + c3/2)2
)
. (71)

It follows from (69) that

ϒ = −dx ln(�). (72)

Therefore, from the analysis above the solution set for the spacetime is given by

{a, b, h, k} = {− ln(�),− ln(�),−2 ln(�) + 2x2 + 2c3x,w} (73)

and the energy–density functions and pressure functions are

ρ = −3
(
4x2 + 4c3x + c2

3 + 1
)
�2 − 3(dx�)2 + 6(2x + c3)�dx� (74)

p = (2x + c3 + 1)(2x + c3 − 1)�2 + 3(dx�)2 − 4(2x + c3)�dx� (75)

ρ̂ = −p̂⊥ = −p (76)

p̂|| = −ρ. (77)

Note that ŝa = (�, 0, 0, 0) and by (74)–(77)

T̂ (af)
ac = −pĝac − (ρ + p)ŝa ŝc (78)

and the vorticity scalar ω̂ = �/
√

2 �= 0. �

Proposition 4.1. For all Windmill PMaf spacetimes the assumption of separation of variables
leads to the special cases ŝw = 0 or ŝx = 0.

Proof. As seen above, the special case ŝx = 0 or ŝw = 0 led naturally to solutions separable
in the variables {a, b, h, k}. Note that the WVL PMpf is separable in co-moving coordinates.
Here, separation of these variables is considered from the outset and it is assumed that
∂wk∂xk �= 0.

Let

a = a0(w) + a1(x)

b = b0(w) + b1(x)
(79)

h = h0(w) + h1(x)

k = k0(w) + k1(x)

and then choose coordinates such that a = b or f0 ≡ a0 = b0 and f1 ≡ a1 = b1. This reduces
(41), and a combination of (40) and (42), to the form

dww(2f0 − h0) + 4(dxk1)
2 = 0 (80)

dxx(2f1 − h1) + 4(dwk0)
2 = 0, (81)

respectively. These equations imply

k0 = c10w (82)

k1 = c11x (83)
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2f0 − h0 = −4c2
10w

2 + c12w (84)

2f1 − h1 = −4c2
11x

2 + c13x (85)

where all integration constants have been absorbed by suitable coordinate transformations.
Finally, consider (51) subject to (79):

(dwf0)(dwk0) + (dxf1)(dxk1) = 0. (86)

Substituting (82)–(85) into (86) leads to

h0 = 8c2
10w

2 + c14w (87)

h1 = 8c2
11x

2 + c15x (88)

where c11(c12 + c14) + c10(c13 + c15) = 0. However, by (39) (or similarly (38)) subject to
(82)–(85) and (87)–(88):

− 8c10c
2
11x + 1

2 [c10(c13 + c15) + c11(c12 + c14) − 2c10c15] = 0 (89)

which implies c10c11 = 0 ⇒ ∂wk∂xk = 0 and therefore assuming separation of variables
yields the solutions found above. �

4.2.2. ŝw = 0 = ŝx (and ŝu �= 0). In this case, an anisotropic fluid is established if(
ein(âf)

wx

)
∂xk∂wk = 0, (90)

(
ein(âf)

uv

)
exp(2a)∂xa∂xk + exp(2b)∂wb∂wk = 0, (91)

(
ein(âf)

xx

)
2∂xxh + (∂xh)2 − 4(∂xk)2 − 2∂xb∂xh − 2∂xa∂xh

− [
2∂wwh + (∂wh)2 − 4(∂wk)2 − 2∂wa∂wh − 2∂wb∂wh

]
exp(−2a + 2b) = 0.

(92)

Recall, from above, the case ∂wk = 0 or ∂xa = 0 could lead to the WVL PMpf (see
section 5). Therefore, it is assumed that (90) and, in turn, (91) are satisfied by ∂xk = 0 = ∂wb

(with ∂wk �= 0 �= ∂xa). It follows that (55)–(57) also holds in this case, and by the same
argument as for the case ŝu = 0 it follows that ∂wh = 0. However, by comparing (40) with
(92) and taking x-derivatives, one can easily show that this case is inconsistent. Hence, there
are no solutions with ŝw = ŝx = 0.

5. PMaf generalizations of the WVL spacetime

As stated in the previous section, if ∂wk = 0 ⇒ ax = 0, then, by a theorem due to Wylleman
and Van den Bergh [34], a unique PMpf is obtained.

The solution set for the WVL PMpf is

{a, b, h, k} = {−w2 − ln(w) − ln(C/2),−w2 − ln(w) − ln(C/2),−2 ln(w) − 2 ln(C/2), x}
(93)

where

ua = 1
2Cw exp(w2)(0, 0, 0, 1), (94)

ρ = 3
4C2(w2 + 1) exp(2w2), (95)
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p = 3
4C2(w2 − 1) exp(2w2). (96)

For the related PMaf

ûa = 1
2Cw(0, 0, sin(x), cos(x)), (97)

ŝa = 1
2Cw exp(w2)(1, 0, 0, 0), (98)

ρ̂ = −p̂⊥ = p, (99)

p̂|| = ρ, (100)

and the vorticity scalar ω̂ = Cw exp(w2)/(2
√

2) �= 0.
At first glance, it would appear that the solution set for the WVL PMpf spacetime may, in

some way, be related to the PMpf derived in section 4.2.1 (Cf (73))—by simply interchanging
the w and x coordinates (coordinate interchange symmetry [32]) up to the introduction of an
appropriate conformal factor. To attempt this, first consider the spacetime for (73):

g = exp(2�
′
)[+dx2 + exp(2x2 + γ x){exp(2w) dy2 + exp(−2w) dz2} − dw2] (101)

where γ ≡ c3 and the conformal factor is redefined to be an arbitrary function of w and x
only. It follows that, for the metric coefficients of (101), interchanging w ↔ x produces

g = exp(2�
′
)[+dx2 + exp(2w2 + γw){exp(2x) dy2 + exp(−2x) dz2} − dw2]. (102)

The conformal function is then defined to be

�
′ = −w2 − 1

2γw − ln(w) − ln(C
′
) (103)

and this leads to

C
′2g = w−2 exp(−2w2 − γw)[−dw2 + dx2] + w−2[exp(2x) dy2 + exp(−2x) dz2] (104)

where C
′ = C/2 and C is the WVL constant scaling parameter.

Remarkably, this is a one parameter PMaf generalization of the WVL PMpf spacetime
which is recovered by setting γ = 0. The fluid 4-velocity is given by (9) with a = �

′
,

sa = (Cw exp{w(2w + γ )}, 0, 0, 0):

ρ = 1
4C2(3w2 + γw + 3) exp{w(2w + γ )}, (105)

p⊥ = 3
4C2(w2 − 1) exp{w(2w + γ )}, (106)

p|| = 1
4C2(3w2 + γw − 3) exp{w(2w + γ )}. (107)

In addition, (104) is related, by a minimal complex windmill transformation, to a purely
magnetic windmill spacetime albeit with an energy–momentum tensor beyond the scope of
this study.

6. Discussion and conclusion

It turns out that real slices of a complexified G2I -B(ii) spacetime, subject to assumptions 2.1,
lead to two distinct PMpf spacetimes, i.e. the WVL PMpf (93) and the new solution (73),
both with related windmill PMaf spacetimes. It follows that this approach can be viewed
in two important ways: as a generating method, leading to a new/known spacetime from a
known ‘seed’ spacetime or a method that may produce (and thereby relate) two completely
new spacetimes.
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Type I PMpf’s

u̇a = 0

ωac = 0
?

ωac = 0

Daρ = 0
Example:

(73)

Daρ = 0

u̇a = 0

ωac = 0
⇓

Daρ = 0

p = const p = const
WVL Spacetime:

A

ωac = 0
⇓

p = const

Daρ = 0
WVL Conjecture:

Daρ = 0

Figure 1. Classification tree for Petrov type I PMpfs. Here � indicates inconsistency, while A

means that all solutions are known.

Among the assumptions made in this study, it was assumed that the energy–momentum
tensor for each real spacetime was in the form of an anisotropic or perfect fluid while the
Weyl tensor was of the purely magnetic type. However, there is no reason why further
investigations could not consider other interesting possibilities; in particular, vacuum purely
electric spacetimes. Furthermore, the assumptions on the Ricci or Weyl tensors could be
removed entirely. That is, for example, only vacuum spacetimes could be considered, although
a complete integration of the resulting equations may be formidable.

Figure 1 shows the classification tree for Petrov type I PMpf’s, which is a refinement of
the one presented in [34].

Acknowledgments

CL thanks Michael Bradley, Kjell Rosquist and Norbert Van den Bergh and for many interesting
discussions. LW is supported by a BOF research grant (UGent). We also thank the anonymous
referees for helpful comments.

Appendix A. windmill spacetime signature

The windmill spacetime can be written as

ĝ = ε1 exp(2â) dw2 + ε2 exp(2b̂)(dx2) + ε3 exp(ĥ)ĝ(2) (A.1)

where ĝ(2) = cos(2k̂)(du2 − dv2) − 2 sin(2k̂) du dv.
It follows that the timelike(T )-spacelike(S) nature of the coordinates u and v are defined

on the principal branch:

Pv ∪ Pu = {k̂ ∈ (0, π/4)|v ∈ T and u ∈ S} ∪ {k̂ ∈ (π/4, π/2)|v ∈ S and u ∈ T }. (A.2)

Note that the determinant of ĝ(2) is

|ĝ(2)| =
∣∣∣∣ cos(2k̂) − sin(2k̂)

− sin(2k̂) − cos(2k̂)

∣∣∣∣ = −1. (A.3)

Note also that, the spacetime signature can always be preserved by the set of constants
ε1, ε2, ε3 ∈ {−1, +1}. Note that for the 4-velocity (10) on Pv ∪ Pu ε3 = +1.
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Appendix B. Unit timelike 4-vector ûa

On the other hand, for {M̂, ĝ, ûa}, the electric and magnetic parts of the Weyl tensor, with
respect to

ûa = 1√
Û

(0, 0, ûu, ûv) (B.1)

where

Û = {cos(2k)[(ûv)2 − (ûu)2] + 2 sin(2k)ûuûv} exp(h/2), (B.2)

are

Êww = β3β4 exp(h)

3U cos(2k)
(B.3)

Êwx = −3β2

β3
cos(2k)Êww (B.4)

Êxx = −Êww (B.5)

and

Ĥww = 1

2U
β2((u

u)2 + (uv)2) exp(h) (B.6)

Ĥwx = β3

3 cos(2k)β2
Ĥww (B.7)

Ĥxx = −Ĥww (B.8)

where

β1 = −∂w∂wh + 4∂xk
2 − ∂x∂xh + 4∂wk2 + 2∂w∂wa + 2∂x∂xa (B.9)

β2 = 2∂w∂xk − 2∂wa∂xk + ∂wh∂xk − 2∂xa∂wk + ∂wk∂xh (B.10)

β3 = −3 cos(2k)∂w∂wk + 3 cos(2k)∂x∂xk + 3 cos(2k)∂xk∂xh

− 6 cos(2k)∂xa∂xk + 3 cos(2k)(2∂wa − ∂wh)∂wk − 1
2 sin(2k)β1

β4 = − 1
2 ((ûu)2 − (ûv)2) sin(2k) − cos(2k)ûuûv. (B.11)

It follows that, for purely magnetic spacetimes, β4 = 0 implies

ûu
+ = ûv tan(k) (B.12)

or

ûu
− = −ûv cot(k) (B.13)

on Pv ∪ Pu. However, by (B.1)–(B.2), only (B.12) leads to a real 4-vector which takes the
form (10).
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