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LOCAL REGULARITY IN NON-LINEAR GENERALIZED

FUNCTIONS

STEVAN PILIPOVIĆ, D. SCARPALEZOS, AND JASSON VINDAS

Abstract. In this review article we present regularity properties of gen-
eralized functions which are useful in the analysis of non-linear problems.
It is shown that Schwartz distributions embedded into our new spaces
of generalized functions, with additional properties described through
the association, belong to various classical spaces with finite or infinite
type of regularities.

1. Introduction

Generalized function algebras of Colombeau type contain Schwartz’s dis-
tribution spaces and the embeddings preserve all the linear operations for
distributions. A great advantage of the generalized function algebra ap-
proach is that various classes of nonlinear problems can be studied in these
frames as well as linear problems with different kinds of singularities. We re-
fer to [5], [7], [8], [16] and [26] for the theory of generalized function algebras
and their use in the study of various classes of equations. For the purpose
of local and microlocal analysis, one is led to study classical function spaces
within these algebras.

In this survey paper we will present our investigations related to local
analysis. We mention that in number of papers we have also studied wave
front sets of G∞ and analytic types. The attention in article will be focused
on regularity theory in generalized function algebras. This regularity the-
ory is parallel to the corresponding one within distribution spaces related
to analytic, real analytic, harmonic and Besov type spaces, especially to
Zygmund type spaces.

Elements of algebras of generalized functions are represented by nets (fε)ε
of smooth functions, with appropriate growth as ε→ 0, so that the spaces of
Schwartz’s distributions are embedded into the corresponding algebras, and
that for the space of smooth functions the corresponding algebra of smooth
generalized function is G∞ (see [26], [44]). Elements of these algebras are
obtained through the regularization of distributions (convolving them with
delta nets) and the construction of appropriate algebras of moderate nets
and null nets of smooth functions and their quotients, as Colombeau did
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2 S. PILIPOVIĆ, D. SCARPALEZOS, AND J. VINDAS

([8]) with his algebra G(Rd), in such a way that distributions are included
as well as their natural linear operations.

The main goal of our investigations has been to find out conditions with
respect to the growth order in ε or integrability conditions with respect to ε
which characterize generalized function spaces and algebras with finite type
regularities. Our definitions for such generalized function spaces enable us
to obtain information on the regularity properties of Schwartz distributions
embedded into the corresponding space of generalized functions.

One can find many articles in the literature where local and microlocal
properties of generalized functions in generalized function algebras have been
considered. Besides the quoted monographs we refer to the papers [3], [4],
[9], [10] [12]–[14], [17], [20]-[25], [27]-[37], [40], [43]. We also mention that
some Tauberian theorems for regularizing transforms, [33], [38], [39], [11],
are also valuable tools for the study of regularity properties of generalized
functions.

The paper is organized as follows. In Section 2 we recall basic definitions
of Colombeau type algebras, as well as basic notions related to Littlewood-
Paley decompositions, Besov and Zygmund type spaces. Holomorphic gen-
eralized functions are described in Section 3, whereas the real analytic func-
tions are presented in Section 4. We note that a fine contribution to the
understanding of these classes has been given by Aragona and his collabora-
tors, as well as Colombeau as a founder of the theory. Differences between
classical and generalized harmonic functions are presented as well as the fact
that for the analytic and real analytic generalized functions standard points
are sufficient for their description. This is not the case for the harmonic
generalized functions, whose treatment needs additional preparation. Har-
monic generalized functions with specific notions of H− boundedness and
generalized removable singularities are reviewed in Section 5. Following [6],
we discuss various properties of generalized functions with dependence on
the variable ε. Continuity, smoothness and the measurability condition with
respect to ε are discussed in Section 6. Actually in this section we intro-
duce for the first time in the literature the analysis of generalized functions
through the integration with respect to ε. More precisely, we introduce in
Section 6 the spaces Gq(Ω), where the growth order is measure in an Lq space
with respect to the variable ε. In Sections 7 and 8 we present Besov type
spaces of generalized functions through the classes Gq(Ω). The regularity
type results from Section 8 are rather recent. The last section, Sections 9,
is devoted to Zygmund type spaces. These spaces are essentially related to
the process of regularizations of Schwartz distributions which enable us to
give precise characterizations of regularity properties of Schwartz distribu-
tions embedded into the corresponding space of Zygmund type generalized
functions.

Let us note that many other authors have made great contributions
to developing the local and microlocal analysis of generalized functions of
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Colombeau type. Our collaborators Oberguggenberger, Vernaeve and Val-
morin contributed very much to the results presented in this paper. Among
the main contributors to the local and micro local theory of Colombeau type
generalized functions, we have to underline the role of Colombeau, Ober-
guggenberger, Aragona, Hörmann, Kunzinger, Vernaeve, Garetto, Marti,
Valmorin, as well as their (and our ) coauthors. In this sense, our list of
references is rich enough but not complete.

2. Colombeau algebras and spaces

Let Ω be an open subset of Rd. We consider the families of local Sobolev
seminorms ||φ||Wm,p(ω) = sup{||φ(α)||Lp(ω); |α| ≤ m}, where m ∈ N0, p ∈
[1,∞], for ω ⊂⊂ Ω (which means that ω is compact in Ω).

The spaces of moderate nets and negligible nets ELp
loc,M

(Ω) and NLp
loc

(Ω),

resp., ELp,M (Ω) and NLp(Ω), consist of nets (fε)ε∈(0,1) = (fε)ε ∈ E(Ω)(0,1)

with the properties (given by Landau’s big O and small o )

(2.1) (∀m ∈ N0)(∀ω ⊂⊂ Ω)(∃a ∈ R)(||fε||Wm,p(ω) = O(εa))

and (∀m ∈ N0)(∀ω ⊂⊂ Ω)(∀b ∈ R)(||fε||Wm,p(ω) = O(εb)),

The Sobolev lemma implies ELp
loc

(Ω) and NLp
loc

(Ω) are algebras, but also

that

EM (Ω) = EL∞loc(Ω) = ELp
loc

(Ω), N (Ω) = NL∞loc(Ω) = NLp
loc

(Ω), p ≥ 1.

Thus the Colombeau algebra of generalized functions can be defined as

G(Ω) = ELp
loc

(Ω)/NLp
loc

(Ω), p ≥ 1.

Recall [26], that the algebra of regular generalized functions as defined as

G∞(Ω) = E∞M (Ω)/N (Ω), where E∞M (Ω) consists of nets (fε)ε∈(0,1) ∈ E(Ω)(0,1)

with the property

(∀K ⊂⊂ Ω)(∃a ∈ R)(∀n ∈ N)(| sup
x∈K

f (n)
ε (x)| = O(εa)).

If the elements of the nets (fε)ε ∈ EM (Ω) are constant functions in Ω (i.e.,
seminorms reduce to the absolute value), then one obtains the corresponding
algebras E0 and N0; N0 is an ideal in E0 and, as their quotient, one obtains
the Colombeau algebra of generalized complex numbers: C̄ = E0/N0 (or
R̄ if nets are real). It is a ring, not a field. For the analysis of harmonic
generalized functions we will recall the definition of compactly supported
generalized points, due to Oberguggenberger and Kunzinger in [27]. A net
(xε)ε in a general metric space (A, d) is called moderate, if

(∃N ∈ N)(∃x ∈ A)(d(x, xε) = O(ε−N )).

and an equivalence relation in A(0,1] is introduced by

(xε)ε ∼ (yε)ε ⇔ (∀p ≥ 0)(d(xε, yε) = O(εp)).
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Ã = A/ ∼ is called the set of generalized points in A. If A = Ω is an

opens subset of Rd, then Ω̃ = Ω/ ∼ is the set of generalized points. Note

C̃ = C̄ (R̃ = R̄). An element x̃ ∈ Ω̃ is called compactly supported if xε
lies in a compact set for ε < ε0 for some ε0 ∈ (0, 1). The set of compactly

supported points x̃ (∈ Ω̃) is denoted by Ω̃c. Recall, nearly standard points

are elements x̃ ∈ Ω̃c with limit in Ω that is, there exists x ∈ Ω such that for

a representative (xε)ε, xε → x, as ε → 0, holds. We denote by Ω̃ns the set
of nearly standard points of Ω.

The embedding of the Schwartz distribution space E ′(Ω) into G(Ω) is re-
alized through the sheaf homomorphism E ′(Ω) 3 T 7→ ι(T ) = [(T ∗φε|Ω)ε] ∈
G(Ω), where the fixed net of mollifiers (φε)ε is defined by φε = ε−dφ(·/ε), ε <
1, and φ ∈ S(Rd) satisfies∫

Rd

φ(t)dt = 1,

∫
Rd

tmφ(t)dt = 0, |m| > 0.

(tm = tm1
1 ...tmd

d and |m| = m1 + ...+md).
This sheaf homomorphism [16], extended over D′, gives the embedding of

D′(Ω) into G(Ω). We also use the notation ι for the mapping from E ′(Ω) into
EM (Ω), ι(T ) = (T ∗ φε|Ω)ε. Throughout this article, φ is fixed and satisfies
the above condition over its moments.

We will use a continuous Littlewood-Paley decomposition of the unity (see
[42] or [19, Sect. 8.4], for instance). Let ϕ ∈ S(Rd) such that its Fourier
transformation ϕ̂ ∈ D(Rd) is a real valued radial (independent of rotations)
function with support contained in the unit ball such that ϕ̂(y) = 1 if

|y| ≤ 1/2. Set ψ̂(y) = − d

dε
ϕ̂(εy)|ε=1 = −y · ∇ϕ̂(y). The support of ψ̂

is contained in the set 1/2 ≤ |y| ≤ 1. Then, ϕ has the same moment
properties as φ given above but in the sequel we will use term mollifier only
for φ since it will be used for the embedding of distributions into various
spaces and algebras of generalized functions. The function ψ is a wavelet
(all the moments of ψ are equal to zero).

One has [19, Sect. 8.6]: for any u ∈ S ′(Rd),

(2.2) u = u ∗ ϕ+

∫ 1

0
u ∗ ψη

dη

η
= u ∗ ϕε +

∫ ε

0
u ∗ ψη

dη

η
, 0 < ε ≤ 1,

and hence,

(2.3) u ∗ ϕε = u ∗ ϕ+

∫ 1

ε
u ∗ ψη

dη

η
, 0 < ε ≤ 1.

We recall that the Besov spaces Bs
q,p(Rd), p, q ∈ (0,∞], s ∈ R, are defined as

Bs
q,p(Rd) = {f ∈ S ′(Rd) : ||u||sq,p <∞}, where

(2.4) ||u||sq,p := ||f ∗ φ||Lp(Rd) +

(∫ 1

0
y−sq||f ∗ ψy||qLp(Rd)dy/y

)1/q

.
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The definition is independent of the choice of the pair ϕ. If we discretize
y = 2−j , j ∈ N, then one can replace [42] the second term in (2.4) by ∞∑

j=1

2−jqs||f ∗ ψ2−j ||q
Lp(Rd)

1/q

.

They are quasi-Banach spaces if min{p, q} ≤ 1, and Banach spaces if
min{p, q} ≥ 1. In the sequel we consider the second case i.e. min{p, q} ≥ 1.

In particular, the Zygmund spaces are defined by

Cs∗(Rd) := {u ∈ S ′ : |u|s∗ := ||φ ∗ u||L∞ + sup
y∈(0,1)

(y−s||ψy ∗ u||L∞) <∞},

so that Cs∗(Rd) = Bs
∞,∞(Rd). We will also consider spaces Bs

q,Lp
loc

(Ω) con-

sisting of tempered distributions with the property: f ∈ Bs
q,Lp

loc
(Ω) if θf ∈

Bs
q,p(Rd) for every θ ∈ D(Ω).

3. Holomorphic generalized functions [29]

We denote by O(Ω) the space of holomorphic functions on Ω, where Ω is
an open subset of R2 = C; D(z0, r) denotes a disc with the center z0 and
radius r > 0.

Definition 3.1. A generalized function f = [(fε)ε] ∈ G(Ω) is said to be

holomorphic if ∂f
∂z̄ = 0 in G(Ω).

The set of holomorphic generalized functions is denoted by GH(Ω).

Due to Colombeau-Galé [9] we know that f ∈ GH(Ω) if and only if for
every relatively compact open set Ω′ in Ω, f admits a representative (fε)ε ∈
EM (Ω′) with fε ∈ O(Ω′), ε ∈ (0, 1]. In the same paper it is shown that
GH(Ω) ∩ D′(Ω) = O(Ω). Holomorphic generalized functions can be well
understood through the next theorem.

Theorem 3.2. Let (fε)ε ∈ E(Ω)(0,1] and suppose that for every point z0 ∈ Ω
there exist rε > 0, 0 < ε ≤ 1 such that

(i) ∂̄fε|D(z0,rε) = 0, 0 < ε ≤ 1, i.e. the restrictions to the discs vanish.

(ii) ∃η > 0,∃a > 0, ∃ε0 ∈ (0, 1], |f (n)
ε (z0)| ≤ ηn+1n!ε−a, n ∈ N, ε ∈ (0, ε0).

Then (fε)ε ∈ EM (Ω) and [(fε)ε] ∈ GH(Ω).

This leads to the result that GH(Ω) ⊂ G∞(Ω), where the algebra of regular
generalized functions G∞(Ω) was defined in Section 2

We collect properties of holomorphic generalized functions in the next
theorem.

Theorem 3.3. Let g ∈ GH(Ω).
(i) g admits a representative (gε)ε such that gε ∈ O(Ω), ε ∈ (0, 1].
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(ii) g = 0 if and only if for any open set Ω′ ⊂⊂ Ω there exists a represen-

tative (gε)ε ∈ O(Ω′)(0,1) such that

(3.1)
∀z0 ∈ Ω′, ∀a > 0,∃η > 0,∃ε0 ∈ (0, 1],∃C > 0,

|g(n)
ε (z0)| ≤ ηn+1n!εa, n ∈ N, ε ∈ (0, ε0).

(iii) Let z0 ∈ Ω, η > 0. Then f vanishes in the disc V = D(z0,
1
η ) if and

only if there exists a representative (gε)ε of f |V in O(V )(0,1] such that

∀a > 0, ∃ε0 ∈ (0, 1] : |g(n)
ε (z0)| ≤ ηn+1n!εa; n ∈ N, ε ∈ (0, ε0).

As a consequence, we obtain a simple proof that on a connected open
set Ω an f ∈ GH(Ω) vanishes on Ω if and only if it vanishes on a non-void
open subset of Ω. This is an important result of Khelif and Scarpalezos [22].
It shows a main property of holomorphic generalized functions. For their
analysis, standard points are enough while for Colombeau type generalized
functions, generalized points are essential [27] (see also [23] for more general
aspects of this fact.)

The existence of a global holomorphic representative of f ∈ GH(Ω) de-
pends on Ω ⊂ Cd is still an open problem although such representation for
appropriate domains Ω ⊂ Cn can be constructed. In the one dimensional
case we have

Theorem 3.4. If f ∈ GH(C), then there exists one of its representative
(fε)ε consisting of entire functions on C.

4. Real analytic generalized functions [35]

Now we are considering ω, an open set in Rd.

Definition 4.1. Let x0 ∈ ω. A generalized function f ∈ G(ω) is said to be
real analytic at x0 if there exist an open ball B = B(x0, r) in ω containing
x0 and (gε)ε ∈ EM (B) such that

(i) f |B = [(gε)ε] in G(B);

(ii) (∃η > 0)(∃a > 0)(∃ε0 ∈ (0, 1))

sup
x∈B
|∂αgε(x)| ≤ η|α|+1α!ε−a, 0 < ε < ε0, α ∈ Nd.

It is said that f is real analytic in ω if f is real analytic at each point of ω.
The space of all generalized functions which are real analytic in ω is denoted
by GA(ω).

The analytic singular support, singsuppga f, is the complement of the set
of points x ∈ ω where f is real analytic.

It follows from the definition that GA is a subsheaf of G.
Using Stirling’s formula it is seen that condition (ii) in Definition 4.1 is

equivalent to

(iii) (∃η > 0)(∃a > 0)(∃ε0 ∈ (0, 1))
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sup
x∈B
|∂αgε(x0)| ≤ η(η|α|)|α|ε−a, 0 < ε < ε0, α ∈ Nd0.

The use of Taylor expansion and condition (ii) of Definition 4.1 imply that
(gε)ε admits a holomorphic extension in a complex ball B = {z ∈ Cd; |z −
x0| < r} which is independent of ε. Consequently we get a holomorphic
extension G of [(gε)ε] and then f |B = G|B. (It is clear from the context
whether B is a complex or real ball.)

The existence of a global real analytic representative of f ∈ GA(Rd), as
in the case of analytic generalized functions is also an open problem. In the
case d = 1 we have a positive answer, there exist a global representative, i.e.
a representative a real analytic generalized function on R consisting of real
analytic functions defined on R.

Moreover, we have a similar situation for real analytic generalized func-
tions as for holomorphic, they are determined by their values at standard
points. We have

Theorem 4.2. a) Let Ω be an open set of Cp, p > 1 and f = [(fε)ε] ∈ GH(Ω)
such that f(x) = 0 for every x ∈ Ω ((fε(x))ε ∈ N (Ω)). Then f ≡ 0.

b) Let ω be an open set of Rd, d ∈ N and f = [(fε)ε] ∈ GA(ω) such that
f(x) = 0 for every x ∈ ω. Then f ≡ 0.

The singular support of an f ∈ G(ω) is defined as the complement of the
union of open sets in ω where f ∈ G∞(ω). In a similar way one defines the
notion singsupp gaf.

Theorem 4.3. [35] Let f ∈ E ′(ω) and fε = f ∗ φε, ε ∈ (0, 1) be its regu-
larization by a net φε = ε−1φ(·/ε), ε < 1, where (φε)ε is a net of mollifiers.
Then

singsupp
a

f = singsupp
ga

[(fε)ε].

5. Harmonic generalized function [36]

We denote by Har(Ω) the space of harmonic functions in Ω.

Definition 5.1. We call a generalized function G ∈ G(Ω) harmonic gener-
alized function, if ∆G = 0 holds in G(Ω). The linear space of harmonic
generalized functions in Ω is denoted by GHar(Ω).

We have shown that GHar is a closed subsheaf of the sheaf of C̃-modules
G.

Moreover we have the next important result

Theorem 5.2. Every harmonic generalized function G ∈ G(Ω) admits a
global harmonic representative (Gε)ε, that is, for each ε ≤ 1, Gε is harmonic.

We call the (Gε)ε a global harmonic representative of G. For the main
results of our analysis we use global harmonic representatives.
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Obviously, Ω → GA(Ω) is a subsheaf of the sheaf of algebras G∞. More-
over, every harmonic generalized function is a real analytic generalized func-
tion. Since GHar(Ω) is a submodule of GA(Ω) the following consequence is
immediate (see the previous section).

Theorem 5.3. Let Ω be a connected open subset of Rd and f ∈ GHar(Ω).
If there exists A ⊂ Ω of positive Lebesgue measure (µ(A) > 0) such that
f(x) = 0 for every x ∈ A, then f ≡ 0.

For the generalized maximum principle, we need additional notation. Let

K be a compact set of Ω, x̃0 ∈ Ω̃c be supported by K and let r > 0 such that
K + B(0, r) ⊂⊂ Ω. With such an x̃0, we denote by B(x̃0, r) the following

subset of Ω̃c

(5.1) B(x̃0, r) = {t̃ = [(tε)ε] ∈ Ω̃c; |x0,ε − tε| ≤ r, ε ≤ 1}.

We call the set B(x̃0, r) ⊆ Ω̃c a semi-ball in Ω. Note that by now we

distinguish between balls B(x0, r) ⊂ K, balls B̃(x̃0, r) in K̃ and semi-balls
B(x̃0, r).

Theorem 5.4 (Maximum principle). Let G be a real-valued harmonic gen-
eralized function in an open set Ω. Then the following holds:

(1) Let r > 0 and x̃0 ∈ Ω̃c with representative (x0,ε)ε be given such

that B(x0,ε, 2r) ⊂⊂ Ω, ε ≤ 1 (that is the semi-ball B(x̃0, 2r) ⊂ Ω̃c).

Suppose G(x̃0) ≥ G(t̃) for each t̃ ∈ B(x̃0, r). Then G is a constant
generalized function in B(x̃0, r).

(2) Let Ω be connected. If there exists a compactly supported point x̃0 ∈
Ω̃c such that G(x̃0) ≥ G(t̃), t̃ ∈ Ω̃c, then G is a constant generalized
function in Ω.

Proposition 5.5. Let G = [(Gε)ε] ∈ G(Ω) such that for every x̃ = [(xε)ε] ∈
Ω̃c and every R > 0 such that the semi-ball B̃(x̃, R) ⊂ Ω̃c,

(5.2) [(Gε(x̃))ε] = [(
1

VR

∫
B(xε,R)

Gε(t)dt)ε].

Then G ∈ GHar(Ω).

Theorem 5.6. Let Ω be connected.
(i) With the assumptions of Theorem 5.4 (i), G is a constant generalized

function in Ω.

(ii) If there exists a nearly standard point x̃0 ∈ Ω̃ns such that G(x̃0) ≥ G(t̃)

for each nearly standard point t̃ ∈ Ω̃ns, then G is a constant generalized
function in Ω.

Corollary 5.7. (i) Let u be a complex harmonic generalized function in

a connected open set Ω. If |u| has a maximum M̃ ∈ R̃ at x̃0 ∈ Ω̃c, then

u ≡ Ã = u(x̃0) ∈ C̃, |Ã| = M̃ .
(ii) Let G ∈ GHar(Ω) be a non-constant real valued generalized function.

Then
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(1) G does not attain its maximum inside Ω, that is at a generalized

point t̃0 ∈ Ω̃c.
(2) Let Ω′ ⊂⊂ Ω be open. Then the maximum of G in Ω′ is attained at

a generalized point supported by the boundary of Ω′.

For the generalizations of Liouville’s theorem for harmonic generalized
functions we need to repeat several notions for u ∈ G(Rd).

We call u:
(i) non-negative, if for each compact set K there exists a representative

(uε)ε of u such that for each ε > 0, infx∈K uε(x) ≥ 0.
(ii) strictly positive, if for each representative (uε)ε of u and for each

compact set K there exists constants m and ε0 such that for each ε < ε0,
infx∈K uε(x) ≥ εm.

(iii) A harmonic generalized function u is said to be globally non-negative,
if it admits a global harmonic representative (Gε)ε so that Gε is non-negative
for each ε ≤ 1.

(iv) We call a harmonic generalized function u H-non-negative (and write
u ≥H 0), if it admits a global harmonic representative (Gε)ε with the fol-
lowing property:
(5.3)

(∀m > 0)(∀a > 0)(∃εa,m ∈ (0, 1])(∀ε < εa,m)(∀ t : |t| < 1

εm
)(uε(t) + εa ≥ 0)

Furthermore, a harmonic generalized function u is said to be H-bounded

from above (resp. below) by c̃ ∈ R̃, if for a representative (cε)ε of c̃, the
global harmonic representative (Gε)ε − (cε)ε satisfies condition (5.3). A
harmonic generalized function u is said to be H-bounded if it is H-bounded
from above and from below.

Theorem 5.8. A harmonic generalized function u in Rd which is H-bounded
from below is a constant.

A direct consequence is that every H-bounded harmonic generalized func-
tion u ∈ G(Rd) is a constant.

Now we give the definition of isolated singularity of harmonic generalized
function.

Let Ω be an open set of Rd and x0 ∈ Ω. A generalized function G ∈
G(Ω \ {x0)} (resp. G ∈ GHar(Ω \ {x0)}) is said to have an isolated (resp.
isolated harmonic) singularity at x0. Moreover, if there exists F ∈ G(Ω)
(resp. F ∈ GHar(Ω)) such that F |Ω\{x0} = G, then it is said that G has a
removable (resp. harmonic removable) singularity.

Theorem 5.9 below states assertions on harmonic generalized functions in
pierced domains. First we need a definition of H-boundedness in a neigh-
borhood of x0 which corresponds to a H-boundedness at infinity.

Let G ∈ GHar(Ω \ {x0}) and let B(x0, R) ⊂ Ω. It is said that it is
H−bounded in a neighborhood of x0 if there exists M = [(Mε)ε] > 0 and a
global harmonic representative (Gε)ε in Ω \ {x0} such that for every m ∈ N
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there exists εm ∈ (0, 1] such that

|Gε(x)| < Mε, x ∈ {εm < |x− x0| < R, ε < εm}.

Theorem 5.9. Let G ∈ GHar(Ω \ {x0}). The following holds:

(1) Assume additionally that G ∈ G(Ω), and that for every sharp neigh-
borhood V of x0 G has a representative (Gε)ε so that for every ε ≤ 1,
Gε is harmonic outside Vε, where V = [(Vε)ε]. Then G ∈ GHar(Ω).

(2) If G is H−bounded at x0, then G extends uniquely to an element of
GHar(Ω).

6. New spaces defined by integration in ε [37]

Following [6], we will consider representatives (fε)ε, (ε, x) 7→ fε(x) which
continuously depend on ε or (moreover) smoothly depend on ε ∈ (0, 1] (al-
ways smooth in x). The notation co stands for the continuous parametriza-
tion, while sm stands for the smooth parametrization. It is obvious that

EM,sm(Ω) ⊂ EM,co(Ω) ⊂ EM (Ω),Nsm(Ω) ⊂ Nco(Ω) ⊂ N (Ω),

Furthermore, it is shown in [6] that

Gco(Ω) = Gsm(Ω) ⊂ G(Ω),

where the last inclusion is strict. The same relations hold for generalized
complex (and real) numbers.

Moreover, we will consider representatives (fε)ε which are measurable
functions with respect to ε :

for every fixed x ∈ Ω, (0, 1) 3 ε 7→ fε(x) ∈ C is measurable.

Let p ∈ [1,∞]. The definitions of algebras ELp
loc,M

(Ω) = EM (Ω) and

NLp
loc

(Ω) = N (Ω) from Section 2 can be formulated by measurable represen-

tatives with respect to ε. We will denote them by the symbols EM,me(Ω),Nme(Ω)
and their quotient by Gme(Ω), where we assume measurability dependence.
The next proposition is also from [6].

Proposition 6.1. The following strict embeddings hold

EM,co(Ω) ⊂ EM,me(Ω); Nco(Ω) ⊂ Nme(Ω); Gco(Ω) ⊂ Gme(Ω) ⊂ G(Ω).

Let p ∈ [1,∞], (fε)ε ∈ EM,me(Ω) and ω ⊂⊂ Ω. Then it is clear that
(0, 1) 3 ε 7→ ||fε(·)||Lp(ω) ∈ R is a measurable function.

Example 6.2. Let A ⊂ (0, 1] be the well known non-measurable Vitaly set.
Let fε = 1, ε ∈ A, fε = 0, ε ∈ (0, 1] \ A. Then [fε] shows that Gme(Ω) is
strictly contained in G(Ω).

Let q ∈ [1,∞) and p ∈ [1,∞]. We say that a net of (fε) ∈ E(Ω)(0,1)

belongs to Eq,Lp
loc

(Ω), respectively to Nq,Lp
loc

(Ω) if it is measurable, locally
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bounded on (0, 1], with respect to ε, for every fixed x ∈ Ω and it satisfies
the growth estimates

(6.1) (∀k ∈ N0)(∀ω ⊂⊂ Ω)(∃s ∈ R)(

∫ 1

0
εqs||fε||qWk,p(ω)

dε/ε <∞),

respectively,

(6.2) (∀k ∈ N0)(∀ω ⊂⊂ Ω)(∀s ∈ R)(

∫ 1

0
εqs||fε||qWk,p(ω)

dε/ε <∞).

By the Sobolev lemma, it follows that these spaces of nets are independent
of the value of p. We therefore set

Eq,me(Ω) := Eq,me,L∞loc(Ω), Nq,me(Ω) := Nq,me,L∞loc(Ω) and

Gq(Ω) := Eq,me(Ω)/Nq,me(Ω).

We shall call the elements of Eq,me(Ω) nets of smooth functions with Lq-
moderate growth, while the ones of Nq(Ω) will be refereed as Lq-negligible
nets. In the same way we define Eq,sm(Ω),Nq,sm(Ω), and Gq,sm(Ω) as well
as the spaces with the continuous representatives with respect to ε (with
subindex co). Moreover, we have shown:

Proposition 6.3. Let q ∈ [1,∞). Every f ∈ Gq(Ω) has a representative
(fε)ε for which the function (x, ε) 7→ fε(x) ∈ C∞(Ω× (0, 1)).

Thus, we have

(6.3) Gq(Ω) = Gq,me(Ω) = Gq,co(Ω) = Gq,sm(Ω), q ∈ [1,∞).

Hence we may always use nets which are smooth with respect to ε.
When q =∞ , we can define two different spaces associated to the q =∞

(cf. Proposition 6.1):

G∞,me(Ω) = Gme(Ω) and G∞,co(Ω) = Gco(Ω) = G∞,sm(Ω) = Gsm(Ω)

but Proposition 6.3 does not hold for these two spaces. We shall therefore
make a choice for the index q =∞. Our convention is:

G∞(Ω) := Gco(Ω) = Gsm(Ω).

Summarizing, Proposition holds for Gp(Ω) for every p ∈ [1,∞]. Furthermore,
without lost of generality, we will assume in the sequel that:

all the representatives are continuous with respect to ε,, q ∈ [1,∞].

We also write from now on

Eq(Ω) := Eq,co,Lp
loc

(Ω), Nq(Ω) := Nq,co,Lp
loc

(Ω), p ∈ [1,∞].

It is worth mentioning that D′(Ω) is embedded into each of the spaces
Gq(Ω) in the same way that it is embedded into the Colombeau algebra of
generalized functions.

Note also that Eq′(Ω) ( Eq(Ω) and Nq′(Ω) ( Nq(Ω) if q′ > q. These
assertions are shown by Example 6.4 below. This implies that there exists a
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canonical linear mapping Gq′(Ω) → Gq(Ω), q′ > q. As a matter of fact, this
mapping is not injective, as the next elementary example shows.

Example 6.4. Consider a net given by fε(x) = n−2en/q, x ∈ R if ε ∈
[n−1 − e−n, n−1 + e−n] and n ≥ 4 and fε(x) = 0 otherwise. Then, (fε) ∈
Eq(R), q′ ≤ q but (fε) /∈ Eq′(R) if q′ > q.

The space Gq(Ω), 1 ≤ q < ∞, is not an algebra. This follows from Ex-
ample 6.4 since (f2

ε )ε does not belong to Eq(R). Nevertheless, pointwise
multiplication on the representative induces a well defined mapping on the
corresponding quotients, which operates according to

(f, g) ∈ Gq′(Ω)× Gq(Ω) 7→ f · g ∈ Gr(Ω),
1

q′
+

1

q
=

1

r
,

as a consequence of Hölder’s inequality. In particular, we obtain the ensuing
result.

Theorem 6.5. Let q ∈ [1,∞]. The space Gp(Ω) is a module over the algebra
G∞(Ω)(= Gco(Ω)) under the natural multiplication. Furthermore, it is a
differential module, i.e.,

(f · g)(α) =
∑
β≤α

(
α

β

)
f (β) · g(α−β).

Analogously to the generalized numbers R̃ and C̃, one can define the new
sets of generalized numbers R̃q and C̃q, q ∈ [1,∞]. Denote by E0,q, resp., N0,q

spaces of continuous with respect to ε nets, (rε)ε ∈ C(0,1] with the property

(∃a ∈ R)(

∫ 1

0
εaq|rε|q

dε

ε
<∞)

resp.,

(∀b < 0)(

∫ 1

0
εbq|rε|q

dε

ε
<∞).

Then C̃q = E0,q/N0,q; R̃q is defined with the real nets above.

The sets R̃co = R̃∞ and C̃co = C̃∞ are rings, and R̃q and C̃q become
modules over them, respectively.

In particular, Gq(Ω) becomes a module over the ring of generalized con-

stants C̃co.

7. Besov type spaces of generalized functions [37]

In the sequel we will consider representatives of generalized functions
consisting of continuous functions with respect to ε ∈ (0, 1], as discussed in
the previous section.

Let p ∈ [1,∞], q ∈ [1,∞). We consider (fε)ε ∈ Eq(Ω) such that for given
k ∈ N and s ∈ R there holds

(7.1) (∀ω ⊂⊂ Ω)(

∫ 1

0
εsq||fε||qWk,p(ω)

dε/ε <∞).
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We say that a net (fε)ε ∈ Eq(Ω) belongs to Ek,−s
q,Lp

loc
(Ω) if (7.1) holds. Special

attention will be devoted in Section 9 to Zygmund type spaces in the case
q =∞.

Furthermore, for k =∞, we put

E∞,−s
q,Lp

loc
(Ω) =

⋂
k∈N
Ek,−s
q,Lp

loc
(Ω).

The spaces of the following definition will be vital in our study of Besov
type regularity.

Definition 7.1. Let s ∈ R, k ∈ N0 ∪{∞}, q ∈ [1,∞], and p ∈ [1,∞]. Then

Gk,−s
q,Lp

loc
(Ω) is the quotient space

(7.2) Gk,−s
q,Lp

loc
(Ω) = Ek,−s

q,Lp
loc

(Ω)/Nq(Ω).

We have Gk,−s
q,Lp

loc
(Ω) ⊂ Gq(Ω) for any p ∈ [1,∞]. Note that the definition

does not depend on the representatives.
We list some properties of these vector spaces of generalized functions in

the next proposition.

Proposition 7.2. Let s ∈ R, k ∈ N0 ∪ {∞}, q ∈ [1,∞] and p ∈ [1,∞].

(i) Gk,−s
q,Lp

loc
(Ω) ⊆ Gk1,−s1

q,Lp
loc

(Ω) if and only if k ≥ k1 and s ≤ s1.

(ii) Let P (D) be a differential operator of order m ≤ k with constant

coefficients. Then P (D) : Gk,−s
q,Lp

loc
(Ω)→ Gk−m,−s

q,Lp
loc

(Ω).

(iii) Let ∞ > r > q, ρ < s. Then Gm,−s
q,Lp

loc
(Ω) ⊂ Gm,−ρ

r,Lp
loc

(Ω).

(iv) G∞,−s
q,Lp

loc
(Ω) = G∞,−sq,L∞loc

(Ω),

8. Characterization of Besov regularity of distributions [37]

We defined in [38] non-degenerate wavelets and generalized Littlewood-
Paley (LP) pairs of order α ∈ R. Here we will simplify the exposition con-
sidering special (LP) pairs defined as follows. A (LP) pair is (φ1, ψ1), where

φ̂1, ψ̂1 ∈ D(Rd), φ̂1 ≡ 1 in a ball B(0, r), supp ψ̂1 ⊂ B(0, r1) \B(0, r2), r1 >

r > r2, ψ̂1 ≡ 1 in a neighborhood of S(0, r) (B(0, ρ) denotes an open ball
whose boundary is the sphere S(0, ρ)).

Clearly this definition is satisfied by the special (LP) pair (ϕ,ψ) from
Section 2. In the sequel, we will assume that the mollifier φ is chosen so
that

(8.1) (ϕ ∗ φ, ψ ∗ φ)

makes an (LP) pair.

Proposition 8.1. Let (φ1, ψ1) be a Littlewood-Paley pair as above. Define
||u||s(1),q,p with this pair, see (2.4). Then, for k = |α|,

||ψε ∗ u(α)||Lp(Rd) ≤ C||(ψ1)ε ∗ u(α)||Lp(Rd).
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In particular the norms ||u||sq,p and ||u||s(1),q,p are equivalent.

The space Bs
q,Lp(Rd) ∩ E ′(Ω) is naturally embedded into Gq(Ω), through

convolution with a mollifier: T 7→ Tε = T ∗ φε|Ω, ε ∈ (0, 1).

Proposition 8.2. Let f ∈ E ′(Rd) such that

ι(f) ∈ ι(D′(Rd)) ∩ G0,s
q,Lp

loc
(Rd).

Then f ∈ Bs
q,Lp.

Theorem 8.3. Let s > 0 and k ∈ N. Then,

Gk,−s
q,Lp

loc
(Rd) ∩ ι(E ′(Rd)) ⊃ ι(Bk−s0

q,Lp )

for any s0 < s.

Recall that a net (fε)ε ∈ E(0,1)(Ω), or the generalized function f = [(fε)ε],
is strongly associated to T ∈ D′(Ω) if there exists b > 0 such that

(8.2) (∀ρ ∈ D(Ω))(〈T − fε, ρ〉 = o(εb), ε→ 0).

With o(1) instead o(εb) in (8.2), one has the notion of weak association.
We introduce a new concept of association.

Definition 8.4. Let T ∈ D′(Rd), (fε)ε ∈ Eq(Rd). We say that (fε)ε is
strongly q−associated to T if there exists b > 0 such that

(8.3) (∀ρ ∈ D(Rd))(
∫ 1

0
ε−bq|〈T − fε, ρ〉|qdε/ε <∞).

Clearly the strong association implies the q-association and the converse
does not hold. Moreover the weak association and the q associations are not
comparable.

Theorem 8.5. Let T ∈ E ′(Rd) and [(fε)ε] ∈ Gk,sq,∞(Rd) for some k ∈ N and
every s > 0. Assume that T and (fε)ε are strongly q-associated, q ≥ 1. Then

ι(T ) ∈ Gk,sq,L∞loc for every s > 0 . In particular, T ∈ Bk+s
q,∞ for every s > 0.

9. Zygmund regularity through association [32]

In this section we present the local regularity of distributions in connection

with the Zygmund type classes Gk,−s∞,L∞loc
(Ω) (see (7.1) with q =∞) .

The next theorem provides a precise characterization of those distribu-

tions that belong to Gk,−s∞,L∞loc
(Ω), denoted in the sequel as Gk,−s(Ω), they turn

out to be elements of a Zygmund space. We only consider the case s > 0,
since for s ≤ 0, one has Gk,−s(Ω) ∩ ι(D′(Ω)) = {0}.

Theorem 9.1. Let s > 0. We have Gk,−s(Ω) ∩ ι(D′(Ω)) = ι(Ck−s∗,loc(Ω)).
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This implies that for r ∈ R and any non-negative integer k > r,

ι(Cr∗,loc(Ω)) = Gk,r−k(Ω) ∩ ι(D′(Ω)).

Consequently, we immediately have ι(D′(Ω)) ∩ G∞(Ω) = ι(C∞(Ω)).
We return to the strong association but with the more general rate of

approximation in (8.2). Let R : (0, 1]→ R+ be a positive function such that
R(ε) = o(1), ε→ 0. We write T − fε = O(R(ε)) in D′(Ω) if

(∀ρ ∈ D(Ω))(〈T − fε, ρ〉 = O(R(ε)), ε < 1).

We now present our results concerning the regularity analysis through
association.

Theorem 9.2. Let T ∈ D′(Ω) and let f = [(fε)ε] ∈ G(Ω) be associated to
it. Assume that f ∈ G∞(Ω). If (fε)ε approximates T with convergence rate:

(9.1) (∃b > 0)(T − fε = O(εb) in D′(Ω)).

Then T ∈ C∞(Ω).

Theorem 9.3. Let T ∈ D′(Ω) and let f = [(fε)ε] ∈ G(Ω) be a net of smooth
functions associated to it. Furthermore, let k ∈ N. Assume that either of
following pair of conditions hold:

(i) f ∈ Gk,−a(Ω), ∀a > 0, namely,

(9.2) (∀a > 0)(∀ω ⊂⊂ Ω)(∀α ∈ Nd, |α| ≤ k)(sup
x∈ω
|f (α)
ε (x)| = O(ε−a)),

and the convergence rate of (fε)ε to T is as in (9.1).
(ii) f ∈ Gk,−s(Ω) for some s > 0, and there is a rapidly decreasing

function R : (0, 1] → R+, i.e., (∀a > 0)(limε→0 ε
−aR(ε) = 0), such

that

(9.3) T − fε = O(R(ε)) in D′(Ω).

Then, T ∈ Ck−η∗, loc(Ω) for every η > 0.
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