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Abstract 

Idiopathic infantile nystagmus (IIN) is a genetically heterogeneous disorder, often associated 

with FRMD7 mutations. As the appearance of the retina is reported to be normal based on 

conventional fundus photography, IIN is postulated to arise from abnormal cortical 

development. 

To determine whether the afferent visual system is involved in FRMD7 mutations, we 

performed in-situ hybridisation studies in human embryonic and foetal stages (35 days post 

ovulation to 9 weeks post conception). We show a dynamic retinal expression pattern of 

FRMD7 during development. We observe expression within the outer neuroblastic layer, then 

in the inner neuroblastic layer and at 9 weeks post conception a bi-laminar expression pattern. 

Expression was also noted within the developing optic stalk and optic disc. 

We identified a large cohort of IIN patients (n=100), and performed sequence analysis which 

revealed 45 patients with FRMD7 mutations. Patients with FRMD7 mutations underwent 

detailed retinal imaging studies using ultra-high resolution optical coherence tomography. 

The tomograms were compared to a control cohort (n=60). The foveal pit was significantly 

shallower in FRMD7 patients (p<0.0001). The optic nerve head morphology was abnormal 

with significantly decreased optic disc area, retinal nerve fibre layer thickness, cup area and 

cup depth in FRMD7 patients (p<0.0001). 

This study shows for the first time that abnormal afferent system development is associated 

with FRMD7 mutations and could be an important aetiological factor in the development of 

nystagmus. 
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Introduction 

Infantile Nystagmus (IN) is characterised by involuntary to and fro movements of the eyes, 

which is present at birth or manifesting within the first few months of life. Nystagmus has an 

estimated prevalence of 2.4 in 1000 (1) and is associated with significant negative social 

stigma and poor visual function scores (2,3). The pathophysiology of this disorder is unclear 

although numerous hypotheses have been put forward. Previous animal models for infantile 

nystagmus have suggested that axonal misrouting at the level of the chiasm could be a 

common mechanism (4). Certainly in patients with albinism and achiasma, both associated 

with infantile nystagmus, misrouting of retinal ganglion cell axons within the retinofugal 

pathway at the level of the chiasm is observed. However in many other forms of infantile 

nystagmus (e.g. aniridia, achromatopsia, idiopathic infantile nystagmus (IIN)) visually 

evoked potentials show interhemispherical symmetry, suggestive of normal decussation of 

retinal ganglion cell axons (5). The fact that most forms of infantile nystagmus arise due to 

mutations of genes expressed within the developing retina would argue in favour of an 

afferent abnormality. Moreover, abnormal retinal phenotypes have been described in most of 

these disorders (6,7,8).  However, in IIN, other than reduced visual acuity and an abnormal 

optokinetic response (9,10), no overt ocular abnormality has been described. This has led to a 

number of mathematical models suggesting that infantile nystagmus arises due to the 

instability of the neural integrator (11,12) or the smooth pursuit system (13), rather than an 

afferent defect.  

Mutations in FRMD7 are a major cause of IIN (14). The FRMD7 gene is located at Xq26.2. 

In male subjects with pathogenic FRMD7 mutations, the disease is fully penetrant; however, 

in females with heterozygous mutations, the penetrance is approximately 53% (9). FRMD7 

expression studies indicate anatomic pathways involved in the optokinetic reflex 
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(9,10,14,15). However, detailed spatiotemporal expression within developing retina has not 

been characterised. FRMD7 promotes neurite elongation at the actin-rich growth cone ends 

through the modulation of actin cytoskeleton (16,17). FRMD7 knockdown during neuronal 

differentiation alters neurite development, indicating a role in axonogenesis or 

dendritogenesis (16). Recently it has been shown that CASK recruits FRMD7 to the plasma 

membrane to promote neurite outgrowth during development of the oculomotor neural 

network and disruption of this interaction results in nystagmus (17).  

With the advent of optical coherence tomography (OCT) it is possible to visualise the retina 

(18) in much greater detail than conventional imaging techniques such as fundus 

photography. Previously the use of OCT (time-domain) in nystagmus was limited due to 

fixation instability, poor resolution and slow scanning speeds. The new generation spectral 

domain OCTs are able to achieve faster scanning speeds and much higher resolution than the 

time domain instruments. This has enabled imaging in patients with infantile and acquired 

forms of nystagmus. Recent OCT studies in multiple sclerosis have suggested that this 

imaging modality has an important role in monitoring disease activity (19) and the retinal 

changes reflect global CNS processes (20). Similarly, OCT studies in infantile nystagmus 

have highlighted the spectrum of abnormal retinal phenotypes and its role in predicting visual 

acuity (7). We have recently shown that we can obtain reliable thickness measurements in 

patients with nystagmus using an ultra-high resolution OCT with very fast scanning speeds 

(21). During foveal pit formation (area of high acuity), the inner retinal layers are displaced 

centrifugally (away from the future foveal pit), while the cone photoreceptors migrate 

centripetally (towards the future foveal pit). As the cone photoreceptors migrate towards the 

fovea, they also undergo specialisation, which involves lengthening of the outer segment. 

This allows increased packing of the cone photoreceptors with highest concentration at the 

fovea (22,23). OCT allows accurate documentation of the stages of arrested retinal 
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development (7). The normal retinal laminar structure and foveal pit visualised using an ultra-

high resolution OCT is shown in supplementary figure 1.   

To date, there have been no studies investigating systematically the retinal morphology in 

patients with idiopathic infantile nystagmus associated with FRMD7 mutations. Studying the 

neural substrates involved in disease pathogenesis can point to potential therapeutic targets. 

Hence, we aimed to carefully investigate the afferent pathway, using high resolution in-situ 

hybridisation techniques and retinal imaging in patients with FRMD7 mutations. 

Results 

FRMD7 Expression 

We show a dynamic expression pattern of FRMD7 mRNA in the developing neural retina 

between Carnegie stages CS15 - CS23 and 9 weeks post conception (wpc). Carnegie Stages 

15 -23 represent the embryological stages from 33 days post conception (dpc) to 56 dpc. At 

CS15 (33dpc) restricted FRMD7 expression is seen within the outer neuroblastic layer (fig 1). 

Development of the retinal ventricular zone (VZ) is similar to the cortical VZ. Postmitotic 

cells from VZ migrate to the future ganglion cell and inner nuclear layers (24). These neurons 

are closely apposed to radial glia, their processes extending to the vitreal surface. At CS16 

(37 dpc) FRMD7 expression is seen within the inner neuroblastic layer. Differentiation of the 

retina begins at the optic disc, and then extends peripherally towards the rim. Thus, the 

staining pattern is different between central and peripheral retina at CS16 and CS19 (47 dpc). 

At CS23 (56 dpc) a bilaminar expression pattern emerges, which is evident by 9 wpc. There 

is FRMD7 expression in the optic stalk at CS15, CS16 and CS19, while, at 9 wpc, expression 

is confined to the optic nerve sheath.  
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Based on our FRMD7 expression results we assessed retinal structure in FRMD7 patients by 

measuring foveal pit depth and central macular and photoreceptor outer segment thickness. 

Since FRMD7 regulates neurite outgrowth we also measured retinal nerve fibre layer 

thickness, and optic disc area, a measure of optic nerve fibre count (25).  

Retinal Phenotypes associated with FRMD7 mutations 

OCT identified an obvious failure of inner retinal cells to migrate away from the foveal pit 

(foveal hypoplasia) in 12/45 patients (supplementary table 2). The incursion of inner retinal 

layers posterior to the foveola represents the hallmark of foveal hypoplasia. Foveal 

hypoplasia was associated with missense, splice and nonsense mutations (fig 2), without 

obvious genotype-phenotype correlations. The c.285-118C>T and c. 206-5T>A represent 

novel mutations. The c.285-118C>T mutation is predicted to activate a cryptic splice donor 

within intron 4 (26). The c. 206-5T>A mutation is predicted to result in obliteration of the 

splice acceptor site in intron 3. The splice variants c.205+2T>G has previously been 

described (14). The c.205+2T>G is within the conserved splice donor residues (position +1 

and +2) and is thus predicted to be pathological by classical exon skipping and nonsense 

mediated decay (14). Furthermore the translational products are likely to be subject to 

nonsense mediated decay. The missense mutations resulting in amino acid variants A266P 

and C271Y are predicted to be pathological (10,14). The C271Y is predicted to destabilise 

the FRMD7 protein by the introduction of a larger amino acid within restricted areas of the 

protein, while A266P is predicted to disrupt a helical domain within the wild type protein 

(10,14). The nonsense mutation resulting in the amino acid variant R335X is predicted to be 

pathological due to introduction of a premature stop codon resulting in a truncated protein 

(10,14). In-vitro studies have shown nuclear localisation associated with R335X (17,27).  
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The foveal pit depth was significantly decreased in the FRMD7 patients in comparison to the 

controls (mean difference = 24.6 µm, p<0.0001). The central macular thickness was 

significantly increased in patients with FRMD7 mutations in comparison to controls (mean 

difference = 12.1 µm, p=0.0014). A shallow foveal pit and increased central macular 

thickness are consistent with foveal hypoplasia (fig 3). We did not identify any cases of fovea 

plana (i.e. anatomic lack of foveal pit). None of the control subjects had foveal hypoplasia. In 

order to assess the maturity of the outer retina and degree of photoreceptor specialisation, we 

assessed the cone outer segment length. We noted that the cone outer segment was 

significantly decreased in length in patients with FRMD7 mutations when compared to 

controls (mean difference = 8.3 µm, p<0.0001). 

 Based on the FRMD7 expression within the optic nerve head in humans, we performed 

quantitative measurements in the patients with FRMD7 mutations and compared it to the 

controls. We identified that the average peripapillary retinal nerve fibre layer thickness was 

significantly decreased in patients with FRMD7 mutations when compared to controls (mean 

difference = 18.7 µm, p<0.0001). Similarly, the optic disc area was significantly decreased in 

patients in comparison to controls (mean difference = 0.37 mm2, p<0.0001). The optic nerve 

cup was shallower (mean difference = 0.31 mm, p = 0.0001) with decreased cup area (mean 

difference = 0.26 mm, p = 0.0002) in patients with FRMD7 mutations (fig 4).  

The mean visual acuity in the FRMD7 cohort was 0.20 LogMAR. There was no significant 

difference in visual acuity or OCT measurements between male and female patients (p>0.05).  
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Discussion 

This study shows for the first time that patients with idiopathic infantile nystagmus have 

retinal and optic nerve changes. This raises an interesting possibility that afferent defects 

during early development could underlie the development of childhood nystagmus. Foveal 

hypoplasia is typically associated with inherited developmental retinal disorders such as 

albinism, PAX6-related phenotypes and achromatopsia (7,28). Infantile nystagmus is a 

common feature of these conditions.  During fovea formation, there is centrifugal 

displacement of inner retinal cells as the foveal pit deepens, and centripetal migration and 

specialisation of cone photoreceptors (22,23). In patients with FRMD7 mutations, impaired 

growth cone guidance (14,16) could lead to retinal neuron migratory defects such as foveal 

hypoplasia and developmental abnormalities of the optic nerve head. This is consistent with 

expression patterns we observed in the developing retina and optic nerve. 

The predominant clinical features observed in patients with FRMD7 mutations are reduced 

visual acuity and abnormalities of the optokinetic response (9,10,15). The novel finding of 

foveal hypoplasia could be the basis of these abnormalities previously described. Typically 

patients with FRMD7 mutations tend to have better visual acuity compared to patients with 

albinism (29). The foveal hypoplasia observed in patients with FRMD7 mutations is much 

milder (i.e. patients with foveal hypoplasia had at least a rudimentary pit – grade 1 foveal 

hypoplasia) in comparison to albinism, where the majority of patients had no foveal pit 

(grade 3 foveal hypoplasia) (7). This could explain the better visual acuity previously 

reported in FRMD7 groups than in albinism (29).  

Previously, there have been no reports of retinal defects in patients with idiopathic 

nystagmus. This is likely due to the limitations associated with retinal imaging. The advent of 

spectral domain optical coherence tomography has opened ultra-high resolution imaging at 
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high speeds. In this study, we have used one of the highest resolution commercially available 

instruments (axial resolution, 3µm) with the fastest scanning speed (52,000 A-scans/second). 

We have shown that, using this instrument, we are able to perform reproducible OCT 

measurements in patients with nystagmus (21).  

Further studies will be required to investigate how FRMD7 mutations lead to the 

morphological retinal changes described in this study. Further studies in an animal model 

would be the next logical step in understanding the pathogenesis of this disorder. The 

FRMD7 knockout mouse model would be suitable model for further investigating the optic 

nerve changes and nerve fibre layer changes described in this study. However a drawback of 

the mouse model is the lack of a fovea, so comparisons to the human visual system would be 

difficult. Thus, it would not be possible to deduce how FRMD7 mutations lead to foveal 

hypoplasia. There have been no detailed neuroimaging studies in patients with FRMD7 

mutations. Therefore it is unclear whether abnormal retinal development in FRMD7 patients 

would lead to abnormal cortical development. Further neuroimaging studies coupled with 

OCT studies in humans as well as histological studies in FRMD7 knockout mouse would be 

needed to assess how the afferent abnormalities might affect neural circuitry within the 

oculomotor system. 

To date there are only two genes, PAX6 and SLC38A8, mutations of which can result in 

isolated foveal hypoplasia (30,31,32). PAX6 mutations have been reported to be a rare cause 

of isolated foveal hypoplasia (28), since they are more commonly associated with aniridia. 

PAX6 mutations can also be associated with optic nerve hypoplasia and brain abnormalities 

(33,34). SLC38A8 mutations are also associated with developmental delay and pervasive 

developmental disorder-like features (30). Recently, Perez et al. used a combination of 

linkage analysis and whole exome sequencing to identify a mutation in SLC38A8 that results 

in infantile nystagmus and isolated foveal hypoplasia (30). However, the mutation was only 
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found in a community of Jewish Indian ancestry, thus representing a very rare autosomal 

recessive cause of foveal hypoplasia. Poulter et al. expanded the mutation and phenotypic 

spectrum associated with SLC38A8, showing that mutations were also associated with optic 

nerve decussation defects, anterior segment abnormalities, but no other characteristics of 

albinism such as pigmentary abnormalities, including iris transillumination defects (32). 

SLC38A8 is expressed within the retina and fetal brain (30,32). With the advent of next 

generation sequencing technologies it will become easier to identify more genes associated 

with foveal hypoplasia, thus providing greater understanding of the genetic basis of foveal 

development. In patients with FRMD7 mutations, there have been no reports of brain 

abnormalities or other ocular phenotypes to date. We did not screen for PAX6 mutations, 

since clinically there were no features to suggest PAX6-related phenotype. Moreover, it is 

also unlikely that our patients had PAX6 mutations, since, as we have shown, in patients with 

PAX6 mutations the nystagmus form is very different, usually with a vertical component (31). 

None of the families had male to male inheritance to suggest autosomal dominant nystagmus, 

as in PAX6, and all families were compatible with X-linked inheritance, as occurs in FRMD7 

mutations.  

Our study suggests that FRMD7 mutations can present as isolated foveal hypoplasia. 

Therefore, patients presenting with infantile nystagmus and foveal hypoplasia in the absence 

of other ocular anomalies should be considered for screening of FRMD7 mutations. The 

study raises an interesting possibility that early sensorimotor integration failure underlies IIN 

development. Prior to this study there have been no structural abnormalities associated with 

IIN, and idiopathic infantile nystagmus was thought to arise from abnormal cortical 

development. The findings in this study suggest that arrested retinal development is an 

important aetiological factor in the development of nystagmus. Whether this in turn affects 

cortical development would need further study.  
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Materials and Methods 

Tissue In-situ Hybridisation 

Spatiotemporal FRMD7 retinal expression was investigated by in-situ hybridisation(10,35)  

on human embryonic and fetal tissue. Human embryos were obtained with appropriate 

maternal written consent and approval from the Newcastle and North Tyneside NHS Health 

Authority Joint Ethics Committee.  HDBR is regulated by the UK Human Tissue Authority 

(HTA; www.hta.gov.uk) and operates in accordance with the relevant HTA Codes of 

Practice.  

Samples were fixed overnight at 4°C in 0.1M phosphate buffered saline (PBS) containing 4% 

paraformaldehyde (PFA; Sigma Aldrich, Poole, UK). The embryos were classified into 

Carnegie Stages (36,37).  

ISH was performed as previously described (38) with some modifications. Paraffin sections 

were de-waxed and rehydrated before being incubated with proteinase K (20 μg/ml; Sigma-

Aldrich) for eight minutes at room temperature. Sections were fixed in 4% PFA/PBS for 20 

minutes, washed in PBS, and treated with 0.1M triethanolamine (Sigma-Aldrich, pH 

8.0)/0.25% acetic anhydride (Sigma-Aldrich)/0.2% HCl for 10 minutes, dehydrated in 

ethanol and air-dried. DIG-labelled probes (300 ng) were used per 100 μl of DIG Easy Hyb 

mixture (Roche, Lewes, UK). Probe/Hyb mix (200 μl) was used per slide, covered with glass 

coverslips. Slides were incubated in a hybridization chamber overnight at 68ºC, rinsed in 5x 

standard sodium citrate (SSC, pH 7.2) at 65ºC to remove coverslips, followed by three 

washes at 50ºC (2x SSC twice and 0.2x SSC once), followed by one wash with 0.2x SSC 

once at room temperature. After briefly rinsing in 0.1M Tris (pH 7.6)/0.15M NaCl (Buffer 1) 

and blocking with 10% foetal calf serum (Invitrogen)/Buffer 1 for one hour at room 

temperature, sections were incubated with anti-DIG antibody (Roche; diluted 1: 1000 in 2% 
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FCS/Buffer 1) overnight at 4ºC. Sections were washed in Buffer 1 for 6 x 30 minutes. 

Detection of probes/anti-DIG antibody was achieved by addition of NBT/BCIP solution 

(Roche; 20 μl/ml) in 0.1M Tris (pH 9.5)/0.1M NaCl (Buffer 2). The colour reaction was 

developed in the dark for several hours to overnight and terminated by rinsing slides in 

Buffer 2 and then distilled water. Sections were mounted in Aquamount. Comparison of 

staining between sense and anti-sense probes was carried out to ensure specificity. Human 

embryos ranging in age from Carnegie stage 15 (35 days post ovulation) to 9 weeks post 

conception were obtained from the MRC/Wellcome-Trust funded Human Developmental 

Biology Resource at Newcastle University (HBDR, http://www.hdbr.org).  

Subjects 

Patients with nystagmus were recruited from different sites: University Hospitals Leicester 

(UK), Moorfields Eye Hospital (UK) and Ghent University Hospital (Belgium). Patients 

underwent detailed ophthalmic examinations, eye movement recordings and electrodiagnostic 

tests. A diagnosis of idiopathic infantile nystagmus was obtained based on (1) normal 

electrodiagnostic tests (electroretinograms and visually evoked potentials based on ISCEV 

standards), (2) onset of nystagmus (horizontal, conjugate oscillation of the eyes) within the 

first 6 months of life (3) no iris transillumination defects on slit lamp biomicroscopy and (4) 

normal colour vision on Ishihara testing. Informed consent was obtained from all participants 

in accordance to the Declaration of Helsinki and all protocols were approved by the local 

ethics committee. We identified a total of 100 IIN patients based on these diagnostic criteria. 

All IIN patients underwent sequence analysis to identify FRMD7 mutations (see methods 

below). We wanted to investigate the retinal morphology in a homogeneous population; 

therefore, we only included patients with FRMD7 mutations. Forty-five patients with FRMD7 

mutations were recruited for subsequent high resolution retinal phenotyping using optical 

coherence tomography. 
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The control cohort (n=60; mean age = 35.0 years, SD = 13.8, range = 5-62 years) was age, 

race and gender matched to the FRMD7 cohort (n=45; mean age = 34.7 years, SD = 17.4, 

range = 7-79 years). The control cohort consisted of 32 males and 28 females. The FRMD7 

cohort consisted of 25 males and 20 females. Patients with FRMD7 mutations had only small 

refractive errors within ± 3 diopters. The inclusion criteria for controls were refractive errors 

within ± 3 diopters. During the scan protocol, refractive error data were entered in SOCT 

before examination. The SOCT software performs a refractive compensation. 

Each control subject underwent an ophthalmic examination to exclude significant ophthalmic 

pathologies. There was no history of retinopathy of prematurity or other ophthalmological or 

neurological pathology in either cohort.  

DNA Sequencing and Analysis 

Primers were designed to amplify the coding exons and the intron-exon boundaries of the 

FRMD7 gene (Accession ID: NG_012347.1) (Supplementary table 1). All the coding exons 

and splice junctions were Sanger sequenced bidirectionally in affected subjects. Mutation 

analysis software SeqMan Pro v11.2 (DNAStar, Madison, WI) was used for base calling and 

alignment of the contigs. Base position�+�1 corresponded to A of the translation initiation 

codon ATG (Genbank file: NM_194277.2). Intronic sequence changes were identified based 

on the FRMD7 genomic sequence (NG_012347.1) and amino acid changes were identified 

based on the reference protein sequence (NP_919253.1). Allelic variants were reported 

according to Human Genome Variation Society guidelines. Allelic variations were assessed 

against the sequence data from 300 male controls (without nystagmus) and dbSNP database 

(http://www.ncbi.nlm.nih.gov/SNP/; dbSNP Build ID: 137). Novel intronic variants were also 

assessed using the Alternative Splice Site Predictor (26). Disease causing mutations were 

identified based on variant segregation with the phenotype, absence of the variants in the 
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control samples and control databases and predicted effects on protein structure. The variant 

data has been submitted to LOVD database (www.LOVD.nl/MR).  

Optical Coherence Tomography 

Ultrahigh resolution spectral-domain OCT (SOCT Copernicus HR; OPTOPOL Technology 

S.A) was used to acquire tomograms from both eyes of the patients (n=45) and controls 

(n=60). We have previously described the acquisition and analysis methods used in patients 

with nystagmus (7,21). This OCT uses a superluminescent light emitting diode at a central 

wavelength of 855 nm. A 3-dimensional scan program (743x75, AxB) was used to capture 

the foveal and parafoveal regions. The scanning window covered a 7x7 mm retinal area 

centred at the fovea. For optic nerve head acquisition the same scan parameters were used, 

however the fixation spot was altered and the scan window was centred at the optic nerve 

head. The terminations of the retinal pigment epithelium (RPE) were used to determine the 

borders of the optic disc; an anterior offset of 150µm from the RPE was used to determine the 

borders of the cup. The acquired images were analysed using the SOCT software (version 

4.1) and custom scripts in ImageJ  software (39) (Rasband, W.S., ImageJ, U. S. National 

Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2013). We 

have previously reported the reproducibility of OCT acquisition and analysis in patients with 

nystagmus (21). 

The effective axial and transverse resolutions obtained using this machine were 

approximately 3µm and 12µm, respectively, with a scanning speed of 52,000 A-

scans/second. The foveal and optic nerve head B-scans were segmented and analysed for 

morphological abnormalities and thickness measurements. These included foveal pit depth, 

central macular thickness, outer segment thickness, peripapillary nerve fibre layer thickness, 

disc area, cup area and cup depth. 

 by guest on A
pril 5, 2014

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


15 

 

Statistical Analyses 

A linear mixed model was used to assess whether there were significant differences between 

the control cohort and patients with FRMD7 mutations for retinal thickness measurements 

(foveal pit depth, central macular thickness, outer segment thickness, nerve fibre layer 

thickness, optic disc area, optic cup area and cup depth). Age, gender and race were used as 

random effects factors. Statistical Analyses were performed in IBM® SPSS® Statistics 

version 20. The diamond plots were used in figures to show differences in thickness 

measurements. They represent the 95% confidence intervals with the line bisecting the 

diamond representing the mean. 
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Figure Legends 

Figure 1: FRMD7 mRNA expression profile in developing human neural retina. (A) low-

magnification image of the embryos from CS 15, 16, 19, 23 and 9 weeks post-conception 

(wpc). (B) Dynamic expression pattern; expression initially confined to the outer neuroblastic 

layer (ONBL) at CS15, subsequently expression seen within the inner neuroblastic layer 

(INBL). Bilaminar expression pattern at 9 wpc (arrows). Expression within the developing 

optic stalk (OPS) at CS15, CS16 and CS19. Expression restricted to the optic nerve sheath 

(ONS), absent in developing optic disc (OD) at 9wpc. Peripheral neural retina is the last to 

differentiate and laminate, hence differential expression between central and peripheral 

neural retina, most evident at CS16 and CS19. Sense images shown below the antisense 

images; once pigmentation occurs, retinal pigment epithelium (RPE) appears as false-

positive for expression at CS16 onwards. Low-magnification image scale bar:  500μm High-

magnification image scale bar: 200μm. 

Figure 2: FRMD7 mutations associated with foveal hypoplasia. All mutations were predicted 

to disrupt the FERM domain or the FERM-adjacent (FA) domain. Missense mutations are 

represented in blue, splice mutations in orange and nonsense mutations in red. The resulting 

amino acid variations are shown. 

Figure 3: Foveal hypoplasia with FRMD7 mutations. (A) Arrested retinal development with 

FRMD7 mutations shown by shallow foveal pit (a), failure of inner retinal cell migration (b), 

failure of cone photoreceptor specialization (c) and smaller retinal nerve fibre layer (d). (B) 

3D thickness maps showing rudimentary foveal pit compared to controls. Central macular 

thickness (C), foveal pit depth (D) and outer segment thickness (E) were significantly 

different compared to controls. 

Figure 4: Optic nerve changes with FRMD7 mutations. (A) Normal optic nerve head shown 

for comparison to FRMD7 mutations (B). Optic disc area (C), nerve fibre layer thickness 

(D), cup area (E) and cup depth (F) were significantly different compared to controls.  
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