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Abstract 

Fluorescence recovery after photobleaching (FRAP) carried out on a confocal laser scanning 

microscope (CLSM) performs well for photobleached disks that are large compared to the 

resolution of the bleaching beam. For smaller disks approaching this resolution, current FRAP 

models providing a closed-form solution, do not allow to extract the diffusion coefficient 

accurately. The new generalized disk model presented here addresses this shortcoming by 

bringing into account the bleaching resolution and the total confocal imaging resolution. A 

closed-form solution is obtained under the assumption of linear photobleaching. Furthermore, 

simultaneous analysis of FRAP data collected at various disk sizes allows for the intrinsic 

determination of the instrumental resolution parameters, thereby obviating the need for an 

extrinsic calibration. A new method to estimate the variance of FRAP data was introduced to 

allow for proper weighting in this global analysis approach by nonlinear least squares. 

Experiments were performed on two independent CLSMs on homogeneous samples 

providing validation over a large range of diffusion coefficients. 
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1 Introduction 

Fluorescence recovery after photobleaching (FRAP, also named fluorescence photobleaching 

recovery FPR) is a well-known microfluorimetric technique for measuring the diffusion of 

fluorescently labeled molecules on a micrometer scale.1 Fluorescent molecules in a defined 

area are quickly and irreversibly bleached by irradiation with light of high intensity. These 

photobleached molecules will subsequently be replaced by diffusion of intact fluorescent 

molecules from the surroundings. The resulting gradual recovery of the fluorescence over 

time in the defined area, observed by using excitation light of low intensity, holds information 

on this diffusion process. Subsequent analysis of the fluorescence recovery data using a 

suitable FRAP model yields the translational diffusion coefficient and the mobile fraction. 

In contrast to its fundamental principle, the instrumental implementation of FRAP changed 

over time. The regular fluorescence widefield microscope with a stationary laser beam for 

bleaching is often replaced by a confocal laser scanning microscope (CLSM). Commercial 

availability, user-friendliness, and optimized optical performance have lead to the widespread 

use of these CLSMs in life science laboratories. The combination of raster scanning and fast 

modulation of the laser beam intensity enables a CLSM to bleach and monitor arbitrary 

regions and makes it an easily accessible FRAP tool.2 

Together with this technical evolution new FRAP models are created for quantitative 

diffusion analysis. The models for non-scanning microscopes and two-dimensional (2D) 

diffusion1,3,4 are replaced by CLSM-dedicated models. Most of these models, however, are 

either limited to 2D diffusion,5 or apply a numerical approach with associated complexity.6-8
 

One of the first FRAP models for analyzing CLSM FRAP data by using a simple closed-form 

equation, was based on the photobleaching of a uniform disk that is much larger than the 

effective resolution of the bleaching beam. We will refer to this model as the uniform disk 
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model (UDM).2 As demonstrated by Braeckmans et al., the assumed bleach profile with sharp 

boundaries is no longer obtained when using smaller bleach regions (region of interest, ROI) 

due to the finite resolution of the bleaching beam. In this context, small or intermediate ROIs 

are defined as having a radius smaller than five times the resolution of the bleaching beam.2 

Diffusion coefficients obtained with these small ROIs will significantly underestimate the 

actual diffusion values when analyzed by the UDM. 

Some applications require small or intermediate sized ROIs or do not allow for large ROIs at 

all. A clear example can be found in biological cells, which are limited in size by nature. Also 

investigation of anomalous diffusion of proteins requires the use of a range of ROI sizes.9-11 

Here we present a new, closed-form generalized FRAP disk model (GDM) which does not 

impose restrictions on the size of the circular bleached area. This is achieved through 

modification of the UDM by bringing into account both the bleaching resolution as well as the 

confocal imaging resolution. A procedure with simultaneous analysis of recovery curves 

derived from bleach regions of various sizes, i.e. a global analysis of the resulting 

multidimensional data surface, is introduced for increased accuracy and a calibration free 

approach. A new method to estimate the variance of FRAP data was introduced to allow for 

proper weighting in this global analysis approach by nonlinear least squares. By a detailed 

experimental validation, we demonstrate that a wide range of diffusion coefficients can be 

accurately retrieved independent of the size of the bleached disk. 

 

2 Theoretical framework 

2.1 Effect of the finite width of the scanning laser beam on the bleached region 

The derivation below of the GDM is valid for 2D diffusion in an infinite plane XY and single 

photon photobleaching and imaging. For this situation, it is shown by Braeckmans et al.2 that 
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the concentration bC of fluorophores after irreversible photobleaching of a 2D geometry  rB  

with rotational symmetry around the Z-axis by a scanning beam can be described by: 

 
 rK

yv

q

b eCrC 



 

0



 (1) 

where 0C  is the homogeneous initial fluorophore concentration, v  the line scanning speed, 

y  the distance between consecutive scanning lines,   the cross-section for single photon 

absorption, and q  the quantum efficiency for single photon photobleaching. The bleaching 

geometry  rK  that results from scanning the bleaching geometry  rB  with the effective 

bleaching intensity distribution  rIb  of the scanning beam, can be calculated from the 

convolution product of B(r) and Ib according to [Figure 1]: 
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The effective bleaching intensity distribution  rIb  should not be confused with the intensity 

distribution of the illuminating laser beam. It was shown before that the effective 

photobleaching distribution is a complex function of the laser intensity distribution, the 

fluorophore photochemistry, the photon flux and the physicochemical local environment.12-14 

Nor does  rIb  equal the imaging point-spread function (PSF) of a CLSM. The latter is the 

product of the illumination PSF at the excitation side and the detection PSF at the emission 

side,15 while during the bleaching process only the excitation side matters. 

The bleaching intensity distribution is approximated by a 2D Gaussian characterized by the 

effective bleaching resolution br : 
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The convolution in Eq. (2) implies a modulation of  rB  with the effective bleaching intensity 

distribution whose effect on the recovery process will increase as the dimensions of  rB  

approach br .  

In order to obtain a closed-form solution further on for the recovery process, only a small 

amount of photobleaching is assumed, i.e.   1rK
yv

q





, such that Eq. (1) can be linearized. 

Under this approximation, Eq. (1) can be expressed in terms of photobleached molecules *
bC  

at time 0t   as: 

     *
0 0b b
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C r C C r C K r

v y


  


 (4) 

Combining Eq. (4) together with Eq. (2) and Eq. (3) yields: 
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where 0I  is the modified Bessel function of the 0th order. In order to obtain the recovery of 

fluorescence after bleaching, Fick’s second law of diffusion has to be solved for the initial 

condition in Eq. (5). A solution can be easily found by noting that this expression resembles 

closely the general solution of the diffusion equation in cylindrical coordinates for a radially 

symmetric initial distribution  rf *  of bleached molecules and for a diffusion constant D: 
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where  * ,bfC r t  denotes the concentration of the bleached molecules arising from the initial 

distribution  rf * . 
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If now an initial concentration  rf *  and time 0tt   can be found for which  0
* , trCbf  

becomes identical to  *
bC r , the solution for Eq. (6) can be used and the intended closed-form 

solution can be obtained. This situation is met for 
D

r
t b

8

2

 , since it can be shown that 
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as can be verified by substitution in Eq. (6). This initial concentration  rf *  in Eq. (7) can be 

considered to originate from bleaching a geometry  rB  with a beam of infinite radial 

resolution    rIrI bb δ0  , where (r) is the Delta-Dirac function. This can be seen as 

follows. Assuming the bleaching process to be linear, one obtains in analogy with Eq. (4): 
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By comparing Eq. (7) and Eq. (8) we find that 2
00 2 bbb rII


   and Eq. (7) becomes 

     rBKCrBI
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where 0K  is the photobleaching parameter that determines the bleaching depth as used in the 

uniform disk model.2 

In conclusion, the concentration distribution  rCb
*  as obtained by bleaching the geometry 

 rB  with a laser beam of finite resolution characterized by br  is the same distribution as 

obtained by diffusion from an initial concentration  rBKC 00  after a time 
D

r
t b

8

2

0   has 

elapsed. In other words, immediately after the bleaching phase, the bleached region with its 
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shallow slopes created by a scanning laser beam can be regarded as originating from the 

perfect uniform disk with sharp boundaries through a diffusion process which started a time 

D

r
t b

8

2

0   earlier. Introduction of the time shift 
2

8
brt t
D

   in the UDM is sufficient to bring 

the finite width of the bleaching scanning laser beam into account. 

 

2.2Effect of finite total detection resolution on the time evolution of FRAP 

As the photobleached disk can now be of any size, the overall detection resolution dr  of the 

CLSM cannot be neglected anymore for very small or intermediate disks. This requires a 

revision of the uniform disk formula as described by Braeckmans et al.2 The original UDM 

formula for 2-D diffusion is given here for the convenience of the reader: 
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where 
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2

 ,  twF ,  is the integrated fluorescence over the photobleached disk with 

radius w  at time t after the bleaching period as observed by the CLSM,  wF0  is the initial 

integrated fluorescence level within the ROI before bleaching, and 0I  and 1I  are the modified 

Bessel functions of 0th and 1st order, respectively. It has to be noted that br  is neglected in the 

UDM model which is valid for large ROIs. 

Nevertheless, the UDM can be easily extended to take dr  into account (calculations not shown 

here) leading to

Dt
r

w

d 2
4

2

2


  in Eq. (10). Note that for a large disk ( drw  ) this indeed 

reduces to the familiar uniform disk formula. 

Taken together, linearizing the photobleaching process, introducing the time shift as discussed 

above and taking the total imaging PSF into account, finally leads to the expression: 
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  and where  twF ,  is the integrated 

fluorescence over the photobleached disk with radius w  at time t ,  wF0  is the initial value of 

 twF ,  before bleaching. Eq. (11) will be referred to as the GDM since it is the generalization 

of the classic UDM taking into account the effective resolution of the bleaching beam and the 

microscope imaging resolution. 

Common assumptions between GDM and UDM are initially uniformly distributed 

fluorescence molecules, an isotropic diffusion process in an infinite medium, absence of flow, 

a sufficiently short bleaching phase so as to neglect diffusion during bleaching and 2-D 

diffusion.2 The latter assumption is satisfied for low NA lenses (which cause a cylindrical 

bleach profile) or lenses of high NA when the sample thickness is small compared to the axial 

resolution of the lens, as is e.g. the case for biological cell membranes. 

Finally we note that the presence of an immobile fraction of molecules M can be taken into 

account by substituting the expression in Eq. (11) into the right hand side of: 

   
     

 0 0

, ,0
, 1

F w t F w
F w t M M

F w F w
    (12) 

 

3 Materials and Methods 

3.1 FRAP equipment 

FRAP experiments were performed on two independent CLSMs. The first microscope (setup 

A) was an MRC1024 UV (Bio-Rad, Hemel Hempstead, UK) equipped with a custom-built 

FRAP module and a 4 W Ar-ion laser (model Stabilite 2017; Spectra-Physics, Darmstadt, 

Germany).2,14 A 10× objective lens (CFI Plan Apochromat; Nikon, Badhoevedorp, The 
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Netherlands) with a numerical aperture (NA) of 0.45 was used. The back aperture of this lens 

was only partially filled, resulting in a lower effective NA of ~0.2 and an dr value of 1.0 µm 

as determined from subresolution beads.14 

The second confocal setup (setup B) was an LSM 510 META (Carl Zeiss, Jena, Germany) 

installed on an Axiovert 200 M motorized frame (Carl Zeiss, Jena, Germany). It was equipped 

with a 30 mW Ar-ion laser and a 10× objective lens (Plan-Neofluar; Zeiss, Jena, Germany) 

with a NA of 0.3. The overall detection resolution dr  was 0.9 µm, as determined using sub-

resolution beads. For both setups, a laser power of 0.5 to 1 mW at the sample was used for 

photobleaching. 

 

3.2 Sample preparation 

FRAP measurements were performed on solutions of FITC-labeled dextran (FD) molecules 

(Sigma-Aldrich, Bornem, Belgium) with a molecular weight of 2000 kDa or 464 kDa. These 

compounds will be referred to as FD2000 and FD500, respectively. All stock solutions were 

prepared in HEPES buffered solution at pH 7.4.  To increase the viscosity, solutions with 40% 

and 56% (w/w) sucrose (VWR Prolabo, Leuven, Belgium) were prepared from the FD stock 

solutions. The final fluorescence signal scaled linearly with the concentration as verified 

experimentally on each setup individually. 

For FRAP experiments, 5 μl of the solution was sandwiched between a microscope slide and 

cover glass with Secure-Seal stickers (Sigma, Bornem, Belgium) of 120 μm thickness in 

between. This avoids any detectable flow inside the solutions while maintaining a 3D volume. 

 

3.3 FRAP protocol 

All measurements were performed at room temperature. A fresh homogeneous region of the 

sample of interest was brought into focus before the start of each FRAP experiment. The 
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execution of the experiments was controlled through the automated microscope bleach control 

software. The resulting stack of images represented a time-series recording with three 

consecutive phases [Figure 2]. The first phase was marked by a set of one to five images 

showing the sample before bleaching. In the second phase, the user-defined circular ROI was 

bleached. The duration of the bleach phase did not exceed 1/10th of the characteristic recovery 

time D ,16 where D  is defined as: 

D

w
D 4

2

  (13) 

Only one bleach iteration was allowed for all ROIs. Depending on the experiment, the 

nominal ROI radius as set in the control software ranged from 1.0 µm to15.2 µm. 

Only the setup A registered fluorescence intensities during bleaching, resulting in one image 

showing the disk at the time of bleaching (hereafter called bleach image). All subsequent 

images showed the recovery of the fluorescence after the bleach-phase. This is the post-bleach 

phase. The time-interval between the images and the total acquisition time were selected so 

that when scaled to the recovery time D  a similar distribution of data points for all ROI sizes 

was obtained. Typically a time series of 50 images was recorded with a time of 3D  between 

the images as a trade-off between obtaining sufficient sampling of the recovery phase and 

limiting photobleaching due to imaging. 

 

3.4 Recovery curve extraction and variance estimation 

All data extraction was performed in MATLAB (The MathWorks BV, Eindhoven, The 

Netherlands) using custom written routines. First, the coordinates of the circular bleach ROI 

were determined. For setup A, the center of the bleach disk was determined using a center-of-

mass algorithm using the bleach image. For setup B this information was obtained from the 

metadata of the image sequence using a home-written routine. 
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Secondly, all pixels within the ROI were integrated frame by frame. A background region was 

selected at a distance of at least 4 times the radius of the bleach ROI. The recovery curve was 

corrected for changes in fluorescence intensity (e.g. by photobleaching during imaging or 

laser fluctuations) by normalizing the ROI fluorescence intensity by the background intensity. 

Finally, the recovery values were normalized to the mean pre-bleach intensity according to 

Eq. (11). 

To allow weighted least-squares fitting of the experimental data to the theoretical model, the 

weight of each data point of this normalized recovery curve was the inverse of the estimated 

variance, taking into account all applied mathematical operations. Key to this variance 

estimation is the variance of the individual pixels, which was determined using the observed 

linear relationship between the unnormalized average pixel intensity and variance of 

homogeneous regions as described by Dalal et al. [Figure 3(a)].17 The average and variance of 

selected homogeneous regions from the recorded time series were calculated and resulting 

average-variance pairs with identical experimental settings were pooled across the data set to 

determine this linear relationship. Application of the propagation of errors subsequently when 

integrating over the number of pixels inside the ROI and considering other correction and 

normalization steps results in distinct variances associated with large and small ROIs [Figure 

3(b) and (c)]. 

 

3.5 Analysis of recovery curves 

Each set of recovery curves was analyzed in two distinct ways. In the first approach, further 

referred to as single curve analysis, each curve was separately analyzed utilizing the 

calibrated resolution parameters br  and dr . In the second approach, two global analyses of all 

recovery data were performed. These global analyses respectively utilized and ignored the 

calibrated values of the resolution parameters to investigate the feasibility of recovering the 
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combined resolution parameter R (cfr. Eq. (11)) exclusively from the recovery data 

themselves. 

In the single curve analysis, each experimental recovery curve was fit to the UDM [Eq. (10)] 

and to the new GDM [Eq. (11)], both adjusted for a mobile fraction M through Eq. (14), using 

a weighted non-linear least-squares optimization minimizing 

 2
2

1
fit data

N

i i i
i

y y 


   (14) 

where N  is the number of points in the fit and i  is the inverse of the estimated variance of 

the ith point. These weights were used to obtain statistically justified 2  values. Standard 

deviations on the recovered parameter values were obtained using a modification of the 

MATLAB routine nlparci. 

For setup A, the photobleaching resolution br  for both models was set to 2.5 µm: 2 µm as 

determined from lineFRAP experiments12
 increased with 0.5 µm to account for the 2 pixel 

rise time of the acousto-optical modulator (AOM). For setup B, br  was set to 1.9 µm: 1.4 µm 

calibrated using lineFRAP (FD500 in 56% (w/w) sucrose, data not shown) increased with 0.5 

µm analogously to setup A.  

For the GDM, dr  was set to 1.0 µm and 0.9 µm for setup A and B, respectively. The mobile 

fraction M was set freely adjustable for consistency check: for the FITC-dextran solutions M 

should approximate one. Results were grouped per ROI radius by calculating the weighted 

average values of the obtained parameter values. 

For simultaneous analysis of a set of recovery curves, home-written routines were used. These 

routines make use of a non-linear least-squares optimization algorithm. Parameters can be 

linked across recovery curves, i.e. made global, such that their values are equal for all selected 

recovery curves. Several sets of initial guesses were used to verify the true global minimum. 
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The obtained results were compared with the values obtained using the Stokes-Einstein 

equation 

Hr

kT
D

6
  (15) 

where Hr  is the hydrodynamic radius of the diffusing molecules, k  the Boltzmann constant, 

  the dynamic viscosity and T the absolute temperature. The hydrodynamic radius of the FDs 

was calculated according to the relationship reported by Braeckmans et al.2 The dynamic 

viscosity   was obtained from the literature.18 

 

4 Results 

4.1 Comparison of uniform disk model with new generalized disk model: single curve analysis 

FD2000 solutions were used for setup A and FD500 solutions for setup B. The viscosity of the 

solutions was increased using different amounts of sucrose (40% and 56% (w/w)) to cover a 

range of diffusion coefficients (0.205 to 2.22 µm2/s). For a given viscosity FRAP experiments 

were carried out on the same sample using photobleaching disks of varying radii. Hence, it 

was expected that all experiments would yield identical results. 

Each experiment was analyzed by single curve analysis using the classic UDM and the new 

GDM. Representative results are shown in Figure 4. For all FRAP experiments analyzed, the 

mobile fraction M was close to 1 for both models, as expected from the model system used in 

these experiments. For setup A with br =2.5 µm, it could be expected that for the UDM the 

calculated D values are independent of the radius for radii >10 µm, i.e. 4-5 times the effective 

photobleaching resolution. For smaller radii, D values recovered using the UDM were 

expected to gradually decrease because of the underestimation of the effective ROI size. For 

the smallest disk size, the UDM underestimates the expected diffusion coefficient by a factor 
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of 2. On setup B an entirely similar trend was observed, demonstrating that the deviations are 

not instrument related [Figure 4(b)].  

Analysis of the same data sets with the GDM nicely resulted in diffusion values that are 

independent of the size of the disk (within the experimental error). We note that small 

bleaching depths were used, 0K < 0.3, consistent with the linearization in Eq. (4). Thus, the 

underestimation of the effective radius of the ROI in the UDM was appropriately 

compensated by the new model. For large ROIs, the D-values of the UDM asymptotically 

approach the values of the GDM, as can be expected. 

 

4.2 Comparison of uniform disk model with new generalized disk model: global analysis 

Since all recovery curves in a data set are derived from the same sample, they are all 

characterized by the same diffusion coefficient D. This is often implemented in the data 

analysis by averaging over all measurements, either at the level of the recovery curves 

themselves or at the level of the measured D values. In the current paper, a third 

implementation is used: a simultaneous analysis with the parameter D linked across all related 

recovery curves, i.e. a single, global parameter for D shared by all recovery curves. Other 

parameters like the bleaching depth and the mobile fraction can be kept local, i.e. these fitting 

parameters are specific for each individual recovery curve. This approach allows for 

differences in these parameters between recovery curves. 

All data sets were analyzed using this global analysis applying both UDM and GDM. Similar 

as in the single curve analysis, the latter model made use of the calibrated resolution factor R 

by incorporating it as a fixed, i.e. non-adjustable parameter. For all data sets globally 

analyzed, D recovered using the UDM was consistently smaller as compared to the GDM that 

better approached the theoretical expected value [Table 1]. The uncertainties on these 

recovered values are similar for both models. The underestimation of D by the UDM, 
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however, was smaller than observed using solely the smallest ROI size in the single curve 

analysis. In other words, inclusion of large ROI sizes moderates the underestimation of D, as 

can be expected. 

Single curve analysis of FRAP data using the GDM requires a priori knowledge of dr  and br , 

which are combined in the parameter R. This means that R is kept constant and identical in 

the individual analysis of all related recovery curves. However, in a simultaneous analysis of 

related recovery curves arising from different ROI sizes, the common value of the parameter 

R can be determined by linking R over the related curves, i.e. there is a single parameter R in 

the optimization routine. Best results are obtained when R is linked across as many ROI sizes 

as possible. 

This approach does yield D values close to the expected values [Table 1]. Compared to the 

approach that applies a fixed R, the recovered values of D are identical within the 

experimental error and their uncertainties nearly double but remain of the same order of 

magnitude. In other words, even without making use of a priori information on R, the correct 

D can be obtained when a range of ROI sizes is considered. 

Since dr  is known, the br  values can be calculated from the fitted R values. For all data sets 

analyzed, a physically relevant br  value approaching the calibrated value is obtained [Table 

2]. 

 

4.3 Importance of R per ROI size 

The correction factor R  is more important with decreasing ROI radius (vide supra).To 

experimentally confirm this statement, the accuracy by which R  can be determined per ROI 

size is investigated. R  should be obtained with higher accuracy from small ROI radius as 

compared to their larger counterparts. This was investigated by linking D over all recovery 
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curves and by linking R  within experiments of the same ROI size. The recovered values of 

R  displayed a variability amongst the different ROI sizes without significant differences 

[Figure 5]. It was obvious that the uncertainty on R increased with increasing ROI radius, 

thereby corroborating the theory. 

 

4.4 Effect of omitting the large ROIs in the global analysis 

Analysis including recovery curves from all ROI sizes led to a reliable result. Experimental 

conditions, however, do not always allow for large ROIs in case of small samples. Therefore, 

it was necessary to investigate the performance of the new GDM with freely adjustable 

Rwhen only these smaller sizes are considered. A global analysis was repeatedly performed 

starting with only the two smallest ROI sizes and progressively including larger ROI sizes. 

Figure 6 displays the results of two representative data sets obtained with FD2000 in 40% (a) 

and 56% (b) (w/w) sucrose using setup A and analyzed by the presented method. 

Applying this strategy using UDM, it comes as no surprise that the obtained values for D 

using only small ROIs severely deviate from the expected value [Figure 6]. When also larger 

ROIs were included, D increased but never reached the expected value. With the GDM and a 

fixed value of R , on the other hand, the correct value of D could be found already with only 2 

to 3 small ROI sizes at the expense of a larger uncertainty on the fitted parameters [Figure 6]. 

This conclusion was similar amongst all data sets, indicating that small ROIs are sufficient to 

accurately determine D. 

A similar analysis was performed using GDM but with a linked R  across the data as a free 

fitting parameter. This approach yielded better D values than the UDM. In comparison with 

GDM with a fixed R, somewhat more variation in the recovered D values could be observed. 

Nevertheless, even without any prior knowledge of R, the GDM clearly outperforms the 

UDM. 
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5 Discussion 

The measured diffusion coefficient D of a system with free diffusion should not vary upon 

changing the radius of the bleach ROI. As shown by Braeckmans et al.2 and also illustrated by 

the results in this study, this is not the case for small or intermediate sized ROIs when 

analyzed by the UDM. Since these small or intermediate sized ROIs are sometimes required 

for diffusion measurements in small samples,9-11
 a new model was developed. The resulting 

generalized disk model presented in this paper renders D essentially insensitive to the ROI 

radius, as is clearly demonstrated by the single curve analysis of recovery curves for each ROI 

size. This enables the use of these small and intermediate ROI sizes to obtain accurate D 

values on any CLSM. 

Absence of recovery during photobleaching enables the full description of the resulting 

concentration profile immediately after bleaching by solely the radius of the ROI and the 

effective photobleaching resolution br . Together with the finite total detection resolution dr , a 

priori knowledge of br  is essential for the GDM using single curve analyses. While dr  can be 

determined by straightforward recording of sub-resolution beads, the calibration measurement 

required for determination of br  is more laborious and difficult to obtain accurately since it 

depends on the type of fluorophore, photon flux and local chemical environment. Using a 

reference solution of known D, br  can be estimated in a separate calibration measurement by 

means of lineFRAP.12 However, this calibration does not include the rise time of the AOM 

and the calibrated br  might still be underestimated. Therefore, it is suggested to use the GDM 

in combination with the global fitting procedure since this allows to extract the R  value from 

FRAP experiments performed at various ROI sizes. Linking R  across only a few small ROI 

sizes is sufficient to obtain a reliable result. For the experiments considered in this work about 
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three ROI sizes were sufficient. Besides the estimation of R  from the optimization, global 

analysis offers a second important advantage. The lower signal-to-noise ratio associated with 

smaller ROI sizes, together with a limited photobleaching depth required for the GDM, might 

decrease the accuracy of single curve fit analyses. Global analysis of all recovery curves, in 

contrast, is still capable of returning relevant parameters, despite of a low signal-to-noise 

ratio.19 

 

Conclusion 

A new generalized disk model is introduced in a closed-form expression for analysis of FRAP 

recovery curves obtained at any ROI size. Using a simultaneous analysis of recovery curves 

obtained with a variety of ROI sizes, even in the absence of large ROIs, the diffusion 

coefficient D can reliably be obtained without prior calibration of the resolution parameters. 

This enables the use As a result, the range of ROI sizes that can be applied in FRAP 

experiments performed using a CLSM is successfully extended to small or intermediate 

circular ROI sizes which are only a few times the total imaging PSF.of CLSMs in FRAP 

experiments using.small or intermediate circular ROI sizes. 

The exclusion of size-dependent artifacts is essential when studying systems by varying the 

radius of the bleach ROI.  The possibility to use a large range of ROI sizes not only offers the 

possibility of more flexible diffusion measurements, but is also expected to be valuable for 

more complicated measurements such as detectingThis approach is e latter is applied to probe 

the process of interest at different length scales to detect spatial heterogeneities , as applied to 

the study ofin the membrane organization or receptor distribution in the plasma membrane of 

live cells.9,10,20 Another application that will benefit from this new approach includesand tothe 

studyinvestigate of the connectivity between different domains in heterogeneous 

heterogeneities in (bio)materials. through diffusion of a suitable fluorescent probe.21 
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Tables 

Table 1: Global analysis of FITC-dextran experiments for UDM and GDM at room 

temperature. Uncertainties are reported as standard deviations. 

Setup MW 
[kDa] 

Sucrose / 
HEPES 

[% (w/w)] 

Diffusion coefficient [µm2/s] 

Expected UDM 
GDM 

R fixed* R freely adjustable 
A 2000 40 1.07 1.03± 0.01 1.08 ± 0.01 1.10 ± 0.02 
A 2000 56 0.205 0.179 ± 0.003 0.216 ± 0.003 0.207 ± 0.005 
B 500 40 2.22 2.11 ± 0.03 2.39 ± 0.03 2.26 ± 0.05 
B 500 56 0.427 0.371 ± 0.008 0.423 ± 0.008 0.42 ± 0.02 

* Setup A: R = 1.8 µm2 
 Setup B: R = 1.1 µm2 
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Table 2: Comparison of the calibrated bleach resolution br  with the recovered value from the 

global analyses using the obtained R  and the calibrated value of dr .  

Setup MW 
FD 

[kDa] 

sucrose 
[% (w/w)] 

calibrated values recovered values 

dr [µm] br [µm] R [µm2] R [µm2] br [µm] 

A 2000 40 1.0 2.5 1.8 2.4 ± 0.3 2.9 ± 0.4 
A 2000 56 1.0 2.5 1.8 1.4 ± 0.2 2.1 ± 0.3 
B 500 40 0.9 1.9 1.1 0.8 ± 0.2 1.6 ± 0.4 
B 500 56 0.9 1.9 1.1 1.1 ± 0.3 1.9 ± 0.5 
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Figures 

Figure 1: (a) Three-dimensional illustration of  rB  representing the ideal circular bleach 

geometry with sharp edges. In reality, this geometry is bleached by a scanning, focused laser 

beam with an effective bleaching intensity distribution  rIb  shown in (b). The white circle 

indicates the e-2 intensity level at which its radius equals br . The resulting bleach intensity 

distribution  rK  is consequently the convolution product of  rB  and  rIb . One half of 

 rK  is shown for a radius w  of 5 times br  (c) and 1 time br  (d). The gray shaded cylinder 

with dashed lines indicates the corresponding  rB . 

 

Figure 2: Three typical phases in a time series of a FRAP experiment. (a) The fluorescence 

intensity is first recorded before bleaching. (b) The selected region of interest (indicated in 

white) is bleached. Only setup A registers the fluorescence intensities during this phase. (c) 

and (d) are respectively the first (directly after bleaching) and the last image of a series of 

post-bleach images monitoring the recovery of the bleached region. 

 

Figure 3: The experimental relationship between the average pixel intensity (in digital levels) 

and the associated variance is shown in (a) for a given set of experimental parameters of setup 

B and a solution of FD500 in 40% (w/w) sucrose. Each average-variance pair is obtained from 

a homogeneous region from FRAP time series. In (b) and (c), two representative 

experimental, normalized recovery curves are shown. These curves were obtained using a 

ROI with a radius of 1.9 µm (b) and 15.2 µm (c). Error bars indicate the estimated standard 

deviations. Time is expressed in units of D  to display both curves on an identical scale. 
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Figure 4: Comparison of the UDM (empty squares) and the GDM (filled bullets). 

Representative data sets are shown for setup A with FD2000 (a) and for setup B with FD500 

(b) dissolved in respectively 56% and 40% (w/w) sucrose. Results are grouped per ROI radius 

using weighted averages of the obtained diffusion coefficient D. Number of recovery curves 

per ROI radius varied between 5 and 10. The UDM returned a diffusion coefficient that 

decreased with decreasing ROI radius, reaching a maximum underestimation at the smallest 

ROI size. Error bars are shown as standard deviations. 

 

Figure 5: Resolution factor R as a function of ROI radius, recorded with setup A and FD2000 

dissolved in 56% (w/w) sucrose in HEPES buffer. Error bars represent standard deviations. 

 

Figure 6: Related data sets were repeatedly analyzed using global analysis while progressively 

including larger ROIs. D was linked across all included recovery curves. Representative data 

sets are shown obtained with FD2000 in 40% (a) and 56% (b) w/w sucrose/HEPES buffer 

using Setup A. Error bars representing the standard deviations are shown if larger than the 

symbol size. 
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