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We introduce the method of geodesic least squares (GLS) regression for estimating fusion scaling laws. Based
on straightforward principles, the method is easily implemented, yet it clearly outperforms established regres-
sion techniques, particularly in cases of significant uncertainty on both the response and predictor variables.
We apply GLS for estimating the scaling of the L-H power threshold, resulting in estimates for ITER that
are somewhat higher than predicted earlier.

I. INTRODUCTION

One of the main activities in analyzing data from fusion
experiments consists of fitting deterministic relations re-
flecting physical dependencies between plasma variables.
This is an essential instrument for evaluating theoretical
predictions and for extrapolating key quantities to future
devices via scaling laws. Ordinary least squares (OLS)
regression is commonly used for this purpose, primarily
owing to its simplicity1. However, frequently the data
are contaminated by significant stochastic uncertainty
caused by (non-Gaussian) measurement noise and plasma
fluctuations. This can be further complicated by nonlin-
ear relations and data outliers. Moreover, OLS does not
properly handle situations with significant measurement
uncertainty on the predictor variables, which is often the
case in fusion science. In this paper we introduce a new
regression method, geodesic least squares (GLS), that is
able to cope with significant departure from the classic
assumptions underlying OLS. We demonstrate its per-
formance using synthetic data and we revisit the scaling
law for the power threshold for the L-H transition, using
data from a multimachine database.

II. GEODESIC LEAST SQUARES

The method that we propose is a clear generalization of
the standard regression method using OLS. To see this,
we focus on the very simple example of a linear relation
η = bξ, with b a constant. In reality we observe stochastic
(noisy) variables x and y, where we assume Gaussian
noise in this case:

y = η + ǫy = bξ + ǫy, ǫy ∼ N
(

0, σ2
y

)

, (1)

x = ξ + ǫx, ǫx ∼ N
(

0, σ2
x

)

. (2)
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Hence, we explicitly allow for the challenging case of un-
certainty on the predictor variable ξ. We record N ob-
servations xi (i = 1, . . . , N), mutually independent and
identically distributed (iid), and yi, also iid. We assume
known σx and σy, which are the same for all measure-
ments (homoscedasticity). According to the regression
model, conditionally on xi each variable yi has a normal
distribution:

p(yi|xi) = N
(

bxi, σ̃
2
y

)

≡ N
(

bxi, σ
2
y + b2σ2

x

)

, (3)

where we have defined σ̃y. In our simple example this
follows from standard Gaussian error propagation rules.
However, for nonlinear regression laws the conditional
distribution for yi has to be obtained by integrating out
(marginalizing) the unknown true values ξi. Neverthe-
less, the Gaussian error propagation laws may be used in
the nonlinear case as well, to approximate the conditional
distribution p(yi|xi) by a normal distribution.
The well-known maximum likelihood method (ML)1

can be used to estimate the slope b that best fits the
data, by maximizing the probability (3) for all observa-

tions. Hence, we seek an estimate b̂ that maximizes the
likelihood function L:

L
(

b
∣

∣

∣
{xi}, {yi}

)

=

N
∏

i=1

1√
2πσ̃y

exp

[

− (yi − bxi)
2

2σ̃2
y

]

. (4)

Put differently, we estimate b such that it maximizes the
probability of observing the measured data. From (4) it
is clear that, in the case of a Gaussian error distribution
and neglecting the error bar on xi, ML is equivalent to
minimizing the sum of squared distances between yi and
bxi, which is nothing but OLS.
Interestingly, the right-hand side of (4) can also be

seen as the probability density for bxi, given yi (in accor-
dance with the Bayesian view on probability). Now, the
first key difference between OLS and our method, is that
we do not assume that both yi and bxi are distributed
with the same standard deviation σ̃y . As a result, we not
only minimize the distance between each yi and its cor-
responding bxi, but rather we aim at minimizing the dif-
ference between their entire probability distributions. For
a Gaussian distribution, this involves comparing means
and standard deviations. As a result, the regression anal-
ysis is based not only on measurement points, but also
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includes information on the distribution of the data. This
leads to more reliable regression results, as will be demon-
strated in the experiments.
The second key difference with OLS is that we do not

use the Euclidean distance to measure the discrepancy
between distributions, since it turns out to be unsuitable
for that purpose2. Rather, we employ the Rao geodesic

distance (GD) as a similarity measure in probability
spaces. The GD is defined in the context of the theory of
information geometry, which is a geometric approach to
probability theory2,3. In information geometry, a proba-
bility density family is interpreted as a (Riemannian) dif-
ferentiable manifold (multidimensional surface). A point
on the manifold corresponds to a specific probability den-
sity function (PDF) within the family and the family pa-
rameters provide a coordinate system on the manifold.
The Fisher information, a well-known concept in statis-
tics, plays the role of a unique metric tensor (Fisher-Rao
metric) on such a manifold, which can be used to derive
geodesics and the geodesic distance between two points
on the manifold. For a probability model p(x|θ) describ-
ing a vector x, parameterized by anm-dimensional vector
θ with components θi (i = 1, . . . ,m), the entries gij of
the Fisher information matrix are the following:

gij(θ) = −E

[

∂2

∂θi∂θj
ln p(x|θ)

]

, i, j = 1 . . .m.

Here, E signifies the expectation. In this paper we use a
univariate normal distribution N (µ, σ2), but it is impor-
tant to note that GLS can easily be implemented with
any distribution model. In the Gaussian case an analytic
expression for the Fisher-Rao metric is available, which in
turn allows a closed-form expression for the GD between
two normal distributions2. Indeed, for two univariate
normal distributions p1(x|µ1, σ1) and p2(x|µ2, σ2), pa-
rameterized by their mean µi and standard deviation σi

(i = 1, 2), the GD is given by4

GD(p1||p2) =
√
2 ln

1 + δ

1− δ
= 2

√
2 tanh−1 δ,

δ ≡
[

(µ1 − µ2)
2 + 2(σ1 − σ2)

2

(µ1 − µ2)2 + 2(σ1 + σ2)2

]1/2

. (5)

In the case of multiple independent normal variables
it is easy to prove that the square GD between two sets
of products of distributions is given by the sum of the
squared GDs between the corresponding individual dis-
tributions4.
As an illustrative example of why the GD is more

suitable as a similarity measure between PDFs, as com-
pared to the Euclidean distance, we consider the case of
two Gaussians with PDFs p1(x|2, 0.3) and p2(x|6, 0.5),
drawn in Figure 1(a). In Figure 1(b) two distributions
p3(x|2, 1.5) and p4(x|6, 2) are displayed with the same re-
spective means, but larger standard deviations compared
to the first case. Now, whereas p1 and p2 are easy to dis-
tinguish, the distributions p3 and p4 overlap to a much
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FIG. 1. A pair of normal distributions with relatively small
standard deviations in (a), compared to a pair of distributions
with the same respective means, but larger standard devia-
tions in (b). The distance between p1 and p2 is larger than
the distance between p3 and p4.

larger extent. This difference in the level of ‘distinguisha-
bility’ should, of course, be reflected in the distance be-
tween the distributions. That is, the distance between
p1 and p2 should be larger than that between p3 and
p4. From the expression in (5) it can be seen that the
GD fulfills this requirement; indeed: GD(p1||p2) = 5.7
and GD(p1||p2) = 2.1. However, on the contrary, the
Euclidean distance between p1 and p2, calculated as

√

(µ1 − µ2)2 + (σ1 − σ2)2 = 4.0050,

is smaller than the Euclidean distance between p3 and p4,
which is 4.0311. Also, as suggested by this example, the
GD is more sensitive to differences in the standard devi-
ations, compared to the Euclidean distance. Hence, the
Euclidean distance does not properly take into account
the intrinsically non-Euclidean character of probability
distributions.
Continuing the case of a Gaussian conditional distri-

bution of the dependent regression variable, we now in-
troduce an extra parameter σobs, with the purpose of
modeling the uncertainty in the observations of the re-
sponse variable y. We then estimate b and σobs by
minimizing the sum of squared GDs between the mod-

eled distributions, with mean bxi and standard devia-

tion σ̃y =
√

σ2
y + b2σ2

x, and the observed distributions,

with mean yi and standard deviation σobs. Owing to the
added flexibility offered by the extra parameters σobs,
GLS is less sensitive to incorrect model assumptions, as
demonstrated in the next section.

III. NUMERICAL SIMULATIONS

A. Effect of outliers

We first tested the effect of outliers on the performance
of GLS, concentrating on estimation of the slope of a
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TABLE I. Monte Carlo estimates of the mean and standard
deviation for the slope parameter in linear regression with
errors on both variables and one outlier.

Original GLS OLS MLE TLS ROB

b = 3.00
3.031 3.528 3.696 4.61 2.992

± 0.035 ± 0.038 ± 0.049 ± 0.11 ± 0.041

regression line with a single independent variable. To
this end, a data set was generated consisting of ten points
labeled by coordinates ξi and ηi (i = 1, . . . , 10), with the
ξi chosen unevenly between 0 and 50 and ηi = 3ξi. Then,
Gaussian noise was added to all coordinates according to
(1) and (2), with σy = 2.0 and σx = 0.5. Finally, an
outlier was created by doubling the value of y8.
We next estimated b by means of GLS and compared

the estimates with those obtained by OLS, maximum
likelihood estimation (MLE) using the model in (3), to-
tal least squares (TLS)5, which is a typical errors-in-
variables technique, and a robust method (ROB) based
on iteratively reweighted least squares (bisquare weight-
ing)6. In all cases we assumed knowledge of the values of
σx and σy. In order to get an idea of the variability of the
estimates, Monte Carlo sampling of the data-generating
distributions was performed and the estimation was car-
ried out 100 times.
The results are given in Table I, mentioning the sam-

ple average and standard deviation of b over the 100 runs
for each of the methods. GLS is seen to perform similar
to the robust method. The average σobs was 5.43 with
a standard deviation of 0.24. On the other hand, the
modeled value of the standard deviation in the condi-

tional distribution for yi was
√

σ2
y + 9σ2

x = 2.5. Hence

GLS succeeds in ignoring the outlier by increasing the
estimated variability of the data.

B. Effect of logarithmic transformation

We next tested the effect of a logarithmic transforma-
tion, which is often used to transform a power-law regres-
sion model into a linear form. However, the logarithm al-
ters the data distribution, which may lead to misguided
inferences from OLS7. Therefore the flexibility offered by
GLS is expected to be beneficial in this case, as it allows
the observed distribution to deviate from the modeled
distribution. To this end, we performed a regression ex-
periment with a power law deterministic model and addi-
tive Gaussian noise on all variables. In accordance with
the typical situation of fitting fusion scaling laws to mul-
timachine data, the noise standard deviation was taken
proportional to the simulated measurements, correspond-
ing to a given set of relative error bars. As a result, in
the logarithmic space the distributions were only approx-
imately Gaussian, with the standard deviation given by
the constant relative error on the original measurement
(homoscedasticity). Ten points were chosen with inde-

TABLE II. Monte Carlo estimates of the mean and standard
deviation for the parameters in a log-linear regression exper-
iment with proportional additive noise on both variables.

Parameter Original GLS OLS MLE TLS ROB

b0 0.80
0.94 2.2 1.75 0.99 2.72

± 0.47 ± 2.3 ± 0.58 ± 0.70 ± 0.77

b1 1.40
1.39 1.19 1.21 1.41 1.17

± 0.11 ± 0.16 ± 0.10 ± 0.14 ± 0.11

pendent coordinates ξi unevenly spread between 0 and
60. A power law was proposed to relate the unobserved
ξi and ηi:

ηi = b0ξ
b1
i , i = 1, . . . , 10.

Then, Gaussian noise was added to both coordinates,
corresponding to a substantial relative error of 40%. We
finally took the natural logarithm of all observed val-
ues xi and yi, enabling application of the same linear
regression methods that were used in the previous exper-
iments. In this particular experiment we chose b0 = 0.8
and b1 = 1.4, but we found that other values yield similar
conclusions. Again, 100 data replications were generated,
allowing calculation of Monte Carlo averages.
The averages and standard deviations over all 100 runs

are given in Table II. Again, the results show that GLS is
robust against the flawed model assumptions, performing
similar to TLS.

IV. POWER THRESHOLD SCALING

We finally applied our method to the estimation of
the scaling law for the power threshold for the L-to-H
transition in tokamaks8. We assumed dependence of the
power threshold on the line-averaged electron density n̄e

(1020 m−3), the toroidal magnetic field Bt (T ) and the
plasma surface area (m2):

Pthr = b0n̄
b1
e Bb2

t Sb3 . (6)

We employed data from seven devices in a multi-machine
database, overall containing 645 measurements of power,
density, magnetic field and surface area (subset IAEA02
9).

A. Linear scaling

We first followed the standard practice of transform-
ing to the logarithmic scale to estimate the coefficients bi
(i = 0, . . . , 3) via linear regression. In the GLS method
we introduced additional parameters, approximately de-
scribing the relative errors for the power threshold (one
for each device), similar to the parameter σobs in the
example above. The estimation results are shown in Ta-
ble III, with the estimated relative errors on Pthr varying
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TABLE III. Estimates of the regression coefficients bi and pre-
dictions for ITER in log-linear scaling for the H-mode thresh-
old power.

Method b0 b1 b2 b3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS 0.059 0.73 0.71 0.92 48 80

GLS 0.065 0.93 0.64 1.02 62 117

TABLE IV. Estimates of the regression coefficients bi and
ITER predictions in nonlinear scaling of the H-mode thresh-
old.

Method b0 b1 b2 b3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS 0.051 0.85 0.70 1.00 62 111

GLS 0.048 0.96 0.59 1.05 64 124

between 21% and 48%. The predictions for ITER are
also shown, for two typical densities (0.5 and 1.0 × 1020

m−3).

B. Nonlinear scaling

Finally, we show the results of a nonlinear regression in
the original data space, i.e. without logarithmic transfor-
mation. Whereas this prevents an analytic solution using
OLS, it should be noted that OLS for nonlinear regres-
sion is not particularly more complicated, while for GLS
there is no conceptual difference compared to the lin-
ear case. Indeed, the distribution of the right-hand side
in (6) can be approximated by a Gaussian with mean

µmod = b0n̄
b1
e Bb2

t Sb3 and standard deviation σmod, given
by

σ2
mod = σ2

Pthr

+ µ2
mod

[

b21

(

σn̄e

n̄e

)2

+ b22

(

σBt

Bt

)2

+ b23

(σS

S

)2
]

.

Hence, the error bars depend on the measurements (het-
eroscedasticity). Nevertheless, we introduced an approx-
imation assuming constant error bars for all measure-
ments from a single machine. This assumption may be

relaxed in the future. The results of the scaling and
predictions are given in Table IV. It is interesting to
note that the results for GLS are similar to those derived
on the logarithmic scale (Table III), indicating that, in-
deed, GLS is less susceptible to flawed model assump-
tions. Furthermore, the results for OLS and GLS are
now in the same range, with slightly lower predictions by
OLS. Nevertheless, both methods suggest higher power
thresholds than those obtained in earlier studies in the
same database (P̂thr,0.5 = 44 MW 8).
V. CONCLUSION

Several important scaling laws have been established in
the past providing essential design constraints for next-
step fusion devices. With the present study, on the one
hand we have aimed to indicate that continuing efforts
in this area are still useful. We have shown that geodesic
least squares regression provides a simple but robust al-
ternative to standard methods. In specific relation to the
scaling of the L-H power threshold, we have noted predic-
tions that are consistently higher than reported earlier.
On the other hand, regression analysis is routinely per-
formed in fusion science for the purpose of model build-
ing and prediction in the context of new physics studies.
With the GLS method, we aim to provide a reliable tool
to the fusion community for scaling studies in demand-
ing circumstances (e.g. large uncertainties). For this pur-
pose, future work will involve improving and generalizing
GLS (including error bars on predictions) and implemen-
tation in a publicly accessible software package.
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