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The pharmaceutical industry is faced with steadily declining R&D efficiency which results in fewer drugs

reaching the market despite increased investment. A major cause for this low efficiency is the failure of

drug candidates in late-stage development owing to safety issues or previously undiscovered side-effects.

We analyzed to what extent gene expression data can help to de-risk drug development in early phases

by detecting the biological effects of compounds across disease areas, targets and scaffolds. For eight drug

discovery projects within a global pharmaceutical company, gene expression data were informative and

able to support go/no-go decisions. Our studies show that gene expression profiling can detect adverse

effects of compounds, and is a valuable tool in early-stage drug discovery decision making.
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Introduction

In today’s pharmaceutical industry, a relatively

small number of drugs are being approved,

whereas research expenses are increasing,

patents are expiring and governments and

health insurance companies are pushing for low-

cost medications [1]. This situation is exacer-

bated by an average of 10% of marketed drugs

being withdrawn from the market at some stage

or requiring black box warnings because of

adverse biological effects and failures in clinical

Phase III and after. FDA submission failures have

increased to �50% in recent years [2]. In addition

to health risks for clinical trial participants, late

failures are extremely costly because large

amounts of time and capital have already been
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invested in developing the drug. Depending on

the assumptions made, the development of a

new drug costs in the order of US$1 billion and

takes the best part of a decade to reach the

market [3,4].

Accordingly, the ‘Holy Grail’ of drug develop-

ment is to identify future failures early – even

before they enter clinical phases – and thereby

save significant expenditures later on. In phar-

maceutical drug discovery the correct go/no-go

decisions must be made during all phases; how-

ever, decisions are particularly crucial during lead

optimization, because they determine which

compounds will enter costly preclinical and clin-

ical development [5,6] (Table 1). These decisions

should ideally be based on scientific parameters
ptomics to guide lead optimization in drug discovery projects: Le
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that are predictive of later outcomes and can be

measured quickly and cost-effectively.

To make decisions on a scientific basis,

researchers in the pharmaceutical industry are

now using a range of technologies for measuring

the biological effects of compounds. These

technologies are generally related either to ef-

ficacy, such as early-stage measuring of com-

pound–target interactions or animal-based

readouts in later stages, or to the detection of

adverse effects, such as safety profiling [7,8] or

more-complex biological readouts. The assays

used can capture either single biological effects

– the inhibition of a certain enzyme for instance

– or multiple biological effects, such as mRNA-,

protein- and imaging-based techniques [9–11].
ssons learned from the QSTAR project, Drug Discov Today
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TABLE 1

Typical decision points in drug discovery projects and the type of decision to be taken in each step

Decision point Important criteria for decision Decision support available

Choice of disease Patient need; commercial aspects Statistics on disease distributions; input from practitioners

Target selection ‘Validated’ target (i.e. involved in disease

modulation and druggable)

Biological studies (e.g. knockdown experiments, genetic

linkages); chemical biology/probes

Screening library assembly Chemistry with no obvious liabilities, ease of

synthesis of analogs, good assumed or proven
PK/PD properties

Chemoinformatics analysis of chemical space; historical hit

distributions in chemical space

Assay development Predictivity; reproducibility; throughput; price Experience of biologists

Screening/hit list triaging Data quality; increasing certainty about true and

false positives and negatives

Experience of screeners/follow-up scientists

Lead optimization On-target and off-target activities; favorable drug
metabolism and pharmacological properties

Biochemical and more-complex assay systems; gene
expression arrays

Preclinical studies Efficacy and side-effect profile Animal experiments

Clinical studies Efficacy and side-effect profile Testing of drug candidate in large (or stratified) cohorts

Approval Efficacy and side effect profile Results from preclinical and clinical studies

Marketing Market structure in disease area; comparative

advantage of drug with competitors in the market

Commercial information systems

This list is incomplete, but it illustrates the large number of multidimensional choices to be made during a typical project, most of which are go/no-go decisions between either two or

several (or even very many) options. In this work, we are particularly interested in supporting decisions in the lead optimization stage using gene expression data.
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In principle, the latter can take ‘all’ biological

activities of a compound in a living system into

account and provide data that convey more

information about its properties [10]. A multi-

dimensional assay that measured a wide diver-

sity of biological effects during lead optimization

would be highly desirable for making the right

decisions exceptionally early in the drug devel-

opment process and would save considerable

amounts of time and money. However, the ap-

plicability of these biotechnologies for the

evaluation of compound efficacy and safety in

real drug development projects is still to be

demonstrated.

One of the multidimensional assays that has

gained considerable attention in the past decade

is gene expression profiling. This technique si-

multaneously measures many of the biological

effects of a compound on the transcriptional level,

and thereby gives a comprehensive snapshot of

the biological state of a living system [12–14].

Transcriptomic changes following compound

administration can now also be measured in high

throughput, enabling screening of many com-

pounds in multiple cell lines at low cost. The use of

transcriptomic data for characterizing biological

effects of small molecules has become increas-

ingly popular since the advent of the Connectivity

Map [15]. Several applications ranging from

pathway elucidation [16], toxicity models [17,18]

and toxicogenomic classifications [19] to tool

discovery and drug repurposing [20–23] have

been developed based on drug-induced gene

expression profiling [9]. However, whereas these

studies certainly have significant scientific value,
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they do not address the utility of gene expression

profiling for decision making during the lead

optimization phase of a typical drug discovery

project. The objective of this phase is first to

prioritize a few chemotypes from previous phases

and then to optimize these lead compounds into

their desired bioactivity profiles as well as ADME–

Tox properties. This is very different from the

repurposing applications of Connectivity Map, in

which compounds are selected from a library with

broad functional and structural diversity. During

lead optimization a very narrow chemical space is

being considered, and more-fine-grained deci-

sions need to be made. The studies cited above

did not consider transcriptional profiles at the

level of resolution required for their use in the lead

optimization phase – a deficiency that our work

aims to address.

Few findings have been published on how

gene expression facilitates go/no-go decisions

during lead optimization. In one example, Fanton

et al. [24] found that gene expression data help in

the optimization of closely chemically related

compounds. However, this study focused solely

on on-target effects, whereas in lead optimization

the detection of off-target effects is crucial. Baum

et al. [25] investigated off-target effects and were

able to prioritize compounds based on tran-

scriptional profiles; however, only a small number

of compounds from a single project were con-

sidered. This is insufficient for assessing the utility

of transcriptomic data for decision making in

early-stage pharmaceutical drug discovery.

We have now evaluated the utility of gene

expression profiling in eight drug discovery
ptomics to guide lead optimization in drug discovery projects: Le
projects, named according to their biomolecular

target: fibroblast growth factor receptor (FGFR),

epidermal growth factor receptor (EGFR), ROS1,

hepatitis B virus (HBV), mGluR2PAM, phospho-

diesterase (PDE)10A, PDE4 and microsomal tri-

glyceride transfer protein (MTP); across four

disease areas: oncology, virology, neuroscience

and metabolic diseases. The experiments were

performed from 2010 to 2013 at Janssen Re-

search and Development, as part of the Quan-

titative Structure Transcriptional Activity

Relationships (QSTAR) Project [26]. We measured

the transcriptional effects of 757 compounds on

eight cell lines using a total of �1600 microarrays

developed by Affymetrix. On the basis of these

experiences, we found gene expression profiling

to be a highly valuable tool for lead optimization

in pharmaceutical discovery projects.

Results

Table 2 provides an overview of the projects and

disease areas that were explored in this study

with regard to the utility of using transcriptomic

data (measured by microarrays) in the lead op-

timization phase of pharmaceutical drug dis-

covery projects. Transcriptomic data provided

relevant information for six of the eight projects.

For three of them (ROS1, EGFR and PDE10A) the

data provided clear go/no-go decisions. In three

other projects (FGFR, mGluR2PAM and MTP)

transcriptomics delivered novel biological

insights but did not provide direct decision

support. In the remaining two cases (HBV and

PDE4) neither biological insights nor go/no-go

decisions were gained. Four projects are
ssons learned from the QSTAR project, Drug Discov Today
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TABLE 2

Overview of the pharmaceutical projects included in the QSTAR project for which transcriptomic profiling was performed

Target Therapeutic area Result Utility Decision

ROS1 Oncology Selectivity and on-target Useful No-go for certain chemotypes

EGFR Oncology On-target and off-target Useful No-go and go for certain compounds

PDE10A Neuroscience Off-target Useful No-go for certain compounds

MTP Metabolic On-target (inconsistency with assay data) Relevant

mGluR2PAM Neuroscience Off-target (further exploration needed) Relevant

FGFR Oncology On-target (no differentiation among compounds) Relevant

HBV Virology Limited GE effects No added value

PDE4 Neuroscience Limited GE effects No added value

Abbreviations: EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; GE, Gene expression; HBV, hepatitis B virus; MTP, microsomal triglyceride transfer protein;

PDE, phosphodiesterase; QSTAR, quantitative structure transcriptional activity relationships; ROS1, Proto-oncogene tyrosine-protein kinase ROS.

The columns give the biomolecular target, the therapeutic area, the result of the gene expression data analysis, the utility for the drug design process and how this source of information

contributed to decision making. All projects are described in more detail in the text (see also Supplementary material online).
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described in detail here. The remaining projects

are described in Supplementary material.

PDE10A project

In this project, the aim was to develop com-

pounds inhibiting PDE10A which is almost ex-

clusively expressed in the striatum and is

considered as a novel therapeutic avenue in the

discovery of antipsychotics [27]. Although the

efficacy of the investigated compounds was

high, adverse effects emerged as a point of

concern. Therefore, the compounds were pro-

filed with respect to their induced gene ex-

pression on HEK293 cells transfected with the

mouse homolog of PDE10A. Three compounds

strongly downregulated the expression of tu-

bulin genes (Fig. 1b), which was the strongest

transcriptional module observed (Fig. 1c) in this

experiment. Downregulation of tubulin genes

suggests a possible genotoxic effect on the

microtubule-based chromosome segregation

(Fig. 1a). Hence the compounds were profiled in

a micronucleus test (MNT) [28] – a genotoxicity

test for detecting micronuclei in the cytoplasm

of interphase cells. The micronuclei formation

for one of the three compounds showing tu-

bulin downregulation is presented in Fig. 1d.

The tubulin downregulation was strongly cor-

related with highly positive MNT scores (a 20.6-

fold to 28.1-fold increase in micronuclei for-

mation). By contrast, structurally similar com-

pounds with nonsignificant tubulin

downregulation did not show an influence on

micronucleus formation.

The tubulin genes were used in a next step as

a gene signature to query the Connectivity Map

[15,29]. The top five ranked compounds re-

trieved with this signature were mebendazole

(two instances), chelidonine, vinblastine and

nocodazole. Vinblastine is a known reference

compound used in MNT assays as a positive
Please cite this article in press as: Hochreiter, S. Using transcri
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control for the induction of MN formation [30].

Mebendazole and nocodazole are both benzi-

midazoles that are also considered model

compounds for demonstrating thresholded

responses of aneugenic compounds [31]. Hence,

our identification of MNT-positive compounds

using gene expression signatures could also be

validated on external data. In a subsequent

transcriptional profiling experiment, nocodazole

was also profiled, and the link between tubulin

genes and a positive MNT could be confirmed

(Fig. S1 in Supplementary material online).

The results from the PDE10A project clearly

show that transcriptomic profiling can identify

potentially genotoxic compounds in an early

phase of drug development. This is of practical

utility, given that in the standard drug discovery

pipeline in vitro pharmacological profiling for the

formation of micronuclei is usually applied at a

rather late stage. The tubulin gene expression

signature, however, allows identification of mi-

cronucleus formation much earlier and, thereby,

prevents failure of selected compounds owing to

this effect at later stages.

EGFR project

Our second project was an oncology project,

focusing on inhibition of EGFR [32]. Given in-

creasing resistance to current EGFR inhibitors

(gefitinib and erlotinib) [33], there is still a need

for novel therapies. Compounds with a macro-

cycle structure were derived from the two ref-

erence compounds (Fig. 2c) and synthesized.

Thirty-five of them were selected for transcrip-

tomic profiling to identify compounds with

similar biological effects to the reference com-

pounds. A compound-induced transcriptional

module was discovered (see supplementary

material online) in which some genes were

downregulated for the two reference com-

pounds as well as five macrocycle compounds
ptomics to guide lead optimization in drug discovery projects: Le
(Fig. 2a). The most significant gene of this

module encodes the fibroblast growth factor

carrier protein (FGFBP1) the expression of which

is downregulated via the mitogen-activated

protein kinase/extracellular signal-related kinase

(MAPK/ERK) pathway after EGF-stimulated inhi-

bition of EGFR [34]. Also, several other genes of

the module, such as FOSL1, are located down-

stream of the MAPK/ERK pathway [35].

We confirmed that this transcriptional effect

induced by the compounds and gefitinib and

erlotinib is related to the inhibition of the pro-

liferation of cancer cells by an assay measuring

cell growth: FGFBP1 downregulation is indeed

highly negatively correlated with the prolifera-

tion assay (Fig. 2c). Additionally, we were able to

link cell growth activity and FGFBP1 downregu-

lation to a particular chemical feature (Fig. 2c,d),

which was detrimental to biological activity and,

in turn, probably also to the efficacy of the

compound. One of the five active macrocycles

could be deprioritized based on a potential

severe off-target effect discovered solely using

transcriptomics data. In the case of this com-

pound, mitochondrial membrane genes like

MT1X were found to be downregulated, which

might hint to a failure at later phases [36]

(Fig. 2b). This resulted in a clear no-go decision

for further development for this compound. This

example demonstrates the use of gene expres-

sion profiling as a tool to confirm the desired

effect and to obtain insight into the mechanism

of action. Because transcriptomics experiments

allow the discovery of adverse effects, one of the

active compounds could be additionally

deprioritized based on a specific transcriptional

effect.

MTP project
The goal of the project was to develop com-

pounds that modulate MTP, which alters the
ssons learned from the QSTAR project, Drug Discov Today
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FIGURE 1

(a) Schematic representation of micronucleus formation during mitosis. Genotoxic compounds can either cause chromosomal breaks (clastogen) or affect the

formation of the mitotic spindle or microtubule (aneugen). (b) Gene profile plot of a transcriptional module detected in the phosphodiesterase (PDE)10A project.
Each row displays the standardized expression values of a gene across the compounds (along the x-axis). DMSO denotes controls for which only the compound

carrier DMSO was administered. Gray horizontal bars indicate the range of variation in DMSO controls. The distribution of the raw expression values is given on the

right by a violin plot for each gene. The transcriptional module found in the gene expression profiles of target compounds contains tubulin genes that are

downregulated by some compounds (colored green). (c) Volcano plot of the gene expression data of one compound showing clear downregulation of TUBB
genes. The fold change for each gene against the controls (x-axis) is plotted against its negative log P-value (y-axis). The P-value is computed by LIMMA with the

null hypothesis that a gene is not differentially expressed. The most significant differentially expressed genes against DMSO are placed in the upper left and right

corners. The tubulin genes are most significantly differentially expressed for this particular compound. (d) Microscopic and FACScan analysis demonstrating clear

MN-formation (yellow arrows) and G1 cell cycle arrest similar to the aneugenic reference compound, vinblastine. The compounds downregulating tubulin genes
(marked green in (b)) all have such an effect on the microtubule-based chromosome segregation.
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cholesterol level [37,38] via downregulation of

the cholesterol biosynthesis pathway [39]. Ke-

toconazole, an antifungal agent that blocks cy-

tochrome P450 14-alpha-demethylase (P450-

14DM), has multiple biomolecular targets and is

known to reduce cholesterol levels [40]. Struc-

tural derivatives of ketoconazole were synthe-

sized as potential MTP inhibitors, although lead

optimization of compounds with multiple un-

known targets is challenging with traditional

biochemical assays. Therefore, the compounds

were profiled using gene expression on multiple

cell lines: LnCap (human prostate cancer), HepG2

(human liver carcinoma) and SK-N-BE(2) (human
Please cite this article in press as: Hochreiter, S. Using transcri
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brain cancer). A transcriptional module con-

taining ten downregulated genes that belong to

the sterol regulatory element binding protein

(SREBP) cholesterol metabolism pathway was

detected in LnCap and HepG2 cells (Fig. 3a,b) but

not in SK-N-BE(2). Given the downregulation of

these genes, we reasoned that the inhibition of

MTP increases the cholesterol concentration in

the endoplasmatic reticulum [41,42], which is

detected by the SREBP cleavage activating

protein (SCAP). Owing to the high level of cho-

lesterol, SCAP cannot activate SREBP [43,44], and

thus the cholesterol biosynthesis pathway is

downregulated as desired. However, the ranking
ptomics to guide lead optimization in drug discovery projects: Le
of the compounds based on the gene expression

patterns of the SREBP pathway genes is different

between the two cell lines (Fig. 3c), and it only

partially correlates with the cellular assays

measuring MTP inhibition (see Supplementary

material online). Owing to this inconsistency,

other transcriptional modules were not further

investigated. Although transcriptomic effects

related to the expected metabolic pathway are

observed in this project, further investigation

and exploitation are required before a decision

can be made; however, we did acquire

biological insights into the mode of action of

the compounds.
ssons learned from the QSTAR project, Drug Discov Today
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FIGURE 2

(a) Gene profile plot of a transcriptional module detected in the epidermal growth factor receptor (EGFR) project. Each row displays the standardized expression
values of a gene across the compounds (along the x-axis). DMSO denotes controls for which only the compound carrier DMSO was administered. The distribution

of the raw expression values for each gene of the module is given on the right by a violin plot. The transcriptional module includes genes where expression is

downregulated in cells treated with the two reference compounds (gefitinib and erlotinib) and in five macrocycle compounds (green). The genes were shown to
be related to the on-target activity, the inhibition of EGFR. (b) Gene profile plot of another transcriptional module showing that one of the target-active

compounds has an off-target effect (marked by a purple ring). (c) Scatter plot of bioassay activity values (x-axis, expressed in pIC50) versus FGFBP1 gene expression

values (y-axis). A strong negative correlation is observed. The compounds that show a clear downregulation of FGFBP1 are colored in green. Furthermore, the

presence (red ring) or absence (gray ring) of a particular chemical feature is depicted. If the chemical feature is present then the FGFBP1 expression is high resulting
in a low bioassay activity. (d) Chemical structures of the two reference compounds gefitinib and erlotinib, together with two representatives of the macrocycle

compounds. A chemical feature, the oxygen in the ortho position of the aniline (highlighted in red), was found to reduce the activity of the compounds.
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ROS1 project

This project sought to develop compounds that

inhibit the proto-oncogene tyrosine protein ki-

nase ROS (ROS1). The ROS1 gene is overex-

pressed in several cancer types [45,46]. Lack of

selectivity was a particular concern given the

historical precedent for compounds of this tar-

get class [47]. Five chemotypes (A–E) had been

identified from the cellular screen for target

inhibition. We used the number of gene ex-
Please cite this article in press as: Hochreiter, S. Using transcri
(2015), http://dx.doi.org/10.1016/j.drudis.2014.12.014
pression changes induced by a given compound

as a measure of the selectivity of that compound.

This analysis clearly identified chemotype A as

the most selective (i.e. least effects on gene

expression; Fig. 4a), which was selected for

continued development. At the same time, no-

go decisions were made on the other chemo-

types (B–E).

In an attempt to improve the inhibitory ac-

tivity of compounds of chemotype A, �100
ptomics to guide lead optimization in drug discovery projects: Le
analogs were synthesized. Cellular assays for

target inhibition indeed identified compounds

with high inhibitory activity among the analogs

of chemotype A. Our gene expression analysis

showed that there was no loss of the desirable

selectivity for even the most active analogs.

These drug candidates were thus promoted to

further preclinical development (Fig. 4b). This

example demonstrates the use of gene expres-

sion profiling to complement a focused cellular
ssons learned from the QSTAR project, Drug Discov Today
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FIGURE 3

(a) Gene profile plot of a transcriptional module detected in the HepG2 cell line of the microsomal triglyceride transfer protein (MTP) project. Each row displays the

standardized expression values of a gene across the compounds (along the x-axis). DMSO denotes controls for which only the compound carrier DMSO was
administered. Gray horizontal bars indicate the range of variation in DMSO controls. The distribution of the raw expression values is given on the right by a violin

plot for each gene. The module includes the genes HMGCS1, IDI1, FDFT1 and DHCR7 which encode proteins that belong to the sterol regulatory element binding

protein (SREBP) pathway (red box). Three compounds (green) are transcriptionally active on this gene module. (b) Gene profile plot of a transcriptional module

detected in the LnCap cell line of the MTP project. The same set of genes belonging to the SREBP cholesterol metabolism pathway was retrieved (red box). (c)
Scatter plot of the gene expression values of IDI1 in the HepG2 (x-axis) and in the LnCap cell line (y-axis) for each of the compounds (represented by dots). While

using the HepG2 cell line, three compounds (colored green) show a clear downregulation, these three compounds and some others are downregulated in the

LnCap cell line. (d) Pathway diagram of the SREBP pathway. The proteins corresponding to genes that are present in the transcriptional modules of HepG2 and
LnCap are marked by a red box.
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assay during compound selection and the

qualification of individual compounds for further

optimization.

Discussion

Assessing the utility of transcriptomic data for

decision making in early-stage pharmaceutical

drug discovery is rather challenging. The drug

discovery process spans a long time period,
Please cite this article in press as: Hochreiter, S. Using transcri
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typically more than ten years. Hence, the impact

of decisions made during the QSTAR project

cannot be fully demonstrated because many

projects are still ongoing. These limitations are

inherently linked to such an assessment exercise.

However, given the examples, it is shown that

transcriptional profiling experiments can con-

tribute to decision making during the lead op-

timization phase of drug discovery projects. The
ptomics to guide lead optimization in drug discovery projects: Le
multidimensional data generated from tran-

scriptomics experiments are ‘richer’ than con-

ventional assays based on single readouts. They

allow discovery of multiple patterns within the

same experiment that relate to different char-

acteristics of the compounds under investiga-

tion. Besides identifying interesting

transcriptional effects, project-relevant informa-

tion can also be gathered by quantifying the
ssons learned from the QSTAR project, Drug Discov Today
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FIGURE 4

Chemotype selection in the ROS1 project: chemotypes A, B, C, D and E are shown in pink, brown, green, blue and purple, respectively. (a) Bar plot showing the

number of genes with an absolute log fold change greater than 1 compared with the controls for each of the compounds in the initial set. The white spaces

indicate compounds for which no genes had an absolute log fold change greater than 1. The compounds are ordered within a chemotype according to their
inhibitory activity (represented by dots, expressed in pIC50). Compounds of chemotype A show the least number of transcriptional effects, but also on average

lower activity profiles. (b) Bar plot showing the number of genes with an absolute log fold change greater than 1 compared with the controls for each of the

compounds in the extended compound set of the ROS1 project. Additional compounds in chemotype A were added. Compounds are ordered again based on

pIC50 within chemotypes.
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transcriptional changes on an absolute scale. A

compound was defined as being ‘selective’ when

the number of differentially expressed genes

after compound administration is low compared

with other compounds within the same project.

Additionally, it is shown in the EGFR project that

transcriptomics data can be integrated in more

classical SAR modeling exercises.

Although transcriptomics data have been

shown to support decision making in a number

of projects, they also have their limitations.

Conceptually, transcriptional profiling is limited

in its nature because it cannot detect changes at

the metabolite or protein level. There could be

compounds that affect the function of a pathway

which is not reflected by a transcriptional

change. In general, from the data presented in

this work, higher numbers of transcriptional

effects were observed in oncology projects. A

plausible explanation is that the antiproliferative

activity of these compounds typically affects

many biological processes that are linked with

transcriptional changes.

We are not yet at a stage where we can easily

annotate the majority of transcriptional

responses and have assays readily available to

check the validity of each observation. As a

consequence, we could create data on candidate

drugs that are not yet interpretable but might

prove beneficial in their ongoing development.

This emphasizes the exploratory nature of

transcriptomics experiments. It enables the

generation of interesting hypotheses early but

important decisions could require validation in

follow-up experiments.
Please cite this article in press as: Hochreiter, S. Using transcri
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As with all cell-based assays, the amount of

information that can be gained from transcrip-

tomic profiling depends on the type of cell line.

For detection of transcriptional effects related to

the desired activity, cell lines expressing the

target are suggested, whereas some adverse

effects might only be observable in other cell

lines. Besides cell line dependency, investigation

of compound-induced effects can be heavily

dose- and time-dependent. All compounds

within a certain project are profiled in equimolar

conditions to assess the differences in efficacy.

However, when the potencies between the

compounds within a project are diverse, some

compounds are too dilute to show effects. These

dependencies illustrate that an optimization of

the parameters (cell line, concentration and

administration time) before profiling is needed

to maximize the information that can be gained

from transcriptomic data. However, such an

optimization is only affordable when gene ex-

pression profiling technologies become even

less costly and more suitable for higher

throughput like the L1000 platform [48]. In the

other direction, high throughput RNA sequenc-

ing (RNA-Seq) enables more in-depth analysis of

transcriptional changes at a higher cost. The

transcriptomic data described in this paper were

all generated using microarray gene expression

chips, but the concepts, approaches and con-

clusions can be directly transferred to platforms

such as L1000 and RNA-Seq [49].

The overall conclusion of QSTAR is that tran-

scriptomic data typically detect biologically rel-

evant signals and are often able to help prioritize
ptomics to guide lead optimization in drug discovery projects: Le
compounds beyond conventional target-based

assays. Most value is added to the decision

making process by warning signals that flag off-

target effects early on. Because gene expression

profiling is nowadays an affordable and fast

technique, in particular when compared with

other assays, it has the potential to be included

as a standard method early in the drug devel-

opment process to detect such off-target effects.

We expect that in the future the applicability of

transcriptional profiling will increase further

owing to continuous investments in the anno-

tation of transcriptional responses.

Materials and methods

For each project, gene expression data were

initially obtained for a small set of candidate

compounds, reference compounds (e.g. FDA-

approved drugs), target-active representatives of

candidate chemotypes and controls in a cell

system and at equimolar concentration and

treatment duration recommended by the re-

spective Janssen project teams. In some cases,

the set of compounds was extended with

structural analogs that were synthesized fol-

lowing certain decision points (see Supple-

mentary material online). The mRNA expression

data were quantile normalized, summarized [13]

and filtered [50,51]. Subsequent exploratory

analysis to detect strong transcriptomic effects

was performed using spectral map analysis [52].

Differentially expressed genes [53] were called

and transcriptional modules [54] (i.e. genes

where expression is simultaneously up- or down-

regulated in a subset of samples) were identified
ssons learned from the QSTAR project, Drug Discov Today
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by the factor analysis for bicluster acquisition

(FABIA) method [55]. Transcriptional modules

related to the desired effect were identified by

the potential support vector machine (PSVM)

using target-related bioassay measurements

[56]. A data framework and analysis pipeline was

constructed to facilitate integrated analysis of

gene expression data, chemical structures and

bioassay results (see Supplementary material

online).
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